JP3326072B2 - Iron-based mixture for powder metallurgy and method for producing the same - Google Patents

Iron-based mixture for powder metallurgy and method for producing the same

Info

Publication number
JP3326072B2
JP3326072B2 JP12762996A JP12762996A JP3326072B2 JP 3326072 B2 JP3326072 B2 JP 3326072B2 JP 12762996 A JP12762996 A JP 12762996A JP 12762996 A JP12762996 A JP 12762996A JP 3326072 B2 JP3326072 B2 JP 3326072B2
Authority
JP
Japan
Prior art keywords
powder
iron
copper
mixture
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12762996A
Other languages
Japanese (ja)
Other versions
JPH0913101A (en
Inventor
聡 上ノ薗
邦明 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP12762996A priority Critical patent/JP3326072B2/en
Publication of JPH0913101A publication Critical patent/JPH0913101A/en
Application granted granted Critical
Publication of JP3326072B2 publication Critical patent/JP3326072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、とりわけ銅粉添加物の
偏析および発塵(ダスト)の発生が少なく、流動性とそ
の製造後の経時による変化が少ない、粉末冶金用鉄基粉
末混合物およびその製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to an iron-based powder mixture for powder metallurgy, in which, among other things, the segregation of copper powder additives and the generation of dust are small, the fluidity and the change over time after production are small. It relates to the manufacturing method.

【0002】[0002]

【従来の技術】粉末冶金用鉄基粉末混合物は、鉄粉に銅
粉、黒鉛粉、燐化鉄粉などの合金粉末と、さらに必要に
応じて切削性改善用粉末に加えて、ステアリン酸亜鉛、
ステアリン酸アルミニウム、ステアリン酸鉛などの潤滑
剤を混合して製造するのが一般的である。このような潤
滑剤は金属粉末との混合性や焼結時の逸散性などから選
択されている。
2. Description of the Related Art An iron-based powder mixture for powder metallurgy is prepared by adding zinc stearate to an iron powder in addition to an alloy powder such as copper powder, graphite powder, iron phosphide powder and, if necessary, a powder for improving machinability. ,
It is common to mix lubricants such as aluminum stearate and lead stearate. Such a lubricant is selected based on the mixing property with the metal powder and the fugitive property during sintering.

【0003】しかし、このような混合方法は以下のよう
な欠点を持っている。先ず、混合法の大きな欠点は原料
混合物が偏析を生ずることである。偏析について述べる
と、粉末混合物は大きさ、形状および密度の異なる粉末
を含んでいるため、混合後の輸送、ホッパへの装入、払
い出し、または成形処理などの際に、容易に偏析が生じ
てしまう。例えば、鉄基粉末と黒鉛粉との混合物は、ト
ラック輸送中の振動によって、輸送容器内において偏析
が起こり、黒鉛粉が浮かび上がることは良く知られてい
る。また、ホッパに装入された黒鉛はホッパ内偏析のた
め、ホッパより排出する際、排出の初期、中期、終期で
それぞれ黒鉛粉の濃度が異なることも知られている。
However, such a mixing method has the following disadvantages. First, a major drawback of the mixing method is that the raw material mixture undergoes segregation. Talking about segregation, powder mixtures contain powders of different sizes, shapes and densities, so that segregation can easily occur during transport after mixing, loading into a hopper, discharging, or molding. I will. For example, it is well known that a mixture of an iron-based powder and a graphite powder segregates in a transport container due to vibration during truck transport, and the graphite powder emerges. It is also known that the graphite charged in the hopper has a different concentration of graphite powder in the initial, middle and final stages of discharge when discharged from the hopper due to segregation in the hopper.

【0004】これらの偏析によって製品は組成にばらつ
きを生じ、寸法変化および強度のばらつきが大きくなっ
て、不良品の原因となる。
[0004] Due to these segregations, the composition of the product varies, causing dimensional changes and variations in strength to increase, causing defective products.

【0005】また、黒鉛粉などはいずれも微粉末である
ため、混合物の比表面積を増大させ、その結果、流動性
が低下する。このような流動性の低下は、成形用金型へ
の充填速度を低下させるため、圧粉体の生産速度を低下
させてしまうという欠点もある。
[0005] Further, since graphite powder and the like are all fine powders, the specific surface area of the mixture is increased, and as a result, the fluidity is reduced. Such a decrease in the fluidity lowers the filling speed of the molding die, and thus has the disadvantage of lowering the production speed of the green compact.

【0006】このような粉末混合物の偏析を防止する技
術として特開昭56−136901号公報や特開昭58
−28321号公報に開示されたような結合剤を用いる
技術があるが、粉末混合物の偏析を充分に改善するよう
に結合剤の添加量を増加させると、粉末混合物の流動性
が低下する問題点がある。
As a technique for preventing such a segregation of the powder mixture, JP-A-56-136901 and JP-A-58-136901 are known.
There is a technique using a binder as disclosed in Japanese Patent Publication No. 28321, but when the amount of the binder is increased so as to sufficiently improve the segregation of the powder mixture, the flowability of the powder mixture decreases. There is.

【0007】また本発明者らは先に特開平1−1657
01号公報、特開平2−47201号公報において、金
属石鹸又はワックスとオイルとの共溶融物を結合剤とし
て用いる方法を提案した。これらは粉末混合物の偏析と
発塵を格段に低減することができると共に、流動性を改
善することができるものである。しかし、これらの方法
では上述の偏析を防止する手段に起因して、粉末混合物
の流動性が経時的に変化する問題があった。そこで、さ
らに本発明者らは特開平2−57602号公報において
提案したような、高融点のオイルと金属石鹸の共溶融物
を結合剤に用いる方法を開発した。その技術は、共溶融
物の経時変化が少なく、粉末混合物の流動性の経時的な
変化が低減されるものである。しかし、その技術では常
温では固体の高融点の飽和脂肪酸と金属石鹸とを鉄基粉
末と混合するので、粉末混合物の見掛け密度が変化する
という別の問題があった。
The present inventors have previously described Japanese Patent Laid-Open No. 1-1657.
No. 01 and JP-A-2-47201 proposed a method using a co-melt of metal soap or wax and oil as a binder. These can remarkably reduce segregation and dust generation of the powder mixture, and can improve fluidity. However, these methods have a problem that the fluidity of the powder mixture changes with time due to the means for preventing the segregation described above. Then, the present inventors have further developed a method using a co-melt of a high melting point oil and a metal soap as a binder, as proposed in JP-A-2-57602. The technique is such that the change with time of the co-melt is small and the change with time of the fluidity of the powder mixture is reduced. However, this technique has another problem that the apparent density of the powder mixture changes because the saturated fatty acid having a high melting point and metal soap which are solid at normal temperature are mixed with the iron-based powder.

【0008】この問題を解決するため本発明者らは特開
平3−162502号公報にて、鉄基粉末表面を脂肪酸
で被覆した後、鉄基粉末表面に添加物を脂肪酸と金属石
鹸との共溶融物で付着させ、さらにその外表面に金属石
鹸を添加するという方法を提案した。
In order to solve this problem, the present inventors disclosed in Japanese Patent Application Laid-Open No. Hei 3-162502, after coating the surface of an iron-based powder with a fatty acid, added an additive to the surface of the iron-based powder with a mixture of a fatty acid and a metal soap. A method was proposed in which it was adhered with a melt and metal soap was further added to the outer surface.

【0009】[0009]

【発明が解決しようとする課題】これら方法において偏
析の問題はかなり解決されたが、添加合金成分として最
も重要な銅粉のみはこれら方法においても鉄基粉末への
固着が不十分で、偏析する度合が大きく、これの問題が
課題となっていた。
Although the problem of segregation has been considerably solved in these methods, only the copper powder, which is the most important additive alloy component, is insufficiently fixed to the iron-based powder even in these methods and segregates. This was a serious problem.

【0010】本発明はこの問題を解決することを目的と
するものである。本発明は銅粉末の1次粒径と凝集粒径
との関係が付着度に大きく影響することを見出したこと
によりなされたものである。また、銅粉表面を処理する
ことによって一層付着度が高まることを知見した結果な
されたものである。
An object of the present invention is to solve this problem. The present invention has been made based on the finding that the relationship between the primary particle size and the agglomerated particle size of copper powder greatly affects the degree of adhesion. In addition, it was made as a result of finding that the degree of adhesion is further increased by treating the copper powder surface.

【0011】[0011]

【課題を解決するための手段】本発明は、上記目的を達
成するためになされたもので、鉄基粉末と、少なくとも
銅粉末または亜酸化銅粉末を含む1種以上の合金用粉末
と、鉄基粉末に合金用粉末を結合するための有機物とを
含んでなる粉末冶金用鉄基混合物において、前記銅粉末
または亜酸化銅粉末は、マイクロトラック法で評価され
る凝集粒径が5〜28μm、BET法で評価される1次
粒径が0.2〜1.5μmであり、前記粉末冶金用鉄基
混合物全体中の銅の含有率に対する、該混合物の325
メッシュを通過した部分の銅の含有率の比が2以下であ
ことを特徴とする粉末冶金用鉄基混合物である。
SUMMARY OF THE INVENTION The present invention has been made to achieve the above-mentioned object, and comprises an iron-based powder, at least one alloy powder containing at least a copper powder or a cuprous oxide powder, and an iron powder. In an iron-based mixture for powder metallurgy comprising an organic substance for bonding an alloy powder to a base powder, the copper powder or cuprous oxide powder has an agglomerated particle size of 5 to 28 μm evaluated by a microtrack method, the primary particle size as evaluated by the BET method is Ri 0.2~1.5μm der, iron for the powder metallurgy
325 of the mixture relative to the copper content in the whole mixture
The ratio of the copper content of the portion passing through the mesh is 2 or less
A powder metallurgy iron-based mixture, characterized in that that.

【0012】この場合において、前記有機物としては脂
肪酸と金属石鹸との共溶融物又は融点の異なる2種以上
のワックスの部分溶融物であると好適である。
[0012] In this case, the pre-Symbol organics are preferred as a co melt or partial melt of two or more different waxes having a melting point of a fatty acid and a metal soap.

【0013】さらに上記粉末冶金用鉄基混合物におい
て、前記銅粉末又は亜酸化銅粉末の表面に0.1〜2重
量%のポリビニルブチラールが付着されたこと、前記銅
粉末が、表面に0.1〜2重量%のSi系又はAl系カ
ップリング剤が付着されたこと、又は前記銅粉末の表面
に0.1〜2重量%の黒鉛が付着されたことが好まし
く、さらにまた、銅粉末が酸化銅還元粉であると好適で
ある。
In yet said powder metallurgical iron-based mixture, the polyvinyl butyral of 0.1 to 2 wt% on the copper powder or cuprous oxide Powder surface is deposited, the copper powder, the surface 0. Preferably, 1 to 2% by weight of a Si-based or Al-based coupling agent is attached, or 0.1 to 2% by weight of graphite is attached to the surface of the copper powder. It is preferable that the reduced powder be copper oxide.

【0014】次に、本発明の粉末冶金用鉄基混合物の製
造方法として次を提供する。すなわち、本発明の製造方
法は、鉄基粉末に常温で液体の脂肪酸を加えて1次混合
し、次いで少なくとも銅粉末または亜酸化銅粉末を含む
1種以上の合金用粉末に金属石鹸を加えて添加して2次
混合し、該2次混合工程中又は2次混合後に昇温して脂
肪酸と金属石鹸の共溶融物を生成させ、次いで、3次混
合しながら冷却し、前記共溶融物を冷却固着させ、該共
溶融物の結合力により鉄基粉末粒子の表面に合金用粉末
を固着させ、さらに、冷却時に金属石鹸又はワックスを
加え、4次混合を行う粉末冶金用鉄基混合物の製造方法
において、前記銅粉末又は亜酸化銅粉末は、マイクロト
ラック法で評価される凝集粒径が5〜28μm、BET
法で評価される1次粒径が0.2〜1.5μmであり、
前記粉末冶金用鉄基混合物全体中の銅の含有率に対す
る、該混合物の325メッシュを通過した部分の銅の含
有率の比が2以下であることを特徴とする粉末冶金用鉄
基混合物の製造方法である。
Next, the following is provided as a method for producing the iron-based mixture for powder metallurgy of the present invention. That is, in the production method of the present invention, a fatty acid which is liquid at normal temperature is added to an iron-based powder and primary mixed, and then a metal soap is added to one or more alloy powders including at least copper powder or cuprous oxide powder. During the secondary mixing step or after the secondary mixing, the temperature is raised to form a co-melt of the fatty acid and the metal soap, and then the mixture is cooled with tertiary mixing. Production of an iron-based mixture for powder metallurgy in which the alloy powder is fixed to the surface of the iron-based powder particles by cooling and fixed, and the metal soap or wax is added during cooling and quaternary mixing is performed by the bonding force of the co-melt. In the method, the copper powder or the cuprous oxide powder has an agglomerated particle size of 5 to 28 μm evaluated by a microtrack method, and a BET.
Primary particle size evaluated by the method is 0.2 to 1.5 μm ,
With respect to the content of copper in the entire iron-based mixture for powder metallurgy
Containing copper in the portion of the mixture that has passed through 325 mesh.
A method for producing an iron-based mixture for powder metallurgy , wherein the ratio of the ratio is 2 or less .

【0015】また、本発明の粉末冶金用鉄基混合物の別
の製造方法として、鉄基粉末に、少なくとも銅粉末また
は亜酸化銅粉末を含む1種以上の合金用粉末と融点の異
なる2種以上のワックスを加えて1次混合し、該1次混
合工程中又は1次混合後に昇温してワックスの部分溶融
物を生成させ、次いで、2次混合しながら冷却し、前記
部分溶融物を冷却固着させ、該部分溶融物の結合力によ
り鉄基粉末粒子の表面に合金用粉末を固着させ、さら
に、冷却時に金属石鹸又はワックスを加え、3次混合を
行う粉末冶金用鉄基混合物の製造方法において、前記銅
粉末又は亜酸化銅粉末は、マイクロトラック法で評価さ
れる凝集粒径が5〜28μm、BET法で評価される1
次粒径が0.2〜1.5μmであり、前記粉末冶金用鉄
基混合物全体中の銅の含有率に対する、該混合物の32
5メッシュを通過した部分の銅の含有率の比が2以下で
あることを特徴とする粉末冶金用鉄基混合物の製造方法
を提供する。
Further, as another method for producing the iron-base mixture for powder metallurgy of the present invention, two or more kinds of powders for alloys having different melting points from one or more alloy powders containing at least copper powder or cuprous oxide powder are added to the iron-base powder. The wax is first mixed, and the temperature is increased during or after the primary mixing step to generate a partial melt of the wax, and then cooled while secondary mixing, and the partial melt is cooled. A method for producing an iron-based mixture for powder metallurgy in which an alloy powder is fixed to the surface of iron-based powder particles by the bonding force of the partial melt, and a metal soap or wax is added during cooling and tertiary mixing is performed. In the above, the copper powder or the cuprous oxide powder has an agglomerated particle size of 5 to 28 μm evaluated by a microtrack method, and 1 to be evaluated by a BET method.
Having a secondary particle size of 0.2 to 1.5 μm ,
32 of the mixture relative to the copper content in the total base mixture
The present invention provides a method for producing an iron-based mixture for powder metallurgy , wherein a ratio of a copper content of a portion passing through 5 meshes is 2 or less .

【0016】以下に本発明の技術思想並びに限定理由を
述べる。前述のように、銅は鉄基粉末を焼結して製造さ
れる焼結体の強度を高めるために必要な元素であるが、
予め銅粉を鉄基粉末その他と混合物を形成した場合、鉄
基粉末への付着がかならずしも十分ではなく、混合物中
での偏析やダスト化の問題があった。本発明者らは鋭意
検討した結果鉄基粉末の形状に着目し、これら鉄基粉末
の凹部に優先的に銅粉末を付着させることでこの問題の
解決を計った。
The technical concept of the present invention and the reasons for limitation will be described below. As described above, copper is an element necessary for increasing the strength of a sintered body manufactured by sintering iron-based powder,
When a mixture of the copper powder and the iron-based powder or the like is formed in advance, the adhesion to the iron-based powder is not always sufficient, and there has been a problem of segregation or dusting in the mixture. The inventors of the present invention have made intensive studies and focused on the shape of iron-based powder, and solved this problem by attaching copper powder preferentially to the recesses of these iron-based powders.

【0017】すなわち、粉末冶金で通常用いられる鉄基
粉末の粒径は平均で80μmであり凹部の径は5〜20
μm程度である。この凹部に入り込むためには銅粉の見
掛け上の粒径である凝集粒径が5〜28μmでなければ
ならない。28μmを越えると凹部に入り込むには大き
くなりすぎ不適であり、5μm未満の銅粉は高価で実用
上不向きである。
That is, the particle diameter of the iron-based powder generally used in powder metallurgy is 80 μm on average, and the diameter of the concave portion is 5 to 20 μm.
It is about μm. In order to enter the recesses, the agglomeration particle size, which is the apparent particle size of the copper powder, must be 5 to 28 μm. If it exceeds 28 μm, it becomes too large to fit into the concave portion, which is unsuitable. Copper powder of less than 5 μm is expensive and unsuitable for practical use.

【0018】また、付着強度を出すため銅粉の周囲に結
合剤となるべき有機物が均一にまんべんなくコーティン
グされている必要があるが、凝集粉末を構成する1次粒
子の径を0.2〜1.5μmとすれば、毛細管現象によ
りこれら1次粒子の空隙に溶融した有機物が浸み込み前
記目的を達成しうる。安価にて0.2μm未満の銅粉末
を入手するのは困難であり、1.5μmを越えると付着
率が低下する。以上の理由により、銅粉末の凝集粒径
を、マイクロトラック法で5〜28μm、1次粒径をB
ET法で0.2〜1.5μmとした。なお本願で言うマ
イクロトラック法で評価した凝集粒径とは、実施例でも
述べるとおりレーザ回析型マイクロトラック粒度分析計
で測定した50%粒径を、BET法で評価される1次粒
径とは、BET法で測定した比表面積から粒子が全て球
状で同一粒径からなると仮定して算出した粒径を言う。
Further, it is necessary that the copper powder is uniformly and uniformly coated with an organic substance to be a binder around the copper powder in order to increase the adhesion strength. When the thickness is set to 0.5 μm, the molten organic material permeates into the voids of these primary particles due to capillary action, thereby achieving the above object. It is difficult to obtain copper powder of less than 0.2 μm at low cost, and if it exceeds 1.5 μm, the adhesion rate decreases. For the above reasons, the agglomeration particle size of the copper powder was 5 to 28 μm by the microtrack method, and the primary particle size was B
The thickness was 0.2 to 1.5 μm by the ET method. The aggregate particle size evaluated by the microtrack method referred to in the present application refers to a 50% particle size measured by a laser diffraction type microtrack particle size analyzer as described in Examples, and a primary particle size evaluated by a BET method. Is a particle diameter calculated from the specific surface area measured by the BET method, assuming that all particles are spherical and have the same particle diameter.

【0019】[0019]

【発明の実施の形態】銅粉末が鉄基粉末に付着している
か否かは、鉄基混合物全体に含まれる銅の含有率に対す
る、該混合物の325メッシュ(45μm)を通過した
部分の銅の含有率の比で評価される。すなわち、−32
5メッシュの鉄基粉末の比率は小さく、銅粉の凝集粒径
は5〜28μmであるから、銅粉が全て鉄基粉末に鉄基
粉末径に関係なく均一に付着すればこの比は1となり、
遊離銅粉が多いほどこの比は1より大きくなる。本発明
者らは偏析、ダスト等について検討した結果、この比が
2以下であれば実際上問題がないことを確認した。
BEST MODE FOR CARRYING OUT THE INVENTION Whether or not copper powder adheres to an iron-based powder is determined by the ratio of copper in a portion of the iron-based mixture passing through a 325 mesh (45 μm) to the copper content in the entire iron-based mixture. It is evaluated by the content ratio. That is, -32
The ratio of 5-mesh iron-based powder is small, and the agglomeration particle size of copper powder is 5 to 28 μm. Therefore, if all the copper powder uniformly adheres to the iron-based powder regardless of the iron-based powder diameter, this ratio becomes 1 ,
The ratio is greater than 1 as the amount of free copper powder increases. The present inventors have examined segregation, dust and the like, and as a result, it has been confirmed that there is no practical problem if this ratio is 2 or less.

【0020】鉄基粉末と銅粉末を固着する有機物として
は脂肪酸と金属石鹸との共溶融物または融点の異なる2
種以上のワックスの部分溶融物であることが好ましい。
本発明者らが特開平3−162502号公報で開示した
脂肪酸と金属石鹸との共溶融物を用いる方法は、共溶融
状態において融体が銅粉末の凝集粒子に毛細管現象によ
り浸み込み、粒全体をコーティングするのに最適であ
る。融点の異なる2種以上のワックスの部分溶融物も同
様に銅粉末を均一にコーティングするので好ましい。
As an organic substance for fixing the iron-based powder and the copper powder, a co-melt of fatty acid and metal soap or a material having a different melting point is used.
It is preferably a partial melt of one or more waxes.
The method of using a co-melt of a fatty acid and a metal soap disclosed by the present inventors in JP-A-3-162502 is disclosed in Japanese Patent Application Laid-Open No. HEI 3-162502. Ideal for coating the whole. A partial melt of two or more kinds of waxes having different melting points is also preferable because it similarly coats the copper powder uniformly.

【0021】銅粉末の表面に0.1〜2重量%のポリビ
ニルブチラールを付着すると、粉末混合物中に含まれる
有機物とPVBとが共融合化合物を形成し、鉄基粉末と
の固着性がさらに向上する。0.1重量%未満では付着
率が低く、2重量%を越えてポリビニルブチラールを付
着させるのは困難なので共に不適である。
When polyvinyl butyral of 0.1 to 2% by weight adheres to the surface of the copper powder, an organic substance contained in the powder mixture and PVB form a co-fusion compound, and the adhesion to the iron-based powder is further improved. I do. If the content is less than 0.1% by weight, the adhesion rate is low, and it is difficult to attach the polyvinyl butyral exceeding 2% by weight.

【0022】また銅粉末の表面に0.1〜2重量%のS
i系またはAl系カップリング剤が表面処理されると、
粉末混合物中に含まれる有機物とカップリング剤とが化
学結合し、鉄基粉末との固着性がさらに向上する。0.
1重量%未満では銅粉の付着率が低く、2重量%を越え
て添加してもその効果は変わらず、添加コストが高くな
るだけである。
Further, 0.1 to 2% by weight of S
When the i-type or Al-type coupling agent is surface-treated,
The organic substance contained in the powder mixture and the coupling agent are chemically bonded to each other, and the adhesion to the iron-based powder is further improved. 0.
If it is less than 1% by weight, the adhesion rate of the copper powder is low, and even if it exceeds 2% by weight, the effect does not change, and only the addition cost increases.

【0023】また、黒鉛粉末は銅粉末に比べて鉄基粉末
への付着性が強いので、銅粉末の表面に0.1〜2重量
%の黒鉛を付着することにより、黒鉛粉末を介して銅粉
末を鉄基粉末にさらに強く固着させることができる。
0.1重量%未満では銅粉の付着率は低く、2重量%を
越えて付着させることはできない。
Further, since graphite powder has a stronger adhesion to iron-based powder than copper powder, by attaching 0.1 to 2% by weight of graphite to the surface of copper powder, The powder can be more firmly adhered to the iron-based powder.
If it is less than 0.1% by weight, the adhesion rate of the copper powder is low, and it cannot be adhered in excess of 2% by weight.

【0024】これら粉末冶金用鉄基混合物の製造方法と
しては、鉄基粉末に常温で液体の脂肪酸を加えて1次混
合し、次いで少なくともマイクロトラック法で評価され
る凝集粒径が5〜28μm、BET法で評価される1次
粒径が0.2〜1.5μmである銅粉末を含む1種以上
の合金用粉末に金属石鹸を加えて添加して2次混合し、
該2次混合工程中又は2次混合後に昇温して脂肪酸と金
属石鹸の共溶融物を生成させ、次いで3次混合しながら
冷却し、前記共溶融物を冷却固着させ、該共溶融物の結
合力により鉄基粉末粒子の表面に合金用粉末を固着さ
せ、さらに冷却時に金属石鹸またはワックスを加え、4
次混合を行なうのが好ましい。
As a method for producing the iron-based mixture for powder metallurgy, a fatty acid which is liquid at room temperature is added to the iron-based powder and firstly mixed, and then the aggregated particle size evaluated by at least the Microtrac method is 5 to 28 μm. A secondary soap is added by adding a metal soap to one or more alloy powders including a copper powder having a primary particle diameter evaluated by a BET method of 0.2 to 1.5 μm,
During the secondary mixing step or after the secondary mixing, the temperature is raised to form a co-melt of the fatty acid and the metal soap, and then the mixture is cooled with tertiary mixing, and the co-melt is cooled and fixed. The powder for alloy is fixed to the surface of the iron-based powder particles by the bonding force, and then, when cooled, a metal soap or wax is added.
Subsequent mixing is preferred.

【0025】また、鉄基粉末に少なくともマイクロトラ
ック法で評価される凝集粒径が5〜28μm、BET法
で評価される1次粒径が0.2〜1.5μmである銅粉
末を含む1種以上の合金用粉末と融点の異なる2種以上
のワックスを加えて1次混合し、該1次混合工程中又は
1次混合後に昇温してワックスの部分溶融物を生成さ
せ、次いで2次混合しながら冷却し、前記部分溶融物を
冷却固着させ、該部分溶融物の結合力により鉄基粉末粒
子の表面に合金用粉末を固着させ、さらに冷却時に金属
石鹸又はワックスを加え、3次混合を行うのが好まし
い。
The iron-based powder contains at least a copper powder having an agglomerated particle size of 5 to 28 μm evaluated by a microtrack method and a primary particle size of 0.2 to 1.5 μm evaluated by a BET method. One or more kinds of alloy powders and two or more kinds of waxes having different melting points are added and primary mixed, and the temperature is increased during the primary mixing step or after the primary mixing to generate a partial melt of the wax. Cool while mixing, fix the partial melt by cooling, fix the alloy powder on the surface of the iron-based powder particles by the bonding force of the partial melt, add metal soap or wax at the time of cooling, and perform tertiary mixing Is preferably performed.

【0026】前記のとおり、表面に0.1〜2重量%の
ポリビニルブチラールを付着させたり、0.1〜2重量
%のSi系またはAl系カップリング剤を表面処理した
り、または0.1〜2重量%の黒鉛を付着した銅粉末を
用いることがさらに好ましい。これらの具体的な実現方
法は実施例で詳しく述べる。
As described above, 0.1 to 2% by weight of polyvinyl butyral is adhered to the surface, or 0.1 to 2% by weight of a Si or Al coupling agent is surface-treated, It is more preferable to use copper powder to which about 2% by weight of graphite is attached. These specific implementation methods will be described in detail in Examples.

【0027】なお、銅粉末としては電解銅粉や酸化銅還
元粉等があり、いずれの種類のものでも使用可能である
が、凝集粒内部をミクロ的に見たとき、酸化銅還元粉の
方が内部に小さな空洞をもった性状であることからより
好ましい。図1、図2に銅粉の電子顕微鏡写真を示し
た。電解銅粉の形状は図1に示すように一次粒子が樹枝
状に結合しており、一方、酸化銅還元粉は図2に示すよ
うにウイスカ状の繊維形状が「まゆ」のようにゆるく結
合している。このため同じ凝集粒径では酸化銅還元粉の
一次粒径が小さくなる。混合時には銅粉は鉄粉に衝突を
繰り返しながら付着するが、酸化銅還元粉は鉄粉の凹部
に適合するように変形しながら付着している。一方電解
銅粉ではこのような混合時の変形は起こらない。このた
め電解銅粉よりも酸化銅還元粉の方が銅の付着力が向上
する。
As the copper powder, there are electrolytic copper powder, copper oxide reduced powder, and the like, and any type of copper powder can be used. Is more preferable because it has a small cavity inside. FIGS. 1 and 2 show electron micrographs of the copper powder. As shown in FIG. 1, the primary particles of the electrolytic copper powder are bonded in a dendritic manner, while the reduced copper oxide powder is formed by loosely binding whisker-like fiber shapes such as “mayu” as shown in FIG. are doing. For this reason, the primary particle size of the reduced copper oxide powder becomes smaller with the same aggregate particle size. At the time of mixing, the copper powder adheres to the iron powder while repeatedly colliding, while the reduced copper oxide powder adheres while deforming so as to fit into the concave portion of the iron powder. On the other hand, in the case of electrolytic copper powder, such deformation during mixing does not occur. For this reason, the reduced copper oxide powder improves the adhesion of copper to the electrolytic copper powder.

【0028】前記説明で銅粉末に限って説明したが、さ
らに実験を進めた結果、銅粉末のかわりに亜酸化銅粉
(Cu2 O)を用いても全く同様の結果を得られること
が分かった。これは亜酸化銅粉の表面が金属粉に比べ有
機物との付着性に優れているためと思われる。従って以
上の説明は亜酸化銅粉末の場合にも当てはまるものであ
る。
Although the above description has been limited to copper powder, further experiments have shown that the same results can be obtained by using cuprous oxide powder (Cu 2 O) instead of copper powder. Was. This is presumably because the surface of the cuprous oxide powder is more excellent in adhesion to organic substances than the metal powder. Therefore, the above description also applies to the case of cuprous oxide powder.

【0029】[0029]

【実施例】【Example】

実施例1〜6、比較例1〜3 平均粒径が78μmの粉末冶金用鉄粉にオレイン酸0.
3重量%をスプレー噴霧し3分間均一混合した(1次混
合)。その後平均粒径23μmの天然黒鉛粉1重量%、
ステアリン酸亜鉛0.4重量%、表1に示す凝集粒径、
1次粒径をもつ銅粉2重量%を添加して、十分混合後、
110℃で加熱混合し(2次混合)、さらに混合しなが
ら85℃以下に冷却して(3次混合)、鉄粉粒子に黒鉛
粉と銅粉をオレイン酸とステアリン酸亜鉛の共融物結合
剤によって固着した粉末混合物を製造した。さらにステ
アリン酸亜鉛0.3重量%添加し均一に混合後(4次混
合)、加熱混合機から排出した。これを混合方法1とす
る。
Examples 1 to 6, Comparative Examples 1 to 3 Oleic acid was added to iron powder for powder metallurgy having an average particle diameter of 78 µm.
3% by weight was sprayed and uniformly mixed for 3 minutes (primary mixing). Thereafter, 1% by weight of natural graphite powder having an average particle size of 23 μm,
0.4% by weight of zinc stearate, agglomerated particle size shown in Table 1,
After adding 2% by weight of copper powder having a primary particle size and mixing well,
The mixture was heated and mixed at 110 ° C. (secondary mixing), cooled to 85 ° C. or lower while further mixing (tertiary mixing), graphite powder and copper powder were combined with iron powder particles by eutectic bonding of oleic acid and zinc stearate. A powder mixture fixed by the agent was produced. Further, 0.3% by weight of zinc stearate was added and mixed uniformly (fourth mixing), and then discharged from the heating mixer. This is designated as mixing method 1.

【0030】平均粒径が78μmの粉末冶金用鉄粉に平
均粒径23μmの天然黒鉛粉1重量%、ステアリン酸ア
ミドとエチレンビスステアリン酸アミドとの混合物0.
4重量%、表1に示す凝集粒径、1次粒径をもつ銅粉を
2重量%添加して、十分混合後、110℃で混合加熱し
(1次混合)、さらに混合しながら85℃以下に冷却し
て鉄粉粒子及び黒鉛粒子に黒鉛粉と銅粉をステアリン酸
アミドとエチレンビスステアリン酸アミドとの共融物結
合材によって固着した粉末混合物を製造した(2次混
合)。さらにエチレンビスステアリン酸アミド0.3重
量%とステアリン酸亜鉛0.1重量%添加し均一に混合
後加熱、混合機から排出した(3次混合)。これを混合
方法2とする。
A powder of iron powder for powder metallurgy having an average particle size of 78 μm, 1% by weight of natural graphite powder having an average particle size of 23 μm, a mixture of stearamide and ethylenebisstearic acid.
4% by weight, 2% by weight of a copper powder having an aggregate particle size shown in Table 1 and a primary particle size are added, and after sufficient mixing, they are mixed and heated at 110 ° C (primary mixing), and further mixed at 85 ° C. After cooling, a powder mixture in which graphite powder and copper powder were fixed to iron powder particles and graphite particles by a eutectic binder of stearic acid amide and ethylene bisstearic acid amide was produced (secondary mixing). Further, 0.3% by weight of ethylenebisstearic acid amide and 0.1% by weight of zinc stearate were added, mixed uniformly, heated, and discharged from the mixer (tertiary mixing). This is designated as mixing method 2.

【0031】実施例1、2は空気分級した電解銅粉を使
用した。実施例3、4では酸化銅を還元して製造された
銅粉を用いた。実施例5では亜酸化銅を用いた。各混合
物について黒鉛付着度、銅付着度、流動性を評価し、混
合方法とともに表1にまとめた。黒鉛付着度、銅付着
度、流動性は次のように定義したものである。 黒鉛付着度=(−100〜+200メッシュの混合粉中
のC含有量)/(全混合粉中のC含有量)*100
(%) 銅付着度=(−325メッシュの混合粉中のCu量)/
(全混合粉中のCu量) 流動性:JIS Z2502による。
In Examples 1 and 2, electrolytic copper powder classified by air was used. In Examples 3 and 4, copper powder produced by reducing copper oxide was used. In Example 5, cuprous oxide was used. The graphite adhesion, copper adhesion, and fluidity of each mixture were evaluated, and the results are shown in Table 1 together with the mixing method. The graphite adhesion, copper adhesion, and fluidity are defined as follows. Graphite adhesion = (C content in mixed powder of -100 to +200 mesh) / (C content in total mixed powder) * 100
(%) Copper adhesion = (Cu content in mixed powder of −325 mesh) /
(Cu content in all mixed powder) Fluidity: according to JIS Z2502.

【0032】なお銅粉の凝集粒径はレーザ回折型マイク
ロトラック粒度分析計で測定した50%粒径を、1次粒
径はBET法で測定した比面積から粒子がすべて球状で
同一粒径からなると仮定して算出した粒径で表す。実施
例1〜6においては、混合方法1、2を問わず使用され
る銅粉末がマイクロトラック法で評価される凝集粒径が
5〜28μm、BET法で評価される1次粒径が0.2
〜1.5μmであれば、銅の付着率が1〜2と良好であ
る。また実施例1、2と実施例3、4を比べると後者の
銅付着が多い(銅付着度が小さい程良く付着してい
る)。これは酸化銅還元粉が内部に小さな空洞をもった
性状であることに関係する。比較例1は通常鉄基粉末冶
金に良く用いられる電解銅粉であり凝集粒径、1次粒径
とも大きく銅の付着が悪い。比較例2、3ではそれぞれ
凝集粒径、1次粒径が大きく銅の付着が悪い。また何れ
の実施例でも黒鉛付着、流動性はともに良好である。
The agglomerated particle size of the copper powder is the 50% particle size measured by a laser diffraction type microtrack particle size analyzer, and the primary particle size is the specific particle size measured by the BET method. It is expressed by the particle size calculated assuming that In Examples 1 to 6, the agglomerated particle size of the copper powder used in any of the mixing methods 1 and 2 evaluated by the microtrack method was 5 to 28 μm, and the primary particle size evaluated by the BET method was 0.2 μm. 2
If it is 1.5 μm, the adhesion rate of copper is as good as 1 to 2. When Examples 1 and 2 are compared with Examples 3 and 4, the latter has more copper adhesion (the smaller the degree of copper adhesion, the better the adhesion). This is related to the property that the copper oxide reduced powder has small cavities inside. Comparative Example 1 is an electrolytic copper powder commonly used in iron-based powder metallurgy, which has a large agglomerated particle size and a large primary particle size, and has poor adhesion of copper. In Comparative Examples 2 and 3, the agglomerated particle size and the primary particle size were large, and the adhesion of copper was poor. In each of the examples, graphite adhesion and fluidity are both good.

【0033】実施例7〜13、比較例4〜6 実施例2及び4と比較例1で用いた銅粉を用いて混合方
法1、2で粉末混合物を製造した。ただし銅粉はポリビ
ニルブチラール(PVB)の10%エタノール溶液を銅
粉と所定量混合後乾燥し、さらに解砕してPVBを0.
08〜0.5重量%付着した。実施例7〜13、比較例
4〜6を表2にまとめて示した。黒鉛付着度、銅付着
度、流動性は表1と同様のものである。混合方法1、2
を問わず、実施例7から実施例12のように、使用され
る銅粉末が、マイクロトラック法で評価される凝集粒径
が5〜28μm、BET法で評価される1次粒径が0.
2〜1.5μmでかつ表面に0.1〜2%のPVBを付
着した粉末を使用すれば、実施例2、4と比べ一層銅粉
が付着する(銅付着度が小さい)。なお、PV付着量
が0.1%未満(実施例13)ではこの改善効果はみら
れない。比較例4〜6は銅粉の凝集粒径、1次粒径とも
大きいので、PVBを付着しても銅の付着が悪い。なお
PVは付着量が2%を超えては付着しなかった。
Examples 7 to 13 and Comparative Examples 4 to 6 Using the copper powders used in Examples 2 and 4 and Comparative Example 1, powder mixtures were produced by mixing methods 1 and 2. However, the copper powder was mixed with a predetermined amount of a 10% ethanol solution of polyvinyl butyral (PVB) with the copper powder, dried, and further crushed to reduce the PVB to 0.1%.
08 to 0.5% by weight. Examples 7 to 13 and Comparative Examples 4 to 6 are summarized in Table 2. The graphite adhesion, copper adhesion, and fluidity are the same as in Table 1. Mixing method 1, 2
Regardless of Example 7, as in Examples 7 to 12, the copper powder used had an agglomerated particle size of 5 to 28 μm as evaluated by the microtrack method and a primary particle size of 0.2 to 0.2 μm as evaluated by the BET method.
When a powder having a thickness of 2 to 1.5 μm and having 0.1 to 2% of PVB adhered to the surface is used, copper powder adheres more than in Examples 2 and 4 (copper adhesion is small). Incidentally, PV B coating weight is less than 0.1% (Example 13) In the improvement effect is not observed. In Comparative Examples 4 to 6, since both the aggregated particle diameter and the primary particle diameter of the copper powder were large, even if PVB was adhered, the adhesion of copper was poor. Note PV B is adhered amount exceeds 2% was not adhered.

【0034】実施例14〜21 実施例1と同様の方法(混合方法1,2)で粉末混合物
を製造した。ただし銅粉はカップリング材を種々の量付
着させたものを使用した。カップリング材の銅粉への付
着は、カップリング材の10%エタノール溶液を銅粉と
所定量混合後、100℃で1時間乾燥後解砕によりおこ
なった。表3に実施例14〜21をまとめて示した。黒
鉛付着度、銅付着度、流動性は表1と同様である。
Examples 14 to 21 Powder mixtures were produced in the same manner as in Example 1 (mixing methods 1 and 2). However, copper powder to which various amounts of a coupling material were adhered was used. The coupling material was attached to the copper powder by mixing a predetermined amount of a 10% ethanol solution of the coupling material with the copper powder, drying at 100 ° C. for 1 hour, and then crushing. Table 3 collectively shows Examples 14 to 21 . The graphite adhesion, copper adhesion, and fluidity are the same as in Table 1.

【0035】混合方法1,2を問わず、使用される銅粉
末が、マイクロトラック法で評価される凝集粒径が5〜
28μm、BET法で評価される1次粒径が0.2〜
1.5μmである銅粉末の表面に0.1〜2%のSi系
カップリング材、およびAl系カップリング材を表面処
理した粉末であれば、実施例2,4に比べ一層銅粉が付
着する。
Regardless of the mixing method 1 or 2, the copper powder used has an agglomerated particle size of 5 to 5 as evaluated by the microtrack method.
28 μm, the primary particle size evaluated by the BET method is 0.2 to
In the case of a powder in which 0.1 to 2% of a Si-based coupling material and an Al-based coupling material are surface-treated on the surface of a 1.5-μm copper powder, the copper powder adheres more than in Examples 2 and 4. I do.

【0036】実施例20はカップリング材の付着量が2
%を超えてもその添加効果は認められず、コスト的に好
ましくない。実施例21ではカップリング材の付着量が
小さく銅の付着性が改善されない。
In Example 20, the amount of the coupling material attached was 2
%, The addition effect is not recognized, which is not preferable in terms of cost. In Example 21 , the adhesion amount of the coupling material was small and the adhesion of copper was not improved.

【0037】実施例22〜25 銅粉として、黒鉛粉を種々の量付着させた銅粉を使用し
た。黒鉛粉の銅粉への付着は、PVBの10%エタノー
ル溶液に黒鉛粉末を分散させ、銅粉と混合後混合しなが
ら乾燥させた。表4に実施例22〜25を示した。使用
される銅粉末が、マイクロトラック法で評価される凝集
粒径が5〜28μm、BET法で評価される1次粒径が
0.2〜1.5μmである銅粉末の表面に0.1〜2%
の黒鉛粉を付着させた場合、銅の付着性が実施例2に比
べ改善される。実施例25では黒鉛の付着量が小さく銅
の付着性が改善されない。また本試験では2%を超えて
黒鉛を付着させることはできなかった。
Examples 22 to 25 Copper powder to which various amounts of graphite powder were adhered was used as the copper powder. Adhesion of the graphite powder to the copper powder was performed by dispersing the graphite powder in a 10% ethanol solution of PVB, mixing with the copper powder, and drying while mixing. Table 4 shows Examples 22 to 25 . The copper powder used has a coagulated particle size of 5 to 28 μm evaluated by a microtrack method, and a primary particle size of 0.2 to 1.5 μm evaluated by a BET method. ~ 2%
When the graphite powder is adhered, the adhesion of copper is improved as compared with Example 2. In Example 25 , the adhesion amount of graphite was small and the adhesion of copper was not improved. In this test, more than 2% of graphite could not be adhered.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【表4】 [Table 4]

【0042】[0042]

【発明の効果】本発明の粉末冶金用鉄基粉末混合物は、
上記のように形成されているので、とくに銅粉添加物の
偏析および発塵(ダスト)の発生が少なく、流動性が変
化せず、製造後の経時による変化が少ないという効果を
奏する。この粉末冶金用鉄基粉末混合物は本発明の製造
方法によって、容易に製造することができる。
The iron-based powder mixture for powder metallurgy according to the present invention comprises:
Since it is formed as described above, it has an effect that, in particular, segregation of copper powder additives and generation of dust (dust) are small, fluidity is not changed, and change with time after manufacture is small. This iron-based powder mixture for powder metallurgy can be easily produced by the production method of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電解銅粉の形状を示す倍率1000倍の電子顕
微鏡写真である。
FIG. 1 is an electron micrograph (× 1000) showing the shape of an electrolytic copper powder.

【図2】酸化銅還元粉の形状を示す倍率3000倍の電
子顕微鏡写真である。
FIG. 2 is an electron micrograph (magnification: 3000) showing the shape of the copper oxide reduced powder.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−47201(JP,A) 特開 平2−57602(JP,A) 特開 昭62−80208(JP,A) 特開 平4−285141(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22F 1/00 C22C 33/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-47201 (JP, A) JP-A-2-57602 (JP, A) JP-A-62-80208 (JP, A) JP-A-4- 285141 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22F 1/00 C22C 33/02

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鉄基粉末と、少なくとも銅粉末または亜
酸化銅粉末を含む1種以上の合金用粉末と、鉄基粉末に
合金用粉末を結合するための有機物とを含んでなる粉末
冶金用鉄基混合物において、前記銅粉末または亜酸化銅
粉末は、マイクロトラック法で評価される凝集粒径が5
〜28μm、BET法で評価される1次粒径が0.2〜
1.5μmであり、前記粉末冶金用鉄基混合物全体中の
銅の含有率に対する、該混合物の325メッシュを通過
した部分の銅の含有率の比が2以下であることを特徴と
する粉末冶金用鉄基混合物。
1. A powder metallurgy comprising an iron-based powder, at least one powder for an alloy containing at least a copper powder or a cuprous oxide powder, and an organic substance for bonding the powder for an alloy to the iron-based powder. In the iron-based mixture, the copper powder or the cuprous oxide powder has an agglomerated particle size of 5 as evaluated by a microtrack method.
~ 28 μm, primary particle size evaluated by BET method is 0.2 ~
Ri 1.5μm der, of the powder metallurgical iron-based mixture overall in
Pass 325 mesh of the mixture for copper content
An iron-based mixture for powder metallurgy, characterized in that the ratio of the copper content in the selected portion is 2 or less .
【請求項2】 前記有機物は脂肪酸と金属石鹸との共溶
融物又は融点の異なる2種以上のワックスの部分溶融物
であることを特徴とする請求項1記載の粉末冶金用鉄基
混合物。
2. The method according to claim 1, wherein the organic substance is a co-solvent of a fatty acid and a metal soap.
The iron-based mixture for powder metallurgy according to claim 1, which is a melt or a partial melt of two or more waxes having different melting points .
【請求項3】 銅粉末の表面に0.1〜2重量%のポリ
ビニルブチラールが付着されたことを特徴とする請求項
1又は2記載の粉末冶金用鉄基混合物。
3. The method according to claim 1 , wherein 0.1 to 2% by weight of poly
3. An iron-based mixture for powder metallurgy according to claim 1, wherein vinyl butyral is attached .
【請求項4】 銅粉末の表面に0.1〜2重量%のSi
系またはAl系カップリング剤が付着されたことを特徴
とする請求項1又は2記載の粉末冶金用鉄基混合物。
4. The method according to claim 1, wherein 0.1 to 2% by weight of Si
The iron-based mixture for powder metallurgy according to claim 1, wherein an iron-based or Al-based coupling agent is attached.
【請求項5】 銅粉末の表面に0.1〜2重量%の黒鉛
付着されたことを特徴とする請求項1又は2記載の粉
末冶金用鉄基混合物。
5. 0.1 to 2% by weight of graphite on the surface of copper powder
The iron-based mixture for powder metallurgy according to claim 1 or 2 , wherein iron is adhered.
【請求項6】 銅粉末が酸化銅還元粉であることを特徴
とする請求項1、2、3、4又は5記載の粉末冶金用鉄
基混合物。
6. The copper powder is copper oxide reduced powder.
The iron-based mixture for powder metallurgy according to claim 1, 2, 3, 4, or 5 .
【請求項7】 鉄基粉末に常温で液体の脂肪酸を加えて
1次混合し、次いで少なくとも銅粉末または亜酸化銅粉
末を含む1種以上の合金用粉末に金属石鹸を加えて添加
して2次混合し、該2次混合工程中又は2次混合後に昇
温して脂肪酸と金属石鹸の共溶融物を生成させ、次い
で、3次混合しながら冷却し、前記共溶融物を冷却固着
させ、該共溶融物の結合力により鉄基粉末粒子の表面に
合金用粉末を固着させ、さらに、冷却時に金属石鹸又は
ワックスを加え、4次混合を行う粉末冶金用鉄基混合物
の製造方法において、前記銅粉末又は亜酸化銅粉末は、
マイクロトラック法で評価される凝集粒径が5〜28μ
m、BET法で評価される1次粒径が0.2〜1.5μ
mであり、前記粉末冶金用鉄基混合物全体中の銅の 含有
率に対する、該混合物の325メッシュを通過した部分
の銅の含有率の比が2以下であることを特徴とする粉末
冶金用鉄基混合物の製造方法。
7. Addition of fatty acid which is liquid at normal temperature to iron-based powder
Primary mixing, then at least copper powder or cuprous oxide powder
Addition of metal soap to one or more alloy powders including powder
To perform secondary mixing and raise during or after the secondary mixing step.
Heat to form a co-melt of fatty acid and metal soap, then
Then, cool while tertiary mixing, and cool and fix the co-melt
To the surface of the iron-based powder particles due to the binding force of the co-melt.
The powder for the alloy is fixed, and when cooled, metal soap or
Iron-based mixture for powder metallurgy with addition of wax and quaternary mixing
In the production method, the copper powder or cuprous oxide powder,
Aggregated particle size evaluated by microtrack method is 5-28μ
m, the primary particle size evaluated by the BET method is 0.2 to 1.5 μm
m, the content of copper in the entire iron-based mixture for powder metallurgy
The portion of the mixture that passed through 325 mesh, relative to the percentage
Method of producing a powder metallurgical iron-based mixture ratio of content of copper is characterized and this is 2 or less.
【請求項8】 鉄基粉末に、少なくとも銅粉末または亜
酸化銅粉末を含む1種以上の合金用粉末と融点の異なる
2種以上のワックスを加えて1次混合し、該1次混合工
程中又は1次混合後に昇温してワックスの部分溶融物を
生成させ、次いで、2次混合しながら冷却し、前記部分
溶融物を冷却固着させ、該部分溶融物の結合力により鉄
基粉末粒子の表面に合金用粉末を固着させ、さらに、冷
却時に金属石鹸又はワックスを加え、3次混合を行う粉
末冶金用鉄基混合物の製造方法において、前記銅粉末又
は亜酸化銅粉末は、マイクロトラック法で評価される凝
集粒径が5〜28μm、BET法で評価される1次粒径
が0.2〜1.5μmであり、前記粉末冶金用鉄基混合
物全体中の銅の含有率に対する、該混合物の325メッ
シュを通過した部分の銅の含有率の比が2以下である
とを特徴とする粉末冶金用鉄基混合物の製造方法。
8. The iron-based powder may contain at least copper powder or sub powder.
Different melting point from one or more alloy powders including copper oxide powder
The primary mixing is performed by adding two or more kinds of waxes and mixing the primary mixture.
During the process or after the primary mixing, the temperature is raised to partially melt the wax.
And then cooled with secondary mixing,
The molten material is cooled and fixed, and iron is
The alloy powder is fixed on the surface of the base powder particles, and
Powder to which metal soap or wax is added and tertiary mixing is performed at the time of disposal
In the method for producing an iron-based mixture for powder metallurgy, the copper powder or
Is a cuprous oxide powder that is evaluated by the microtrack method.
Primary particle size evaluated by BET method with collected particle size of 5-28 μm
Is 0.2 to 1.5 μm, and the iron-based mixture for powder metallurgy is
325 mesh of the mixture against the copper content in the whole
A method for producing an iron-based mixture for powder metallurgy , wherein a ratio of a copper content of a portion having passed through a metal shell is 2 or less .
JP12762996A 1995-04-25 1996-04-25 Iron-based mixture for powder metallurgy and method for producing the same Expired - Fee Related JP3326072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12762996A JP3326072B2 (en) 1995-04-25 1996-04-25 Iron-based mixture for powder metallurgy and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-124468 1995-04-25
JP12446895 1995-04-25
JP12762996A JP3326072B2 (en) 1995-04-25 1996-04-25 Iron-based mixture for powder metallurgy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0913101A JPH0913101A (en) 1997-01-14
JP3326072B2 true JP3326072B2 (en) 2002-09-17

Family

ID=26461148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12762996A Expired - Fee Related JP3326072B2 (en) 1995-04-25 1996-04-25 Iron-based mixture for powder metallurgy and method for producing the same

Country Status (1)

Country Link
JP (1) JP3326072B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102990058A (en) * 2012-12-18 2013-03-27 江苏新亚特钢锻造有限公司 Oxide particle reinforced laser-clad high abrasion resistance cobalt-base alloy powder and preparation method thereof
SE541269C2 (en) * 2015-09-18 2019-05-28 Jfe Steel Corp Mixed powder for powder metallurgy, sintered body, and method of manufacturing sintered body

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030219617A1 (en) * 2002-05-21 2003-11-27 Jfe Steel Corporation, A Corporation Of Japan Powder additive for powder metallurgy, iron-based powder mixture for powder metallurgy, and method for manufacturing the same
KR100956505B1 (en) 2009-02-05 2010-05-07 주식회사 엘지화학 Method of fabricating carbon particle/copper composites
WO2014123106A1 (en) * 2013-02-05 2014-08-14 株式会社Adeka Lubricant for metal-powder metallurgy, method for manufacturing said lubricant, metal powder composition, and method for manufacturing metal powder metallurgy product
JP6222189B2 (en) 2014-12-05 2017-11-01 Jfeスチール株式会社 Alloy steel powder and sintered body for powder metallurgy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102990058A (en) * 2012-12-18 2013-03-27 江苏新亚特钢锻造有限公司 Oxide particle reinforced laser-clad high abrasion resistance cobalt-base alloy powder and preparation method thereof
CN102990058B (en) * 2012-12-18 2014-11-05 江苏新亚特钢锻造有限公司 Oxide particle reinforced laser-clad high abrasion resistance cobalt-base alloy powder and preparation method thereof
SE541269C2 (en) * 2015-09-18 2019-05-28 Jfe Steel Corp Mixed powder for powder metallurgy, sintered body, and method of manufacturing sintered body

Also Published As

Publication number Publication date
JPH0913101A (en) 1997-01-14

Similar Documents

Publication Publication Date Title
US5766304A (en) Iron-base powder mixture for powder metallurgy and manufacturing method therefor
JP5112828B2 (en) Iron-based powder mixture for powder metallurgy and method for producing the same
JP3004725B2 (en) Method for producing lubricating metallurgical powder composition
EP2221130B1 (en) Iron based powder for powder metallurgy and manufacture thereof
JP2010265454A (en) Lubricant combination and process for preparing the same
US5135566A (en) Iron base powder mixture and method
JPH03162502A (en) Manufacture of iron base powder mixed material for powder metallurgy
JP3326072B2 (en) Iron-based mixture for powder metallurgy and method for producing the same
JPH0120215B2 (en)
JP4093041B2 (en) Iron-based powder mixture for powder metallurgy and method for producing the same
JP3842580B2 (en) Metal particle composition for alloy formation
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JPS6310221B2 (en)
JPWO2004062837A1 (en) Magnesium composite powder and method for producing the same, magnesium-based composite material and method for producing the same
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
JPH029099B2 (en)
JP4177534B2 (en) Alloy powder for copper-based high strength sintered parts
JP4507348B2 (en) High-density iron-based powder molded body and method for producing high-density iron-based sintered body
JP3682678B2 (en) Iron-based powder mixture for powder metallurgy with excellent fluidity and stable apparent density
JPH0456702A (en) Raw material powder for powder metallurgy and manufacture thereof
JPWO2019230259A1 (en) Powder mixture for powder metallurgy and method for producing the same
JP2916940B2 (en) Copper-based powder composition for powder metallurgy raw materials
JP3707490B2 (en) Method for producing iron-based powder mixture for powder metallurgy with excellent fluidity and stable apparent density
JPH06264170A (en) Aluminum alloy having high strength and wear resistance
JPS63206401A (en) Production of mixed powder for powder metallurgy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees