JP2916940B2 - Copper-based powder composition for powder metallurgy raw materials - Google Patents

Copper-based powder composition for powder metallurgy raw materials

Info

Publication number
JP2916940B2
JP2916940B2 JP2185866A JP18586690A JP2916940B2 JP 2916940 B2 JP2916940 B2 JP 2916940B2 JP 2185866 A JP2185866 A JP 2185866A JP 18586690 A JP18586690 A JP 18586690A JP 2916940 B2 JP2916940 B2 JP 2916940B2
Authority
JP
Japan
Prior art keywords
powder
copper
composition
mixture
methacrylic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2185866A
Other languages
Japanese (ja)
Other versions
JPH0474802A (en
Inventor
満 北村
英之 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2185866A priority Critical patent/JP2916940B2/en
Publication of JPH0474802A publication Critical patent/JPH0474802A/en
Application granted granted Critical
Publication of JP2916940B2 publication Critical patent/JP2916940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、偏析や発塵を生じにくく、しかも成形時
における流動性に優れた粉末冶金原料用の銅系粉末組成
物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a copper-based powder composition for a powder metallurgy raw material which hardly causes segregation and dust generation and has excellent fluidity during molding.

〈従来技術とその課題〉 金属の粉末を原料とし、これを押し型に充填して圧縮
成形した圧粉体を更に加熱・焼結することにより、機械
加工の工程を省いて一挙に製品の形に仕上げてしまう粉
末冶金は、溶製が困難な材質や多孔質部品の製造、或い
は複雑な形状等の故に仕上げが難しい部品等の製品の好
適な技術であり、その適用分野は益々拡大される傾向を
見せている。
<Prior art and its problems> Metal powder is used as a raw material, and it is filled into a pressing die, and the compact that has been compression-molded is further heated and sintered, thereby eliminating the machining process and forming the product at once. Powder metallurgy is a suitable technology for the production of materials and porous parts that are difficult to melt, or for parts that are difficult to finish due to complicated shapes, etc., and its application field is expanding more and more. Showing a trend.

ところで、現在使用されている各種粉末冶金用原料粉
の中にあって、“銅粉”は含油軸受け等の製造のために
欠かせない原料となっていることから、その需要量は鉄
粉に次いで大きなものとなっている。そして、このよう
な含油軸受け等の製造分野にあっては、しばしば銅粉又
は銅を主体とした粉末(例えば青銅等の銅合金粉末等)
に対して更に1種又は2種以上の他の合金元素粉末が添
加・混合され、圧縮成形の後に焼結されて製品となる場
合が多い。
By the way, among the various powder metallurgy raw materials currently used, “copper powder” is an indispensable raw material for the production of oil-impregnated bearings, etc. It is the second largest. In the field of manufacturing such oil-impregnated bearings, copper powder or copper-based powder (for example, copper alloy powder such as bronze) is often used.
In many cases, one or more other alloy element powders are further added and mixed, and after compression molding, sintered to obtain a product in many cases.

ところが、銅粉又は銅を主体とした粉末は、一般に他
の合金元素粉末との間に密度,粒径,粒子形状等の差を
生じがちであり、そのためミキサーにてこれらを完全に
混合したとしても、その後の詰め替え作業や輸送,成形
等の際に偏析や発塵と言った分離現象を生じやすいとし
て問題になっていた。
However, copper powder or copper-based powder generally tends to have a difference in density, particle size, particle shape, etc. from other alloying element powders. However, it has been a problem that separation phenomena such as segregation and dust generation are likely to occur during subsequent refilling work, transportation, molding, and the like.

もっとも、従来から、このような分離現象を防止すべ
く、上記混合組成物に白灯油やスピンドル油等の機械的
に混入して粉を油で湿らせておく手立てが講じられては
来た。しかし、この方法では粉末同士の結合力が弱いた
めに十分な効果が得られず、成形前に再混合の工程が必
要となったり、油添加が粉末の流動性を悪化させて成形
に至るまでのハンドリング性を損ないがちであると言う
問題を有していた。
However, conventionally, in order to prevent such a separation phenomenon, a method of mechanically mixing white kerosene, spindle oil, or the like into the above-mentioned mixed composition to wet the powder with oil has been taken. However, in this method, a sufficient effect cannot be obtained because the bonding force between the powders is weak, and a remixing step is required before molding, or until the addition of oil deteriorates the fluidity of the powder and leads to molding. Has a problem that the handleability tends to be impaired.

このようなことから、本発明が目的としたのは、粉末
冶金用の銅系粉末組成物に対して、詰め替え,輸送,成
形時等における偏析や発塵の分離現象を生じることがな
く、しかも成形の際に型の隅々まで円滑に充満する優れ
た流動性を付与せしめ得る手段を確立することであっ
た。
In view of the above, an object of the present invention is to provide a copper-based powder composition for powder metallurgy without causing segregation and dust separation during refilling, transportation, molding, and the like, and An object of the present invention is to establish a means capable of imparting excellent fluidity to smoothly fill every corner of a mold during molding.

〈課題を解決するための手段〉 本発明者等は、上記目的を達成すべく、数多くの実験
を繰り返しながら鋭意研究を重ねた結果、次のような知
見を得ることができた。即ち、 (a) 通常、銅合金の粉末冶金製品は“電解法により
得られた樹枝状銅粉”又は“この樹枝状銅粉を60重量%
以上含んだ銅主体粉末(例えば銅の他に錫,亜鉛,鉛等
が混入されたもの)”と、これに少なくとも1種類の合
金元素粉末を配合して混合したものを原料とするが、こ
の混合原料に特にメタクリルポリマー又はコポリマーか
ら成るメタクリル樹脂を配合した場合には、混合原料の
詰め替え,輸送,成形時の偏析や発塵が効果的に抑制さ
れる上、成形時における粉末原料の流動性も大きく改善
されて製品の見掛け密度が顕著に高くなる。
<Means for Solving the Problems> The present inventors have conducted intensive studies while repeating many experiments in order to achieve the above object, and as a result, have obtained the following knowledge. (A) Usually, the powder metallurgy product of copper alloy is "dendritic copper powder obtained by electrolytic method" or "60% by weight of this dendritic copper powder.
The copper-based powder (for example, tin, zinc, lead, etc. mixed with copper) containing above) and at least one kind of alloy element powder are mixed and mixed as a raw material. In particular, when a methacrylic resin composed of a methacrylic polymer or copolymer is blended into the mixed raw material, segregation and dust generation during refilling, transporting, and molding of the mixed raw material are effectively suppressed, and the fluidity of the powder raw material during molding is reduced. Is also greatly improved, and the apparent density of the product is significantly increased.

(b) しかも、粉末冶金用の原料粉末混合物、中でも
特に銅系粉末組成物においては、僅かな量の添加物を添
加する場合でも余程の適合性がない限りは圧粉体特性の
劣化をもたらす傾向にあるが、前記メタクリル樹脂の添
加では圧粉体特性の劣化は殆んど見られない。
(B) In addition, in the case of a raw material powder mixture for powder metallurgy, especially in a copper-based powder composition, even if a small amount of an additive is added, deterioration of the green compact characteristic is not caused unless there is a sufficient compatibility. However, the addition of the methacrylic resin hardly deteriorates the green compact characteristics.

(c) その上、メタクリル樹脂は700〜800℃の低い焼
結温度でも完全に熱分解してしまうため、原料粉末混合
物へのメタクリル樹脂添加は焼結後の製品特性に対して
も何ら悪影響を及ぼすことがない。
(C) In addition, since methacrylic resin is completely thermally decomposed even at a low sintering temperature of 700 to 800 ° C, the addition of methacrylic resin to the raw material powder mixture has no adverse effect on the product properties after sintering. Has no effect.

本発明は、上記知見事項等を基に完成されたものであ
り、 「粉末冶金原料用の銅系粉末組成物を、“電解法により
得られた樹枝状銅粉又はこの樹枝状銅粉を主体とする粉
末”をベースとした複数の粉末原料の混合物に更にメタ
クリル樹脂を添加・含有せしめた構成とすることによ
り、輸送時等における優れた耐偏析性,耐発塵性と成形
時における優れた流動性とを兼備せしめた点」に大きな
特徴を有している。
The present invention has been completed on the basis of the above findings and the like. "A copper-based powder composition for a powder metallurgy raw material is mainly composed of a dendritic copper powder obtained by an electrolytic method or this dendritic copper powder. By adding a methacrylic resin to a mixture of a plurality of powder raw materials based on “a powder”, it has excellent segregation resistance during transportation, dust resistance, and excellent molding. In that it combines liquidity ”.

なお、前記「樹枝状銅粉を主体とする粉末」とは、電
解法により得られた樹枝状銅粉を用いて製造された樹枝
状銅粉主体の(Cuを60%程度以上含んだ)合金組成粉末
を言う。
The “powder mainly composed of dendritic copper powder” refers to an alloy composed mainly of dendritic copper powder (containing about 60% or more of Cu) produced using dendritic copper powder obtained by an electrolytic method. Refers to composition powder.

また、これら以外の粉末原料としては合金元素粉末が
あり、その例として、錫,亜鉛,鉛,二硫化モリブデ
ン,黒鉛,窒化ホウ素,Sn−Pb合金粉末等を挙げること
ができる。なお、“銅粉又は銅を主体とする粉末”と混
合する合金元素粉末の割合は全粉末混合物重量の5重量
%までが一般的であり、20重量%を超えることは殆んど
ない。
Other powder raw materials include alloy element powders, examples of which include tin, zinc, lead, molybdenum disulfide, graphite, boron nitride, and Sn—Pb alloy powder. The ratio of the alloying element powder mixed with the “copper powder or powder mainly composed of copper” is generally up to 5% by weight of the total powder mixture weight, and rarely exceeds 20% by weight.

粉末混合物の特性改善のために添加されるメタクリル
樹脂とはメタクリルポリマー又はメタクリルコポリマー
として知られるものであり、具体的にはポリメチルメタ
クリレート,ポリエチルメタクリレート,ポリブチルメ
タクリレート,ポリメチルエチルメタクリレート及びポ
リメチルブチルメタクリレートからなる群から選ばれる
ものを例示することができる。
The methacrylic resin added to improve the properties of the powder mixture is known as a methacrylic polymer or a methacrylic copolymer, and specifically includes polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polymethylethyl methacrylate and polymethyl methacrylate. Those selected from the group consisting of butyl methacrylate can be exemplified.

なお、メタクリル樹脂の添加量は全粉末混合物重量に
対し0.05〜5.0重量%の範囲が適当である。なぜなら、
メタクリル樹脂の添加量が0.05重量%未満では粉末混合
物の流動性改善効果が十分でなく、一方、5.0重量%を
超えて添加すると粉末混合物の焼結体特性に悪影響を及
ぼす傾向が見られるからであるが、好ましくは0.10〜0.
50重量%に調整するのが良い。
The addition amount of the methacrylic resin is suitably in the range of 0.05 to 5.0% by weight based on the total weight of the powder mixture. Because
If the amount of the methacrylic resin is less than 0.05% by weight, the effect of improving the fluidity of the powder mixture is not sufficient. On the other hand, if the amount exceeds 5.0% by weight, the properties of the sintered body of the powder mixture tend to be adversely affected. But preferably 0.10 to 0.
Adjust to 50% by weight.

〈作用〉 上記メタクリル樹脂添加剤は、“電解法により得られ
た樹脂状銅粉又はこの樹脂状銅粉を主体とする粉末”を
ベースとした複数の粉末原料の混合物に添加・混合され
ると、原料粉末同士の付着結合力を適度に高め、容器へ
の詰め替え,輸送,成形作業等の際に生じがちな偏析や
発塵と言った分離現象を効果的に抑制するので、成形前
の再混合作業を心配する必要がない。
<Function> When the methacrylic resin additive is added to and mixed with a mixture of a plurality of powder raw materials based on “resinous copper powder obtained by an electrolytic method or a powder mainly containing this resinous copper powder”. In addition, the bonding strength between the raw material powders is appropriately increased, and separation phenomena such as segregation and dusting, which are likely to occur during refilling, transporting, and molding operations of containers, are effectively suppressed. There is no need to worry about mixing work.

しかも、“電解法により得られた樹脂状銅粉又はこの
樹脂状銅粉を主体とする粉末”をベースとした複数の粉
末原料の混合物にメタクリル樹脂を添加・混合すると、
大きな加圧力がかかる粉末成形時には該銅系粉末組成物
の流動性を改善するように作用するので見掛け密度を顕
著に高くするが、その圧粉体特性を大きく悪化させるよ
うなことがない。その上、このメタクリル樹脂添加剤は
700〜800℃の低い焼結温度でも完全に熱分解してしまう
ので、焼結体特性に悪影響を及ぼすこともない。
Moreover, when a methacrylic resin is added to and mixed with a mixture of a plurality of powder raw materials based on “resinous copper powder obtained by an electrolytic method or a powder mainly containing this resinous copper powder”,
When a large pressing force is applied to the powder, the apparent density is remarkably increased because it acts to improve the fluidity of the copper-based powder composition, but the compacting properties are not significantly deteriorated. Moreover, this methacrylic resin additive
Even at a low sintering temperature of 700 to 800 ° C., it is completely thermally decomposed, so that the characteristics of the sintered body are not adversely affected.

なお、本発明に係る「銅系粉末組成物」の調整には、
まず“電解法により得られた樹脂状銅粉又はこの樹脂状
銅粉を主体とする粉末”と合金元素粉末とを公知の技術
によって乾式混合し、続いてメタクリル樹脂を添加した
後、粉末が均一に湿潤するまで更に混合する手法を採用
するのが良い。ここで、粉末の混合は、V型混合機,二
重円錐型混合機,リボン型混合機,垂直スクリュー型混
合機等の何れによっても差し支えない。
The adjustment of the “copper-based powder composition” according to the present invention includes:
First, dry mixing of "resinous copper powder obtained by the electrolytic method or powder mainly composed of this resinous copper powder" and alloy element powder is performed by a known technique, and then methacrylic resin is added. It is advisable to employ a technique of further mixing until wet. Here, mixing of the powder may be performed by any of a V-type mixer, a double cone type mixer, a ribbon type mixer, a vertical screw type mixer and the like.

また、メタクリル樹脂の添加は、粉末混合物中への樹
脂成分の分散性を良くさせるために有機溶剤で希釈して
から実施するのが好ましいが、特にこの方法に限定され
るものではない。
The addition of the methacrylic resin is preferably carried out after dilution with an organic solvent in order to improve the dispersibility of the resin component in the powder mixture, but is not particularly limited to this method.

ところで、メタクリル樹脂の添加量を節減するために
は、まず“電解法により得られた樹脂状銅粉又はこの樹
脂状銅粉を主体とする粉体”の一部(全粉末混合物重量
に対して2〜10重量%程度が適当)と合金元素粉末とに
メタクリル樹脂添加混合した後に、残りの“電解法によ
り得られた樹脂状銅粉又はこの樹脂状銅粉を主体とする
粉末”を加えて乾式混合する方法も効果的である。
By the way, in order to reduce the amount of the methacrylic resin to be added, first, a part of “the resinous copper powder obtained by the electrolytic method or the powder mainly composed of the resinous copper powder” (based on the total weight of the powder mixture) Methacrylic resin is added to and mixed with the alloy element powder, and the remaining “resinous copper powder obtained by the electrolytic method or a powder mainly composed of this resinous copper powder” is added. Dry mixing is also effective.

次に、本発明を、実施例により比較例と対比しながら
更に具体的に説明する。
Next, the present invention will be described in more detail with reference to examples and comparative examples.

〈実施例〉 実施例 1 青銅粉(常法通り電解法により得られた樹枝状銅粉と錫
粉との仮焼結体を粉砕して得られたもので、錫が樹枝状
銅粉に分散しただけであって粉末形状は電解樹枝状銅粉
のそれと殆ど変わらない):96.4重量%, −200メッシュの鉛粉:2.4重量%, −325メッシュの亜鉛粉:0.9重量% を垂直スクリュー型混合機に装入し、これらを混合しな
がら“メタクリル酸メチルポリマー(PMMA):0.25重量
%を有機溶剤に溶かしたもの”を約10分間かけて添加し
た後、更に20分間混合した。
<Example> Example 1 Bronze powder (obtained by pulverizing a temporary sintered body of dendritic copper powder and tin powder obtained by an electrolytic method as usual, and tin is dispersed in dendritic copper powder. The powder shape is almost the same as that of electrolytic dendritic copper powder): 96.4 wt%, -200 mesh lead powder: 2.4 wt%, -325 mesh zinc powder: 0.9 wt%, mixed with vertical screw type The mixture was added to the apparatus, and while mixing them, "methyl methacrylate polymer (PMMA): 0.25% by weight dissolved in an organic solvent" was added over about 10 minutes, and then mixed for another 20 minutes.

続いて、均一に湿った状態のままの混合物を混合機内
で減圧乾燥してから、80メッシュの篩を通過させた。
Subsequently, the uniformly wet mixture was dried under reduced pressure in a mixer, and then passed through an 80-mesh sieve.

そして、これにステアリン酸亜鉛:0.3重量%を混合
し、見掛け密度,流動度,圧粉体特性及び焼結体特性の
評価を行った。
Then, 0.3% by weight of zinc stearate was mixed with the mixture, and the apparent density, flowability, green compact properties and sintered body properties were evaluated.

なお、見掛け密度の測定は、上記混合粉100kgのドラ
ム缶に詰め、トラックにより約200km輸送した後に、ド
ラム缶の上部及び下部からそれぞれ採取して行った。
The apparent density was measured by packing the mixed powder in a drum of 100 kg, transporting it by a truck for about 200 km, and collecting the powder from the upper and lower portions of the drum.

一方、比較例として、上記と同様の粉末組成ではある
がPMMAの代わりにスピンドル油:0.01重量%を添加した
混合物と、PMMAもスピンドル油も添加しなかった混合物
とを、前記と同様な方法で調整し、これらについても見
掛け密度,流動度,圧粉体特性及び焼結体特性の評価を
実施した。
On the other hand, as a comparative example, a mixture having the same powder composition as described above, but containing 0.01% by weight of spindle oil instead of PMMA, and a mixture containing neither PMMA nor spindle oil were added in the same manner as described above. Adjustments were made and the apparent density, flowability, green compact properties and sintered compact properties were evaluated.

なお、上記各特性の評価は、下記の見掛け密度,流動
度,ラトラ値,圧環強さ,外径寸法変化率を測定して行
った。
The evaluation of each of the above properties was performed by measuring the following apparent density, fluidity, rattle value, radial crushing strength, and outer diameter dimensional change rate.

見掛け密度:JIS Z2504に従って決定される単位体積当り
の質量, 流動度:JIS Z2502に従って決定される“一定量の粉末が
規定のオリフィスから流出するのに要する時間", ラトラ値:粉体粉末冶金協会(JSPM)標準4−69で規定
されている圧粉体のエッジ強さ, 圧環強さ:JIS Z2507で規定される円筒状焼結体又は圧粉
体の強度, 外径寸法変化率:円筒形焼結含油焼結軸受けの焼結前後
における外径寸法の変化率。
Apparent density: mass per unit volume determined according to JIS Z2504, Fluidity: "Time required for a certain amount of powder to flow out of a specified orifice" determined according to JIS Z2502, Rattra value: Japan Society of Powder and Powder Metallurgy (JSPM) Standard 4-69: Edge strength of green compact, Compaction strength: Strength of cylindrical sintered compact or compact specified by JIS Z2507, Outer diameter dimension change: Cylindrical Rate of change of outer diameter before and after sintering of sintered oil-impregnated sintered bearing.

上記評価結果を第1表に併せて示す。 The evaluation results are shown in Table 1.

第1表に示される結果からは、次のことを確認するこ
とができる。
From the results shown in Table 1, the following can be confirmed.

i)銅系粉末組成物は、メタクリル樹脂(この場合はPM
MA)を添加することにより偏析を非常に少なくすること
ができ、しかも無添加の時より流動性が向上する(流動
度:18.2sec/50g)。また、メタクリル樹脂(この場合は
PMMA)の添加によっても外径寸法変化率,圧環強さ,ラ
トラ値は実用上問題のない範囲に収まっている。
i) The copper-based powder composition is a methacrylic resin (in this case, PM
By adding MA), segregation can be extremely reduced, and the fluidity is improved more than when no additive is added (fluidity: 18.2 sec / 50 g). In addition, methacrylic resin (in this case,
Even with the addition of PMMA), the outer diameter dimensional change, radial crushing strength, and rattle value are within the range where there is no practical problem.

ii)これに対し、スピンドル油の添加では偏析 防止効果は十分とは言えない。しかも、スピンドル油の
添加量を増して偏析を小さくしようとすれば、流動度が
一段と悪化して実用上大きな問題となる。
ii) On the other hand, segregation occurs when spindle oil is added. The prevention effect is not enough. Moreover, if the segregation is reduced by increasing the addition amount of the spindle oil, the fluidity is further deteriorated, causing a serious problem in practical use.

実施例 2 青銅粉:96.3重量%, −200メッシュの鉛粉:0.9重量%, −325メッシュの亜鉛粉:0.9重量%, −325メッシュの黒鉛粉:1.4重量% をビーカーに入れ、混合しながら“メタクリル酸メチル
ポリマー(PMMA):0.25重量%を有機溶剤に溶かしたも
の”を約10分間かけて添加した後、更に10分間混合し
た。
Example 2 Bronze powder: 96.3% by weight, -200 mesh lead powder: 0.9% by weight, -325 mesh zinc powder: 0.9% by weight, -325 mesh graphite powder: 1.4% by weight were placed in a beaker and mixed. "Methyl methacrylate polymer (PMMA): 0.25% by weight dissolved in an organic solvent" was added over about 10 minutes, and the mixture was further mixed for 10 minutes.

続いて、均一に湿った状態のままの混合物を減圧乾燥
してから、60メッシュの篩を通過させた。
Subsequently, the mixture kept in a uniformly wet state was dried under reduced pressure, and passed through a 60-mesh sieve.

そして、これにステアリン酸亜鉛:0.5重量%を混合し
た組成物:50gを試験試料とした。
Then, 50 g of a composition in which zinc stearate: 0.5% by weight was mixed was used as a test sample.

一方、比較例として、粉末組成が上記と同様ではある
がPMMAを添加しなかった混合組成物:50gの試料をも準備
した。
On the other hand, as a comparative example, a sample of 50 g of a mixed composition having the same powder composition as above but without adding PMMA was also prepared.

そして、これら各試料について、ビーカー中で 振動数:3000VPM, 振幅:2mm, 振動付与時間:5分間 なる条件の偏析試験を実施した後、ビーカー中の試料を
上部と下部に2分割して黒鉛含有率を調査し、その値か
ら偏析係数〔Cs〕を求めた。
After performing a segregation test on each of these samples in a beaker under the conditions of frequency: 3000 VPM, amplitude: 2 mm, and vibration application time: 5 minutes, the sample in the beaker is divided into two parts, upper and lower, to contain graphite. The ratio was investigated, and the segregation coefficient [Cs] was determined from the value.

なお、粉析係数〔Cs〕の算出は式 によって算出した(なお、完全混合でCs=0となる)。The calculation of the powdering coefficient [Cs] is calculated by the formula (Note that Cs = 0 when complete mixing is performed).

この結果を、第2表に示すと共に、グラフ化して第1
図としても表示した。
The results are shown in Table 2 and plotted in the first graph.
Also shown as a figure.

第2表及び第1図に示される結果からも、比較例では
偏析係数が「−13.0%」であるのに対して、メタクリル
樹脂(ここではPMMA)を添加した本発明に係る銅系粉末
組成物では「−3.3%」と極く小さく、本発明組成物は
非常に偏析を生じにくいことが分かる。
From the results shown in Table 2 and FIG. 1, the segregation coefficient in the comparative example is “−13.0%”, whereas the methacrylic resin (here, PMMA) is added to the copper-based powder composition according to the present invention. In the case of the composition, the composition was extremely small, such as "-3.3%", which indicates that the composition of the present invention is extremely unlikely to cause segregation.

実施例 3 青銅粉:97.75重量%, −325メッシュの亜鉛粉:0.95重量%, −325メッシュの黒鉛粉:0.8重量% を垂直スクリュー型混成機に装入し、これらを混合しな
がら“メタクリル酸メチルポリマー(PMMA):0.25重量
%を有機溶剤に溶かしたもの”を約10分間かけて添加し
た後、更に20分間混合した。
Example 3 Bronze powder: 97.75% by weight, −325 mesh zinc powder: 0.95% by weight, −325 mesh graphite powder: 0.8% by weight were charged into a vertical screw-type hybrid machine, and “methacrylic acid Methyl polymer (PMMA): 0.25% by weight dissolved in an organic solvent "was added over about 10 minutes, and the mixture was further mixed for 20 minutes.

続いて、均一に湿った状態のままの混合物を混合機内
で減圧乾燥してから、60メッシュの篩を通過させた。
Subsequently, the mixture kept in a uniformly wet state was dried under reduced pressure in a mixer, and then passed through a 60-mesh sieve.

そして、これにスレアリン酸亜鉛:0.5重量%を混合
し、流動度,圧粉体特性及び焼結体特性の評価を行っ
た。
Then, 0.5% by weight of zinc sulphate was mixed with the mixture, and the fluidity, green compact properties and sintered body properties were evaluated.

一方、比較例として、上記と同様の粉末組成ではある
がPMMAを添加しなかった混合物を前記と同様な方法で調
整し、これらについても流動度,圧粉体特性及び焼結体
特性の評価を実施した。
On the other hand, as a comparative example, a mixture having the same powder composition as described above but without adding PMMA was prepared in the same manner as described above, and the fluidity, green compact properties and sintered body properties were also evaluated for these mixtures. Carried out.

なお、上記各特性の評価方法は、実施例1の場合と同
様であった。
In addition, the evaluation method of each characteristic was the same as that of the example 1.

これらの結果を第3表に示す。 Table 3 shows the results.

第3表に示される結果からも、メタクリル樹脂(ここ
ではPMMA)を添加した本発明に係る銅系粉末組成物は粉
末冶金原料としての十分な特性を有しており、特に流動
性が著しく向上していること(流動度:19.5sec/50g)が
分かる。
From the results shown in Table 3, the copper-based powder composition according to the present invention to which the methacrylic resin (here, PMMA) is added has sufficient properties as a powder metallurgy raw material, and in particular, the fluidity is remarkably improved. (Flow rate: 19.5sec / 50g)

〈効果の総括〉 以上に説明した如く、この発明によれば、輸送時等に
おける偏析や発塵が少なく、しかも成形時における型内
流動性の改善された銅系粉末組成物を提供することがで
き、その結果、粉末冶金での 粉末成形時において (イ)成形時に再混合の必要がない, (ロ)成形しやすくて使いやすい, (ハ)成形時のロスが少ない, 等の利点を享受し得るなど、産業上有用な効果がもたら
される。
<Summary of Effects> As described above, according to the present invention, it is possible to provide a copper-based powder composition with reduced segregation and dust generation during transportation and the like, and improved fluidity in a mold during molding. And as a result, in powder metallurgy Industrially useful effects such as (i) no need to remix at the time of powder molding, (b) easy to use and easy to mold, (c) small loss during molding, etc. Is brought.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、実施例にて調整した本発明銅系粉末組成物と
比較銅系粉末組成物との偏析係数を比較したグラフであ
る。
FIG. 1 is a graph comparing the segregation coefficients of the copper-based powder composition of the present invention prepared in the examples and the comparative copper-based powder composition.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B22F 1/00 - 7/08 C22C 1/04 Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) B22F 1/00-7/08 C22C 1/04

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電解法により得られた樹枝状銅粉又はこの
樹枝状銅粉を主体とする粉末をベースとした複数の粉末
原料の混合物であって、かつメタクリル樹脂を含有して
成ることを特徴とする、粉末冶金原料用銅系粉末組成
物。
1. A mixture of a plurality of powdery raw materials based on dendritic copper powder obtained by an electrolytic method or a powder mainly composed of the dendritic copper powder, and comprising a methacrylic resin. A copper-based powder composition for a powder metallurgy raw material.
【請求項2】メタクリル樹脂の含有割合が全粉末混合物
の0.05〜5.0重量%である、請求項1に記載の粉末冶金
原料用銅系粉末組成物。
2. The copper-based powder composition for a powder metallurgy raw material according to claim 1, wherein the content of the methacrylic resin is 0.05 to 5.0% by weight of the whole powder mixture.
【請求項3】メタクリル樹脂がポリメチルメタクリレー
ト,ポリエチルメタクリレート,ポリプロピルメタクリ
レート,ポリブチルメタクリレート及びこれらのコポリ
マーから選ばれたものである、請求項1又は2に記載の
粉末冶金原料用銅系粉末組成物。
3. The copper powder for a powder metallurgy raw material according to claim 1, wherein the methacrylic resin is selected from polymethyl methacrylate, polyethyl methacrylate, polypropyl methacrylate, polybutyl methacrylate and copolymers thereof. Composition.
JP2185866A 1990-07-13 1990-07-13 Copper-based powder composition for powder metallurgy raw materials Expired - Fee Related JP2916940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2185866A JP2916940B2 (en) 1990-07-13 1990-07-13 Copper-based powder composition for powder metallurgy raw materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2185866A JP2916940B2 (en) 1990-07-13 1990-07-13 Copper-based powder composition for powder metallurgy raw materials

Publications (2)

Publication Number Publication Date
JPH0474802A JPH0474802A (en) 1992-03-10
JP2916940B2 true JP2916940B2 (en) 1999-07-05

Family

ID=16178252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2185866A Expired - Fee Related JP2916940B2 (en) 1990-07-13 1990-07-13 Copper-based powder composition for powder metallurgy raw materials

Country Status (1)

Country Link
JP (1) JP2916940B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976215A (en) * 1997-08-29 1999-11-02 Kawasaki Steel Corporation Iron-based powder mixture for powder metallurgy and process for preparing the same
JP4947659B2 (en) * 2008-02-29 2012-06-06 福田金属箔粉工業株式会社 Copper-based metal powder

Also Published As

Publication number Publication date
JPH0474802A (en) 1992-03-10

Similar Documents

Publication Publication Date Title
US4483905A (en) Homogeneous iron based powder mixtures free of segregation
JP2582231B2 (en) Method for producing binder-treated metal powder containing organic lubricant
JP3299805B2 (en) Binder-iron-based powder mixture containing lubricant
US5069714A (en) Segregation-free metallurgical powder blends using polyvinyl pyrrolidone binder
CA1064736A (en) Strontium-bearing master composition for aluminum casting alloys
KR101352883B1 (en) Iron-based mixed powder for powdery metallurgy
CA2150753C (en) Segregation-free metallurgical blends containing a modified pvp binder
US5525293A (en) Powder metallurgical binder and powder metallurgical mixed powder
JP5170390B2 (en) Iron-based mixed powder for powder metallurgy
US4504441A (en) Method of preventing segregation of metal powders
JP2916940B2 (en) Copper-based powder composition for powder metallurgy raw materials
US20130333870A1 (en) Aluminum alloy powder metal with high thermal conductivity
JP2001514335A (en) Lubricants for metallurgical powder compositions
JP3792714B2 (en) Sintered products with improved density
JP4093041B2 (en) Iron-based powder mixture for powder metallurgy and method for producing the same
GB2149714A (en) Extrusion process
JP3326072B2 (en) Iron-based mixture for powder metallurgy and method for producing the same
CA2817590A1 (en) Improved aluminum alloy power metal with transition elements
JP2002348601A (en) Powder metallurgy method, and sintered metallic compact
CA1049296A (en) Powder-metallurgy of cobalt containing brass alloys
US3250838A (en) Techniques for compacting aluminum powder mixtures
JP3703871B2 (en) Copper-based segregation-preventing mixed powder and method for producing the same
KR101202371B1 (en) Powder metallurgical composition comprising carbon black as flow enhancing agent
GB1583083A (en) Master composition and process for the eutectic component of eutectic and hypo-eutectic aluminiumsilicon casting alloys
JPH0827536A (en) Production of sintered compact of stainless steel

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees