JP4947659B2 - Copper-based metal powder - Google Patents

Copper-based metal powder Download PDF

Info

Publication number
JP4947659B2
JP4947659B2 JP2008049468A JP2008049468A JP4947659B2 JP 4947659 B2 JP4947659 B2 JP 4947659B2 JP 2008049468 A JP2008049468 A JP 2008049468A JP 2008049468 A JP2008049468 A JP 2008049468A JP 4947659 B2 JP4947659 B2 JP 4947659B2
Authority
JP
Japan
Prior art keywords
powder
copper
fluidity
sio
powders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008049468A
Other languages
Japanese (ja)
Other versions
JP2009203543A (en
Inventor
忠司 小山
佐千子 益岡
臣治 寺居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2008049468A priority Critical patent/JP4947659B2/en
Priority to CN2009100075083A priority patent/CN101518819B/en
Publication of JP2009203543A publication Critical patent/JP2009203543A/en
Application granted granted Critical
Publication of JP4947659B2 publication Critical patent/JP4947659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は粉末冶金の原料粉として使用される、流動性に優れた銅および銅合金、並びに銅系混合粉末に関するものである。 The present invention relates to copper and a copper alloy having excellent fluidity and copper-based mixed powder used as a raw material powder for powder metallurgy.

従来、粉末冶金に使用される銅系粉末の中には、その形状、粒度等によっては流動性に劣る粉末がある。例えば電解銅粉は、非常に複雑な樹枝状形状のため粉末同士が絡み合い、この結果流動性が悪くなる。また、アトマイズ法で作製された、球状に近い形状の粉末であっても、粒子径が50μm以下の微粉末になってくると、粒子間の付着カが強くなってきて流動性が悪くなる。 Conventionally, among copper-based powders used in powder metallurgy, there are powders that are inferior in fluidity depending on the shape, particle size, and the like. For example, electrolytic copper powder has a very complicated dendritic shape, so that the powders are intertwined, resulting in poor fluidity. Further, even a powder having a nearly spherical shape produced by the atomization method, when the particle diameter becomes a fine powder having a particle size of 50 μm or less, the adhesion between the particles becomes stronger and the fluidity becomes worse.

粉末冶金法では、粉末を成形金型に充填してプレス成形を行うが、特に近年、薄肉形状や複雑形状の部品を製造するため、金型の隙間が細く複雑な形状になってきている。このため、流動性の悪い粉末を用いた場合には、ブリッジングを起こして粉末が金型に充填されない場合がある。また、充填はできても、均一に充填されなかった場合には金型内で充填密度にばらつきが生じ、成形体強度の低下や焼結後の寸法精度の低下を引き起こす。また、金型にスムーズに粉末を充填することができないため、プレスの成形速度を低く設定する必要があり、生産性が低下する。 In powder metallurgy, press molding is performed by filling powder into a molding die. In recent years, in particular, in order to manufacture thin-walled or complex-shaped parts, the gaps between the molds have become narrow and complicated. For this reason, when a powder having poor fluidity is used, bridging may occur and the powder may not be filled in the mold. In addition, even if the filling can be performed, if the filling is not performed uniformly, the filling density varies within the mold, causing a reduction in the strength of the compact and a reduction in the dimensional accuracy after sintering. Further, since the mold cannot be filled with powder smoothly, it is necessary to set the press forming speed low, and productivity is lowered.

これを解決するために、鉄系粉末においては下記の特許文献1〜3に示すように、有機バインダーを用いて主成分粉と副成分粉を結合して粉末を造粒することにより、流動性を改善することが提案されている。 In order to solve this, in iron-based powder, as shown in the following Patent Documents 1 to 3, fluidity is obtained by combining the main component powder and the subcomponent powder using an organic binder and granulating the powder. It has been proposed to improve.

また、銅系粉末においては特許文献4に示すように、バインダーをコーティングさせた副成分粉と水で漏らせた主成分粉を混合・乾燥することにより、余分のバインダーを主成分の銅系粉末上に残さないように主成分粉と副成分粉とを接着させる方法、およびバインダーをきわめて少量しか使用せず、主成分粉と副成分粉とバインダー溶液とを混合後、混合物を軽く圧縮して接着を助ける方法が示されている。 In addition, in the copper-based powder, as shown in Patent Document 4, the auxiliary component powder coated with the binder and the main component powder leaked with water are mixed and dried, so that the excess binder is added to the copper-based powder. A method of adhering the main component powder and subcomponent powder so that it does not remain above, and using a very small amount of binder, mixing the main component powder, subcomponent powder and binder solution, and then lightly compressing the mixture A way to help bond is shown.

特許文献5には、鉄系造粒粉末において、流動性改善材として一次粒子の平均粒径が40nm以下のSiO等の金属酸化物を添加する方法が開示されている。
特公平6-89362号公報 特開平5-86403号公報 特開2002-289418号公報 特開平8-134502号公報 特表2003-508635号公報
Patent Document 5 discloses a method of adding a metal oxide such as SiO 2 having an average primary particle size of 40 nm or less as a fluidity improving material in an iron-based granulated powder.
Japanese Patent Publication No. 6-89362 Japanese Patent Laid-Open No. 5-86403 JP 2002-289418 A JP-A-8-13502 Special table 2003-508635 gazette

しかしながら、特許文献1〜3に示されたような、従来鉄系粉末に適用されてきたバインダーを用いて造粒する方法を銅系粉末に適用しようとすると、銅中への炭素の固溶度がほとんどないことから、焼結時にわずかに粉末粒子表面に残ったバインダー残滓の炭素であっても著しく焼結を阻害する欠点があった。 However, when the method of granulating using a binder that has been applied to conventional iron-based powders as shown in Patent Documents 1 to 3 is applied to copper-based powders, the solid solubility of carbon in copper As a result, there was a drawback that sintering was significantly inhibited even if the binder residue carbon remained slightly on the powder particle surface during sintering.

また、特許文献4に示された、銅系であっても焼結を阻害しにくいバインダーによる造粒粉の製造においては、バインダーでコーティングされた副成分粉を製造する工程、あるいは主成分、副成分、バインダーの混合物を圧縮する工程等の製造工程が増えるためコストが高くなる。 In addition, in the production of granulated powder with a binder that is difficult to inhibit sintering even if it is copper-based, as shown in Patent Document 4, a process for producing an auxiliary component powder coated with a binder, or a main component, an auxiliary component, and the like. Since the number of manufacturing steps such as a step of compressing the mixture of the component and the binder increases, the cost increases.

一方、上記特許文献5に記載されている鉄系粉末の流動性改善に適用される、SiO等の金属酸化物を添加する方法をそのまま銅系粉末に適用しても、以下のような理由により十分な流動性を得ることができない。 On the other hand, even if the method of adding a metal oxide such as SiO 2 applied to improve the fluidity of the iron-based powder described in Patent Document 5 is applied to the copper-based powder as it is, the following reasons Therefore, sufficient fluidity cannot be obtained.

粉末の流動性に影響を及ぼす粉末同士の付着力は、一般に液架橋力、分子間力、静電気力から成り立つことが知られているが、下記の非特許文献1において述べられているように、通常の湿度雰囲気下では分子間力が最も大きく作用する。分子間力はハマカー係数に比例するが、この係数は鉄では21.2、銅では30.0となっており、銅は鉄の1.5倍の分子間力が作用する。このことは、例え同様の粒子形状、粒子径を持った粉末であっても銅粉は鉄粉に比べて流動性が悪いことを示している。
「粉体および粉末冶金」第45巻、第9号、1998年、849-853頁
The adhesion force between powders that affects the fluidity of the powder is generally known to be composed of liquid crosslinking force, intermolecular force, electrostatic force, but as described in Non-Patent Document 1 below, Under normal humidity atmosphere, intermolecular force acts most. The intermolecular force is proportional to the Hamaker coefficient, but this coefficient is 21.2 for iron and 30.0 for copper, and copper exerts an intermolecular force 1.5 times that of iron. This indicates that even if the powder has the same particle shape and particle size, the copper powder has poor fluidity compared to the iron powder.
"Powder and powder metallurgy" Vol. 45, No. 9, 1998, pages 849-853

以上のように、銅系粉末においてその流動性を向上させることは、極めて困難である。しかしながら、近年の粉末冶金部品の小型化、複雑形状化、低コスト化のために、銅系においても流動性の良好な粉末が切望されるようになってきた。本発明はこのような要求に応えることが可能な銅系粉末を提供することを目的とする。 As described above, it is extremely difficult to improve the fluidity of the copper-based powder. However, in order to reduce the size, complexity, and cost of powder metallurgy parts in recent years, a powder having good fluidity has been eagerly desired even in a copper system. An object of this invention is to provide the copper-type powder which can meet such a request | requirement.

本発明は、このような従来の問題点を解決することを目的としてなされたものであり、銅粉末または銅合金粉末に、流動性改善材として平均粒子径40nm以下の疎水化処理されたSiOまたはAlまたはTiOまたはMgOまたはこれらの混合物が、銅系粉末に対して1.0質量%以下の量にて添加・混合された、流動性に優れた銅系粉末を提供するものである。
本発明における「銅合金」とは、銅に錫、鉛、亜鉛、アルミニウム、ニッケル、ビスマス、鉄、リン、マンガン、コバルト、シリコン、チタン、バナジウム、クロム、銀から選ばれた1種または2種以上の元素が固溶した金属をいう。
The present invention has been made for the purpose of solving such conventional problems. Hydrophobized SiO 2 having an average particle diameter of 40 nm or less as a fluidity improver on a copper powder or a copper alloy powder. Alternatively, Al 2 O 3, TiO 2, MgO or a mixture thereof is added and mixed in an amount of 1.0% by mass or less with respect to the copper-based powder to provide a copper-based powder having excellent fluidity It is.
The “copper alloy” in the present invention is one or two kinds selected from tin, lead, zinc, aluminum, nickel, bismuth, iron, phosphorus, manganese, cobalt, silicon, titanium, vanadium, chromium, and silver. A metal in which the above elements are dissolved.

また、本発明においては、銅粉末または銅合金粉末に、副成分粉および成形潤滑剤が混合されても良い。副成分粉としては、錫、鉛、亜鉛、アルミニウム、ニッケル、ビスマス、鉄、リン、マンガン、コバルト、シリコン、チタン、バナジウム、クロム、銀の粉末、あるいはこれら元素2つ以上の合金粉、あるいはこれら元素と銅との合金粉のような金属成分、黒鉛、二硫化モリブデン、硫化マンガン、フッ化カルシウムなどの固体潤滑剤、炭化物、窒化物などの硬質粒子が挙げられる。副成分粉の添加量は銅または銅合金粉と副成分粉と成形潤滑剤の合計質量の30%の量まで含むことができる。成形潤滑剤としては金属石鹸、ワックスなどが挙げられ、この添加量は銅または銅合金粉と副成分粉と成形潤滑剤の合計質量の5%の量まで含むことができる。本発明では、上記副成分粉及び/又は潤滑剤が添加される場合、銅粉末又は銅合金粉末と副成分粉と成形潤滑剤の合計質量に対して、1.0質量%以下の量で流動性改善材が添加される。 Moreover, in this invention, subcomponent powder and a shaping | molding lubricant may be mixed with copper powder or copper alloy powder. Subcomponent powders include tin, lead, zinc, aluminum, nickel, bismuth, iron, phosphorus, manganese, cobalt, silicon, titanium, vanadium, chromium, silver powder, or alloy powders of two or more of these elements, or these Examples thereof include metal components such as alloy powders of element and copper, solid lubricants such as graphite, molybdenum disulfide, manganese sulfide, and calcium fluoride, and hard particles such as carbides and nitrides. The addition amount of the subcomponent powder can include up to 30% of the total mass of the copper or copper alloy powder, the subcomponent powder and the molding lubricant. Examples of the molding lubricant include metal soap, wax, and the like. The addition amount can include up to 5% of the total mass of copper or copper alloy powder, subcomponent powder, and molding lubricant. In the present invention, when the subcomponent powder and / or lubricant is added, it flows in an amount of 1.0% by mass or less with respect to the total mass of the copper powder or the copper alloy powder, the subcomponent powder and the molding lubricant. A property improving material is added.

SiOおよびAlおよびTiOおよびMgOは本来表面に親水基が存在するため親水性であるが、これに有機珪素化合物を反応させて疎水化させることができる。このように疎水化させたSiOおよびAlおよびTiOおよびMgOは、表面への水分子の吸着量が著しく減少する。親水性の粉末は外部の水分により互いに付着し、十分な流動性が得られないが、疎水化すると付着しやすい水分層を持たず流動性が改善される。
有機珪素化合物による疎水化処理は、公知の方法であって良く、例えば、平均粒子径40nm以下のSiOと、ジメチルクロロシランとを不活性なキャリアーガスと一緒に、約400℃に加熱された反応器中に供給して反応させる方法で製造されたものが市販されている。
SiO 2, Al 2 O 3, TiO 2, and MgO are hydrophilic because they inherently have a hydrophilic group on the surface, but can be hydrophobized by reacting them with an organosilicon compound. Hydrophobized SiO 2 and Al 2 O 3, TiO 2 and MgO significantly reduce the amount of water molecules adsorbed on the surface. Hydrophilic powders adhere to each other due to external moisture, and sufficient fluidity cannot be obtained, but when hydrophobized, there is no moisture layer that tends to adhere and fluidity is improved.
Hydrophobing treatment with an organosilicon compound may be a known method, for example, a reaction in which SiO 2 having an average particle diameter of 40 nm or less and dimethylchlorosilane are heated to about 400 ° C. together with an inert carrier gas. What was manufactured by the method of supplying and reacting in a vessel is marketed.

前述したように、銅系粉末は鉄系粉末に比べて流動性が悪く、親水性の流動性改善材では流動性改善効果が不十分であるが、疎水化処理を施すことにより少量の添加で十分な流動性改善効果が得られるようになる。 As described above, copper-based powders have poorer fluidity than iron-based powders, and hydrophilic fluidity-improving materials have insufficient fluidity-improving effects, but can be added in small amounts by applying a hydrophobic treatment. A sufficient fluidity improving effect can be obtained.

本発明の効果としては、銅系粉末の流動性が向上することにより、薄肉形状や複雑形状の部品を製造するような場合においても、金型への粉末供給時にブリッジングを起こして粉末が金型に充填されなかったり、充填はできても均一に充填されずに金型内で充填密度にばらつきを生じ、成形体強度の低下や焼結後の寸法精度の低下を引き起こしたりすることが避けられることである。また、金型にスムーズに粉末を充填することができるため、プレスの成形速度を速く設定することができ、生産性が高くできる効果も得られる。 As an effect of the present invention, the flowability of the copper-based powder improves, so that even when a thin-walled or complex-shaped part is manufactured, bridging occurs when the powder is supplied to the mold, and the powder is Avoid filling the mold or filling the mold evenly, causing uneven filling density in the mold and reducing the strength of the compact and dimensional accuracy after sintering. Is to be. In addition, since the mold can be filled with the powder smoothly, the press forming speed can be set fast, and the productivity can be increased.

以下、本発明を詳細に説明する。本発明の銅粉には電解法、アトマイズ法、溶液還元法、酸化還元法など種々の製法による粉末が適用できる。合金粉としてはアトマイズ法、熱処理拡散合金化法、酸化還元法など種々の製法による粉末が適用できる。 Hereinafter, the present invention will be described in detail. For the copper powder of the present invention, powders produced by various production methods such as an electrolytic method, an atomizing method, a solution reduction method, and a redox method can be applied. As the alloy powder, powders produced by various methods such as an atomizing method, a heat treatment diffusion alloying method, and a redox method can be applied.

また、本発明の粉末を用いて製造される部品の要求品質を満たすため、これら銅粉、銅合金粉に錫、鉛、亜鉛、アルミニウム、ニッケル、ビスマス、鉄、リン、マンガン、コバルト、シリコン、チタン、バナジウム、クロム、銀の粉末、あるいはこれら元素2つ以上の合金粉、あるいはこれら元素と銅との合金粉のような金属成分、黒鉛、二硫化モリブデン、硫化マンガン、フッ化カルシウムなどの固体潤滑剤、炭化物、窒化物などの硬質粒子などの副成分粉、ステアリン酸亜鉛、ワックス等の成形潤滑剤が添加されても良い。 Moreover, in order to satisfy the required quality of parts manufactured using the powder of the present invention, tin, lead, zinc, aluminum, nickel, bismuth, iron, phosphorus, manganese, cobalt, silicon, Metal components such as titanium, vanadium, chromium, silver powder, alloy powders of two or more of these elements, or alloy powders of these elements and copper, solids such as graphite, molybdenum disulfide, manganese sulfide, and calcium fluoride Lubricants, secondary component powders such as hard particles such as carbides and nitrides, and molding lubricants such as zinc stearate and wax may be added.

これらのべース粉末に、流動性改善材として平均粒子径40nm以下のSiOまたはAlまたはTiOまたはMgOが0.001〜1.0質量%添加・混合されるが、本発明で用いる流動性改善材は表面の親水基を有機珪素化合物等によって疎水化させたものでなければならない。またこの流動性改善材は40nmを超える粒径になると添加量を多くしなければ流動性改善効果が得られず、焼結を阻害したり、焼結後に残留して焼結部品の性能に悪影響が出てくるため、40nm以下にすることが望ましい。より好ましい平均粒子径は5〜35nm、特に好ましい平均粒子径は10〜25nmである。 In these base powders, 0.001 to 1.0% by mass of SiO 2, Al 2 O 3, TiO 2 or MgO having an average particle diameter of 40 nm or less is added and mixed as a fluidity improving material. The fluidity-improving material used in (1) must have a hydrophilic group on the surface hydrophobized with an organosilicon compound or the like. In addition, when the fluidity improving material has a particle size exceeding 40 nm, the fluidity improving effect cannot be obtained unless the addition amount is increased, and it inhibits the sintering or remains after the sintering and adversely affects the performance of the sintered part. Therefore, it is desirable to make it 40 nm or less. A more preferable average particle size is 5 to 35 nm, and a particularly preferable average particle size is 10 to 25 nm.

流動性改善材の最適な添加量はべース粉末の粒度や形状によって異なる。すなわち樹枝状の形状を呈する電解銅粉のような、非常にイレギュラーな形状の粉末の場合には、粉末の凹部に一部の流動性改善材が入り込み流動性改善に寄与しなくなるため、球状あるいは球に近い不規則形状の場合よりも添加量を多くする必要がある。また、べース粉末の粒子径が小さくなるほど、粉末同士の付着力が大きくなり流動性が低下するが、この流動性を改善するためにはより添加量を増やす必要がある。
本発明における流動性改善材の添加量は、銅粉末粒子の形状が樹枝状で、平均粒径が約30〜150μm程度の場合には銅粉末に対して0.01〜1.0質量%の範囲が最適であるが、粒子形状が樹枝状で、平均粒径が約10〜30μm程度の場合には0.3〜1.0質量%の範囲が最適である。又、銅粉末粒子の形状が不規則状で、平均粒径が約20〜100μm程度の場合には銅粉末に対して0.001〜1.0質量%の範囲が最適であるが、粒子形状が不規則状で、平均粒径が約5〜20μm程度の場合には0.1〜1.0質量%の範囲が最適である。
べース粉末と流動材の混合には通常金属粉の混合操作に用いられる、V型混合機、ダブルコーン型混合機、リボン式混合機、回転羽根式混合機、らいかい機などを用いることができる。
The optimum amount of flow improver depends on the particle size and shape of the base powder. That is, in the case of a powder with a very irregular shape such as an electrolytic copper powder having a dendritic shape, a part of the fluidity improving material enters the concave portion of the powder and does not contribute to the improvement of the fluidity. Alternatively, it is necessary to increase the amount of addition compared to the case of an irregular shape close to a sphere. Further, as the particle diameter of the base powder becomes smaller, the adhesion force between the powders becomes larger and the fluidity decreases, but in order to improve the fluidity, it is necessary to increase the amount of addition.
The addition amount of the fluidity improving material in the present invention is 0.01 to 1.0 mass% with respect to the copper powder when the shape of the copper powder particles is dendritic and the average particle size is about 30 to 150 μm. The range is optimal, but when the particle shape is dendritic and the average particle size is about 10 to 30 μm, the range of 0.3 to 1.0 mass% is optimal. In addition, when the shape of the copper powder particles is irregular and the average particle size is about 20 to 100 μm, the range of 0.001 to 1.0% by mass with respect to the copper powder is optimal. Is irregular and the average particle size is about 5 to 20 μm, the range of 0.1 to 1.0% by mass is optimal.
Use a V-type mixer, double-cone type mixer, ribbon-type mixer, rotary blade-type mixer, rake machine, etc., usually used for mixing metal powder to mix the base powder and fluidized material. Can do.

以下に本発明を実施例に基づいて詳細に説明する。
以下に記載する、べース粉末の平均粒径はレーザー回折散乱法によって測定されたメディアン径、流動性改善材の平均粒径は動的光散乱法によって測定されたメディアン径である。流動度は、JIS Z2502規格に基づき、粉末50gをφ2.63mmのオリフィスから流下させたときにかかる時間を測定して流動度とした。
表1にべース粉末として電解銅粉を用いた場合の、SiO添加による流動性改善効果を示す。
The present invention will be described in detail below based on examples.
The average particle diameter of the base powder described below is the median diameter measured by the laser diffraction scattering method, and the average particle diameter of the fluidity improving material is the median diameter measured by the dynamic light scattering method. Based on the JIS Z2502 standard, the fluidity was determined by measuring the time taken to flow 50 g of powder from an orifice of φ2.63 mm.
Table 1 shows the effect of improving fluidity by adding SiO 2 when electrolytic copper powder is used as the base powder.

Figure 0004947659
Figure 0004947659

電解銅粉はその樹枝状の形状により粉末同士が絡み合いやすく、流動性に劣るとされているが、実施例1〜3および比較例1〜2に示すように、平均粒径が約45μm程度の電解銅粉では0.01%のSiO添加で流動性が得られるようになった。添加重を0.05%に増やすと流動性も向上するが、0.3%まで増やすと逆に低下傾向を示した。 Electrolytic copper powder is said to be intertwined by its dendritic shape and inferior in fluidity, but as shown in Examples 1 to 3 and Comparative Examples 1 to 2, the average particle size is about 45 μm. With electrolytic copper powder, fluidity can be obtained by adding 0.01% SiO 2 . Increasing the added weight to 0.05% improved fluidity, but increasing it to 0.3% showed a tendency to decrease.

比較例3のように、平均粒径が大きく、SiOを添加しなくとも流動性が良好な粉末にSiOを添加すると、実施例4のように流動性がより向上した。
また、粒径の小さい電解銅粉では、実施例1〜4よりは添加量を多くする必要があるが、実施例5〜6、比較例4〜5に示すように0.3%の添加で流動性が得られた。添加量を1%まで増加させると流動性はやや低下し、2%まで増加させると流動しなくなった。
As in Comparative Example 3, when SiO 2 was added to a powder having a large average particle diameter and good fluidity without adding SiO 2 , the fluidity was further improved as in Example 4.
Moreover, in electrolytic copper powder with a small particle size, it is necessary to increase addition amount rather than Examples 1-4, but as shown in Examples 5-6 and Comparative Examples 4-5, it is 0.3% addition. Fluidity was obtained. When the addition amount was increased to 1%, the fluidity was slightly lowered, and when it was increased to 2%, the fluidity was lost.

表2にべース粉末として水アトマイズ銅粉を用いた場合の、SiO添加による流動性改善効果を示す。 Table 2 shows the effect of improving fluidity by adding SiO 2 when water atomized copper powder is used as the base powder.

Figure 0004947659
Figure 0004947659

実施例7〜8、比較例6に示すように、平均粒径38μmの水アトマイズ銅粉では、0.0005%の添加では流動性を得ることはできなかったが、0.001%の添加では流動性が得られ、0.01%まで添加するとさらに向上した。 As shown in Examples 7 to 8 and Comparative Example 6, with water atomized copper powder having an average particle size of 38 μm, fluidity could not be obtained with 0.0005% addition, but with 0.001% addition. Fluidity was obtained and was further improved when added to 0.01%.

平均粒径11μmの微粉になると実施例9〜11、比較例7に示すように、0.01%の添加では流動性は得られず、0.1%まで添加量を増やして流動性を得ることができた。その後0.3%まで増やすと流動性は向上したが、1.0%まで増加させると逆に低下した。
表1の実施例1〜3、表2の実施例7〜8に示すように、同等水準の平均粒径であっても、水アトマイズ粉は電解銅粉のように粉末同士が絡み合うような形状ではないために、少量のSiO添加で流動性改善効果が発現する。
When it becomes a fine powder having an average particle diameter of 11 μm, as shown in Examples 9 to 11 and Comparative Example 7, fluidity cannot be obtained with addition of 0.01%, and fluidity is obtained by increasing the addition amount to 0.1%. I was able to. After that, when it was increased to 0.3%, the fluidity was improved, but when it was increased to 1.0%, it decreased.
As shown in Examples 1 to 3 in Table 1 and Examples 7 to 8 in Table 2, even when the average particle size is equivalent, the water atomized powder is shaped so that the powders are intertwined like electrolytic copper powder. Therefore, the fluidity improving effect is manifested by adding a small amount of SiO 2 .

表3に、SiOの疎水化処理の有無、およびSiO粒子の粒径が流動性に及ぼす影響を示す。尚、疎水化処理をされていないSiOおよび疎水化処理がなされたSiOは、市販されているものを用いた。 Table 3 shows the presence of the hydrophobic treatment of the SiO 2, and the particle size of the SiO 2 particles the effect on the fluidity. Commercially available SiO 2 that was not hydrophobized and SiO 2 that was hydrophobized were used.

Figure 0004947659
Figure 0004947659

実施例1〜3、比較例8〜10に示すように、疎水化処理を施さないSiOを用いた場合には疎水化処理を施したSiOを用いた場合に比べ、添加量を大きく増加させる必要があった。また実施例5〜6および比較例12〜13に示すように、平均粒径約19μmの微細な電解銅粉の場合には、疎水化処理を施さないSiOを1.0%添加しても流動性を得ることはできなかった。 As shown in Examples 1 to 3 and Comparative Examples 8 to 10, when SiO 2 not subjected to hydrophobic treatment is used, the amount of addition is greatly increased as compared with the case where SiO 2 subjected to hydrophobic treatment is used. It was necessary to let them. In addition, as shown in Examples 5 to 6 and Comparative Examples 12 to 13, in the case of fine electrolytic copper powder having an average particle diameter of about 19 μm, even if 1.0% of SiO 2 not subjected to a hydrophobizing treatment is added. The fluidity could not be obtained.

このことはアトマイズ銅粉の場合も同様で、実施例9,11および比較例15〜16に示すように疎水化処理を施さないSiOを1.0%添加しても流動性を得ることはできなかった。 This also applies to the atomized copper powder. As shown in Examples 9 and 11 and Comparative Examples 15 to 16, fluidity can be obtained even when 1.0% of SiO 2 not subjected to the hydrophobization treatment is added. could not.

また、実施例2、比較例11、実施例5、比較例14、実施例9、比較例17に示すように、疎水化処理を施したSiOであっても粒径が50nmと大きくなると流動性改善効果が小さくなった。
次に表4に代表的な銅合金である青銅についての流動性改善効果を示す。
In addition, as shown in Example 2, Comparative Example 11, Example 5, Comparative Example 14, Example 9, and Comparative Example 17, even when SiO 2 was subjected to a hydrophobization treatment, the particle size increased to 50 nm. The effect of improving sexiness was reduced.
Next, Table 4 shows the effect of improving fluidity of bronze which is a representative copper alloy.

Figure 0004947659
Figure 0004947659

実施例12に平均粒径35.6μmの水アトマイズ青銅粉末、実施例13に平均粒径10.3μmの水アトマイズ青銅粉末への、SiO添加による流動性改善効果を示すが、同等水準の平均粒径を持つ水アトマイズ銅粉とほぼ同等の改善効果が認められた。
表5にべ一ス粉末として、銅粉末に副成分粉および潤滑剤を混合した粉末についての流動性改善効果を示す。尚、以下の表5におけるSiO添加量は、銅粉末と副成分粉と潤滑剤の合計質量に対するout%である。
Example 12 shows the fluidity improvement effect by adding SiO 2 to water atomized bronze powder having an average particle size of 35.6 μm, and Example 13 to water atomized bronze powder having an average particle size of 10.3 μm. An improvement effect almost equal to that of water atomized copper powder having a particle size was observed.
Table 5 shows the fluidity improving effect of the powder obtained by mixing the sub-component powder and the lubricant with the copper powder as the base powder. In addition, the SiO 2 addition amount in the following Table 5 is out% with respect to the total mass of the copper powder, the subcomponent powder and the lubricant.

Figure 0004947659
Figure 0004947659

実施例14に電解銅粉と10%の水アトマイズ錫粉、これに成形潤滑剤としてステアリン酸亜鉛を0.5out%添加した混合粉にSiOを0.05%添加した結果を、比較例18にSiOを添加しない場合の結果を示すが、SiOを0.05%添加した場合には流動性改善効果が見られた。 Comparative Example 18 shows the result of adding 0.05% of SiO 2 to the mixed powder obtained by adding electrolytic copper powder and 10% water atomized tin powder to Example 14 and 0.5 out% of zinc stearate as a molding lubricant. The results when no SiO 2 is added are shown, but when 0.05% of SiO 2 was added, a fluidity improving effect was observed.

実施例15に電解銅粉と2%の黒鉛粉末、これに成形潤滑剤としてワックス系潤滑剤であるEBS樹脂を0.5out%添加した混合粉にSiOを0.05%添加した結果を、比較例19にSiOを添加しない場合の結果を示すが、SiOを0.05%添加した場合には流動性改善効果が見られた。
表6に流動性改善材としてAl、またはTiO、MgOおよびSiOとAlとTiOとMgOとを1:1:1:1の比率で混合した混合物を用いた時の流動性改善効果を示す。尚、疎水化処理をされたSiOおよびAlおよびTiOおよびMgOは、市販されているものを用いた。
The result of adding 0.05% of SiO 2 to the mixed powder obtained by adding 0.5% by weight of EBS resin, which is an electrolytic copper powder and 2% graphite powder, and a wax-based lubricant as a molding lubricant to Example 15, Although the result when SiO 2 is not added is shown in Comparative Example 19, a fluidity improving effect was observed when 0.05% of SiO 2 was added.
Table 6 shows the use of Al 2 O 3 , or TiO 2 , MgO and a mixture of SiO 2 , Al 2 O 3 , TiO 2 and MgO in a ratio of 1: 1: 1: 1 as a fluidity improver. Shows the fluidity improvement effect. Commercially available SiO 2, Al 2 O 3, TiO 2, and MgO subjected to the hydrophobic treatment were used.

Figure 0004947659
Figure 0004947659

実施例16〜19に示すように、いずれも流動性改善効果が得られた。
以上に述べてきたように、本発明に用いる流動性改善材は疎水化処理を施されていなければ十分な流動性改善効果が得られず、また、その平均粒径が40nmよりも大きい場合にも十分な流動性改善効果が得られない。
As shown in Examples 16 to 19, fluidity improving effects were obtained in all cases.
As described above, when the fluidity improving material used in the present invention is not hydrophobized, a sufficient fluidity improving effect cannot be obtained, and the average particle diameter is larger than 40 nm. However, sufficient fluidity improvement effect cannot be obtained.

流動性改善材の添加量はべース粉末の形状や粒径によって最適な添加量が存在するが、0.001%の添加量で流動性改善効果が現れ始め、添加量1%程度まで流動性改善効果がある。これ以上の添加量では逆に流動性が低下するため、流動性改善材の好ましい添加量は0.001%〜1%の範囲内である。 There is an optimum amount of fluidity improver added depending on the shape and particle size of the base powder, but the fluidity improvement effect starts to appear at an addition amount of 0.001%, and the fluidity is increased to about 1%. There is a sex improvement effect. On the other hand, if the addition amount is more than this, the fluidity is lowered, so that the preferred addition amount of the fluidity improving material is in the range of 0.001% to 1%.

本発明による銅系粉末は流動性が良く型充填性に優れた粉末として、粉末冶金の分野において利用され得るが、従来全く流動性がなかった微細な銅系粉末でも流動性が得られることから、今後電子材料用の銅粉にも適用される可能性がある。 The copper-based powder according to the present invention can be used in the field of powder metallurgy as a powder having good fluidity and excellent mold filling property, but fluidity can be obtained even with a fine copper-based powder that has not been fluid at all. In the future, it may be applied to copper powder for electronic materials.

Claims (3)

銅または銅合金からなる銅系粉末に、流動性改善材が添加、混合されたものであって、前記流動性改善材が、平均粒子径40nm以下の疎水化処理されたSiO、Al、TiO、MgO及びこれらの混合物から選ばれたものであること、及び、当該流動性改善材の銅系粉末に対する添加割合が1.0質量%以下であることを特徴とする銅系金属粉末。 A fluidity improver is added to and mixed with a copper-based powder made of copper or a copper alloy, and the fluidity improver is hydrophobized SiO 2 or Al 2 O having an average particle diameter of 40 nm or less. 3 , TiO 2 , MgO and a mixture thereof, and a copper-based metal characterized in that the addition ratio of the fluidity improver to the copper-based powder is 1.0% by mass or less Powder. さらに、前記銅粉末または銅合金粉末に、錫、鉛、亜鉛、アルミニウム、ニッケル、ビスマス、鉄、リン、マンガン、コバルト、シリコン、チタン、バナジウム、クロム、銀の粉末、あるいはこれら元素2つ以上の合金粉、あるいは前記元素と銅との合金粉から選ばれた金属成分、黒鉛、二硫化モリブデン及び硫化マンガン、フッ化カルシウムから選ばれた固体潤滑剤、炭化物及び窒化物から選ばれた副成分粉、及び/または、金属石鹸、ワックスから選ばれた成形潤滑剤の少なくとも1種を含み、前記流動性改善材の、前記銅系粉末と副成分粉及び/又は成形潤滑剤の合計量に対する添加割合が1.0質量%以下であることを特徴とする請求項1に記載の銅系金属粉末。 Furthermore, tin, lead, zinc, aluminum, nickel, bismuth, iron, phosphorus, manganese, cobalt, silicon, titanium, vanadium, chromium, silver powder, or two or more of these elements are added to the copper powder or copper alloy powder. Metal powder selected from alloy powders or alloy powders of the above elements and copper, powders of subcomponents selected from solid lubricants selected from graphite, molybdenum disulfide and manganese sulfide, calcium fluoride, carbides and nitrides And / or at least one molding lubricant selected from metal soaps and waxes, and the addition ratio of the fluidity improver to the total amount of the copper-based powder and the subcomponent powder and / or molding lubricant The copper-based metal powder according to claim 1, wherein is 1.0 mass% or less. 前記SiO、Al、TiO、MgOが、有機珪素化合物によって疎水化処理されていることを特徴とする請求項1又は2に記載の銅系金属粉末。 The copper-based metal powder according to claim 1, wherein the SiO 2 , Al 2 O 3 , TiO 2 , and MgO are hydrophobized with an organosilicon compound.
JP2008049468A 2008-02-29 2008-02-29 Copper-based metal powder Active JP4947659B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008049468A JP4947659B2 (en) 2008-02-29 2008-02-29 Copper-based metal powder
CN2009100075083A CN101518819B (en) 2008-02-29 2009-02-11 Copper based metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008049468A JP4947659B2 (en) 2008-02-29 2008-02-29 Copper-based metal powder

Publications (2)

Publication Number Publication Date
JP2009203543A JP2009203543A (en) 2009-09-10
JP4947659B2 true JP4947659B2 (en) 2012-06-06

Family

ID=41079730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008049468A Active JP4947659B2 (en) 2008-02-29 2008-02-29 Copper-based metal powder

Country Status (2)

Country Link
JP (1) JP4947659B2 (en)
CN (1) CN101518819B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6303016B2 (en) * 2014-08-27 2018-03-28 株式会社日立製作所 Manufacturing method of layered objects
CN104493184B (en) * 2014-11-27 2017-08-22 南京大学 The manufacture method of spherical bell metal powder
JP6766399B2 (en) * 2016-03-28 2020-10-14 大同特殊鋼株式会社 Sintering powder and sintered body
CN106064238A (en) * 2016-05-16 2016-11-02 周志国 Powder metallurgy automobile gear and preparation method thereof
CN106756414A (en) * 2016-11-29 2017-05-31 张家港市鑫华易金属材料有限公司 A kind of clad metal sheet suitable for engineering machinery
JP6467535B1 (en) * 2018-02-13 2019-02-13 福田金属箔粉工業株式会社 Cu-based powder for infiltration
JP7400218B2 (en) * 2018-08-31 2023-12-19 大同特殊鋼株式会社 Alloy powder composition
CN110871269B (en) * 2018-08-31 2022-11-08 大同特殊钢株式会社 Alloy powder composition
DE102018219686A1 (en) * 2018-11-16 2020-05-20 Mahle International Gmbh Method of making a valve seat ring infiltrated with copper
EP3950176A4 (en) * 2019-06-13 2022-07-20 Fukuda Metal Foil & Powder Co., Ltd. Copper powder for laminate shaping, laminate shaped body, method for manufacturing laminate shaped body, and laminate shaping apparatus
JP6734447B1 (en) * 2019-07-31 2020-08-05 株式会社ソディック Material powder for metal additive manufacturing and manufacturing method thereof
CN110584248A (en) * 2019-09-25 2019-12-20 铜陵铜官府文化创意股份公司 Method for simulating ultrathin flower and leaf plants by using copper process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235408A (en) * 1987-03-23 1988-09-30 Aisin Chem Co Ltd Semimetallic friction material composition
JP2916940B2 (en) * 1990-07-13 1999-07-05 株式会社ジャパンエナジー Copper-based powder composition for powder metallurgy raw materials
SE9903231D0 (en) * 1999-09-09 1999-09-09 Hoeganaes Ab Powder composition
US7169208B2 (en) * 2004-06-10 2007-01-30 Inco Limited Method and composition for dispersing extra-fine nickel powder
JP5023566B2 (en) * 2006-06-15 2012-09-12 Jfeスチール株式会社 Iron-based powder for powder metallurgy

Also Published As

Publication number Publication date
CN101518819A (en) 2009-09-02
JP2009203543A (en) 2009-09-10
CN101518819B (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4947659B2 (en) Copper-based metal powder
KR100187616B1 (en) Sintered friction material composite copper alloy powder used therefor and manufacturing method thereof
JP5504278B2 (en) Method for producing diffusion-alloyed iron or iron-based powder, diffusion-alloyed powder, composition comprising the diffusion-alloyed powder, and molded and sintered parts produced from the composition
JP3004725B2 (en) Method for producing lubricating metallurgical powder composition
JP5381262B2 (en) Iron-base powder for powder metallurgy and method for improving fluidity thereof
TWI413685B (en) Lubricant for powder metallurgical compositions
EP2221130B1 (en) Iron based powder for powder metallurgy and manufacture thereof
KR100852304B1 (en) Method for making compacted products and iron-based powder comprising lubricant
KR20080080304A (en) Metallurgical powder composition
JP2007517980A (en) Iron-based powder composition containing a binder-lubricant combination and manufacture of the powder composition
JP5129519B2 (en) Powder for compacting and method for producing powder for compacting
TWI465589B (en) Production method of sintered bronze alloy powder
JP5750076B2 (en) Powder for molding and method for producing the same
KR102325463B1 (en) Partially diffusion-alloyed steel powder
WO2016190038A1 (en) Mixed powder for iron-based powder metallurgy, method for producing same, sintered body produced using same, and method for producing sintered body
CN110871269B (en) Alloy powder composition
JP4331538B2 (en) Copper-coated graphite powder and method for producing the same
JP5893331B2 (en) Method for producing Ni-based corrosion-resistant wear-resistant alloy
JPH0913101A (en) Iron based mixture for powder metallurgy and its production
JPH0456702A (en) Raw material powder for powder metallurgy and manufacture thereof
KR102239632B1 (en) Alloy powder composition
JP2813159B2 (en) Manufacturing method of aluminum sintered material
JP2017128764A (en) Iron-based sintered slide material and manufacturing method therefor
KR20230059880A (en) Iron-based mixed powder and method for manufacturing the same
JP5181688B2 (en) Iron-based powder mixture for powder metallurgy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120229

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4947659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250