JPH08325661A - Porous aluminum sintered material - Google Patents

Porous aluminum sintered material

Info

Publication number
JPH08325661A
JPH08325661A JP15677995A JP15677995A JPH08325661A JP H08325661 A JPH08325661 A JP H08325661A JP 15677995 A JP15677995 A JP 15677995A JP 15677995 A JP15677995 A JP 15677995A JP H08325661 A JPH08325661 A JP H08325661A
Authority
JP
Japan
Prior art keywords
eutectic
sintered material
aluminum
porous
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15677995A
Other languages
Japanese (ja)
Inventor
Hiroo Wakiyama
裕夫 脇山
Hiroyoshi Kikuchi
宏佳 菊地
Takeshi Sakai
武志 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Original Assignee
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd, Nippon Dia Clevite Co Ltd filed Critical NDC Co Ltd
Priority to JP15677995A priority Critical patent/JPH08325661A/en
Publication of JPH08325661A publication Critical patent/JPH08325661A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To assure mechanical strength and to improve bending workability by forming structures which are connected and bonded by bridging parts of hypereutectic structures and further forming projections on the inside wall surfaces of gaps. CONSTITUTION: The gaps 3 are formed among the particles of base powder 1 consisting of Al or Al alloy. These gaps 3 are communicated with each other to form curving open cells. The particles of the base powder 1 are bonded by interposing the bridging parts 2 therebetween. The bridging parts 2 are formed by adding an eutectic element making eutectic reaction with the Al or, an alloy contg. this element thereto. This eutectic element has a melting point higher than that of Al, for example, Cu. The structures of the bridging parts have the hypereutectic structures and the many projections or projecting parts 4 are formed on the inside wall surfaces of the gaps 3. As a result, the sound absorbing coefft. as a sound absorbing material and the filtration efficiency as a filter medium are enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は多孔質アルミニウム焼結
材に係り、詳しくは、アルミニウム(以下、単にAlと
いう。)またはその合金(以下、単にAl合金とい
う。)の粉末粒子の間に孔隙が形成され、この孔隙が連
通されて無限に屈曲する連通孔が形成される多孔質アル
ミニウム焼結材であって、高速電車、自動車や産業機器
からの騒音を効果的に吸音できる上に、機械的特性に優
れ、多孔性と十分な濾過面積が必要とされる濾過材や、
吸着材等に好適で、更に、吸音特性や濾過効率が大巾に
向上させることができる多孔質アルミニウム焼結材に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous aluminum sintered material, and more specifically, to pores between powder particles of aluminum (hereinafter simply referred to as Al) or an alloy thereof (hereinafter simply referred to as Al alloy). It is a porous aluminum sintered material in which the pores are formed to communicate with each other to form communication holes that bend infinitely, and can effectively absorb noise from high-speed trains, automobiles, and industrial equipment. Filter material that has excellent physical properties, requires porosity and sufficient filtration area,
The present invention relates to a porous aluminum sintered material which is suitable as an adsorbent and the like, and which can greatly improve sound absorption characteristics and filtration efficiency.

【0002】[0002]

【従来の技術】従来から、種々の金属多孔質材が提案さ
れている。金属多孔質材は、多数の孔隙を有する構造を
持つところから、この構造的特性を利用して、騒音など
を吸収する吸音材、溶液中に溶存する溶存物などを濾過
する濾過材、更に、多数の孔隙の内壁面に悪臭物などを
吸着する脱臭材などに利用されている。
2. Description of the Related Art Conventionally, various porous metal materials have been proposed. Since the metal porous material has a structure having a large number of pores, by utilizing this structural characteristic, a sound absorbing material that absorbs noise and the like, a filtering material that filters dissolved matters dissolved in the solution, and the like. It is used as a deodorant for adsorbing malodorous substances on the inner wall surface of many pores.

【0003】これら金属多孔質材のうちで、きわめて容
易に製造でき安価で経済性に優れるところから、Alや
Al合金の金属板に多数の真直ぐな貫通孔を形成した多
孔質材、所謂、パンチングメタルが提案されている。
Among these porous metal materials, a porous material in which a large number of straight through holes are formed in a metal plate of Al or Al alloy, so-called punching, is used because it is extremely easy to manufacture, inexpensive and excellent in economic efficiency. Metal is proposed.

【0004】パンチングメタルは、多数の貫通孔を音が
通る間に、音の持つエネルギ−が失なわれるため、ある
程度の吸音効果が達成できる。
[0004] The punching metal loses the energy of the sound while the sound passes through a large number of through holes, so that a certain sound absorbing effect can be achieved.

【0005】また、パンチングメタルは、Al又はAl
合金の板材から成るため、所望の機械的強度を持ち、そ
の上で、所望の形状に加工し易く、軽量であり、経済面
でも安価である。このため、広く一般に用いられてい
る。
The punching metal is Al or Al.
Since it is made of an alloy plate material, it has a desired mechanical strength, and it can be easily processed into a desired shape, is lightweight, and is economically inexpensive. Therefore, it is widely used.

【0006】しかし、パンチングメタルは、貫通孔の長
さが板厚の程度で短かく、このため、吸音される範囲
は、低周波数、例えば、100Hz程度の音に限られ、
高周波数、例えば、500Hz又はそれ以上の音は吸収
できない。
However, in the punching metal, the length of the through hole is short as the plate thickness is small, so that the sound absorption range is limited to the low frequency sound, for example, about 100 Hz.
Sounds at high frequencies, eg 500 Hz or higher, cannot be absorbed.

【0007】最近の産業の発達から、種々の騒音源が生
れている。ちなみに、所謂、新幹線で代表される高速電
車乃至高速鉄道は、きわめて速い速度で走行する。この
ため、高速走行にともなって高周波数(例えば、500
〜2000Hz)の音が発生し、新しい騒音源になって
いる。
Due to the recent industrial development, various noise sources have been produced. By the way, a high-speed train or high-speed railway represented by the so-called Shinkansen runs at an extremely high speed. Therefore, as the vehicle travels at high speed, high frequencies (for example, 500
Sounds of up to 2000 Hz) are generated, which is a new noise source.

【0008】高速道路網が発達、整備され、そこに走行
する高速自動車により、新しい騒音源が生まれている。
更に、住宅の密集のため、マンションなどの騒音、公会
堂やイベントホ−ルなどからの騒音などの問題も発生し
ている。
A new noise source has been created by the development and maintenance of the expressway network and the high-speed vehicles that drive there.
Further, due to the densely packed houses, there are problems such as noise from condominiums and noise from public halls and event halls.

【0009】このように発生する騒音は、きわめて周波
数の高い音が混在し、この騒音を除去するのには、従来
例のパンチングメタルなどではその目的が達成できな
い。
The noise thus generated is a mixture of sounds with extremely high frequencies, and in order to remove this noise, the purpose cannot be achieved by the conventional punching metal or the like.

【0010】このところから、金属多孔質材、なかで
も、AlまたはAl合金の粉末を焼結した多孔質Al焼
結材から成る吸音材が提案されている(特公昭56−1
8646号公報ならびに特公昭56−11375号公報
参照)。
From this, a sound absorbing material made of a porous metal material, in particular, a porous aluminum sintered material obtained by sintering powder of aluminum or aluminum alloy has been proposed (Japanese Patent Publication No. 56-1).
(See Japanese Patent Publication No. 8646 and Japanese Patent Publication No. 56-11375).

【0011】この多孔質Al焼結材は、Al粉末に対し
Al−Cu合金粉末を添加し、実質的に無加圧状態で成
型してから、水素雰囲気中において、Al粉末の融点よ
り10℃以下低い温度で焼結し、Al粉末間に孔隙を残
して、容積比で孔隙率30%以上の孔隙を形成して成る
ものである。
This porous Al sintered material is formed by adding Al-Cu alloy powder to Al powder and molding it in a substantially non-pressurized state. Then, in a hydrogen atmosphere, the melting point of Al powder is 10 ° C. Below, it is formed by sintering at a low temperature, leaving pores between Al powders to form pores having a porosity of 30% or more in volume ratio.

【0012】この多孔質Al焼結材では、粉末粒子の間
に存在する孔隙が互いに連通して無限に屈曲した連通孔
が形成され、この連通孔の長さ若しくは流路は無限に長
いため、優れた吸音特性や濾過特性を示す。
In this porous Al sintered material, the pores existing between the powder particles communicate with each other to form an infinitely bent communicating hole, and the length or flow path of this communicating hole is infinitely long. It has excellent sound absorption and filtration characteristics.

【0013】また、骨格を成すAl粉末の間に介在する
Al−Cu合金粉末は、Al粉末より融点の低いものと
して共晶組成(Cu33%)のAl合金粉末が用いられ
る。焼結時に加熱溶融されると、骨格を成すAl粉末相
互間が直接結合し、これらAl粉末の間にAl−Cu合
金粉末が拡散し消失し、その部分に孔隙が形成される。
As the Al-Cu alloy powder interposed between the Al powders forming the skeleton, an Al alloy powder having a eutectic composition (Cu 33%) is used because it has a melting point lower than that of the Al powder. When it is heated and melted during sintering, the Al powders forming the skeleton are directly bonded to each other, the Al—Cu alloy powder diffuses and disappears between these Al powders, and pores are formed in those portions.

【0014】しかし、このように焼結しても、焼結前に
加圧し圧粉体を形成すると、ある程度の孔隙は形成でき
るが、30%程度それ以上に孔隙率を高めることがむづ
かしく、この程度の孔隙率がないと、吸音材や濾過材と
しての機能が発揮できない。
However, even if the sintering is performed as described above, if the powder compact is formed by pressurizing before the sintering, a certain amount of porosity can be formed, but it is difficult to increase the porosity to about 30% or more. Without such a porosity, it cannot function as a sound absorbing material or a filtering material.

【0015】このため、孔隙率を高めるため、焼結前に
ほとんど加圧することなく、圧粉体を形成しないことか
ら、焼結が不十分になって、焼結材としての十分な機械
強度などの機械的性質が得られない。
Therefore, in order to increase the porosity, the green compact is hardly formed before the sintering and the green compact is not formed, so that the sintering becomes insufficient and the mechanical strength as the sintered material is sufficient. The mechanical properties of can not be obtained.

【0016】このため、従来例の多孔質Al焼結体は機
械的強度などが劣り、更に、骨格を成するAl粉末相互
間の直接結合に依存して一体に焼結されるために、焼結
材の機械的強度などの機械的性質は焼結条件に左右さ
れ、高い歩留りのもとで、機械的性質に優れかつ均一な
Al焼結体を得ることができない。
Therefore, the porous Al sintered body of the conventional example is inferior in mechanical strength, etc. Further, since it is integrally sintered depending on the direct bonding between the Al powders forming the skeleton, it is sintered. Mechanical properties such as the mechanical strength of the binder depend on the sintering conditions, and it is not possible to obtain a uniform Al sintered body having excellent mechanical properties under a high yield.

【0017】また、従来例の多孔質Al焼結材では、A
l粉末間に形成される孔隙が連らなって形成される連通
孔は、上記の通り、無限に屈曲し、しかも、その流路は
無限大に近いほど長い。このため、金属多孔質材として
代表的な所謂パンチングメタルに較べると、従来例の多
孔質Al焼結材は、例えば、1000Hz内外のような
高い周波数の音でも高い吸音率で吸音できるほかに、濾
過効率が高く、材質もAl又はAl合金であるため、き
わめて軽量で、用途も広い。
Further, in the conventional porous Al sintered material, A
As described above, the communication hole formed by the continuous pores formed between the powder particles is infinitely bent, and the flow path is longer as it approaches infinity. Therefore, in comparison with so-called punching metal that is typical as a metal porous material, the porous Al sintered material of the conventional example can absorb sound with a high sound absorption coefficient even at high frequency sounds such as inside and outside of 1000 Hz. Since it has high filtration efficiency and the material is Al or Al alloy, it is extremely lightweight and versatile.

【0018】しかし、このような利点があるのにも拘ら
ず、従来例の多孔質Al焼結材は、格骨を成すAl粉末
相互間の直接結合に依存するため、引張り強度、靭性、
曲げ強度が劣り、これを用いて曲げその他の加工ができ
ない欠点を持っている。
However, in spite of such advantages, the conventional porous Al sintered material depends on the direct bonding between the Al powders forming the skeleton, so that the tensile strength, toughness, and
Bending strength is inferior, and it has the drawback that it cannot be used for bending or other processing.

【0019】更に、吸音材としての吸音特性や濾過材と
しての性能には自から限度があって、それ以上高めるこ
とがむづかしい。
Furthermore, the sound absorbing characteristics as a sound absorbing material and the performance as a filtering material have their own limits, and it is difficult to further increase them.

【0020】なお、吸音材として、Alなどの多孔質焼
結材のほかに、グラスウ−ルと呼ばれるガラス繊維や、
高炉スラグを処理してスラグウ−ル、更に、Alやその
合金に発泡などの処理をほどこしたAl繊維などが用い
られ、また、用いることが提案されている。
As the sound absorbing material, in addition to the porous sintered material such as Al, glass fiber called glass wool,
It has been proposed to use slag wool by treating blast furnace slag, and also Al fibers obtained by subjecting Al or its alloy to treatment such as foaming.

【0021】これら吸音材は多数の空所を持つとともに
各空所には空気などが存在するため、吸音効果は良好で
ある。しかし、定形性がほとんどなく、施工作業のとき
や、使用による経年変化によって、繊維が飛び易く、健
康などの面からも好ましくない。
Since these sound absorbing materials have a large number of voids and air is present in each void, the sound absorbing effect is good. However, it has almost no regularity, and fibers are likely to fly during construction work or due to secular change due to use, which is not preferable in terms of health and the like.

【0022】[0022]

【発明が解決しようとする課題】本発明は上記欠点の解
決を目的とし、具体的には、Alまたはその合金の粉末
粒子の間に形成される孔隙が連続的に連らなって成る多
数の連通孔を具える多孔質Al焼結材において、これら
粉末粒子間の結合部の機械的強度を高めると共に、曲げ
などの機械的加工性にもすぐれ、更に、連通孔の内壁面
に微小な突起又は凸部を具える多孔質Al焼結材を提案
する。
SUMMARY OF THE INVENTION The present invention is directed to solving the above-mentioned drawbacks, and specifically, a large number of pores formed between powder particles of Al or an alloy thereof are continuously connected. In a porous Al sintered material having a communication hole, the mechanical strength of the joint between these powder particles is increased and the mechanical workability such as bending is also excellent. Furthermore, minute projections are formed on the inner wall surface of the communication hole. Alternatively, a porous Al sintered material having convex portions is proposed.

【0023】[0023]

【課題を解決するための手段】本発明に係る多孔質Al
焼結材においては、 (a)、この焼結材の骨格は、Al粉末粒子またはAl
合金粉末粒子のほかに、これら粉末粒子の間を連絡する
橋絡部から構成する。 (b)、この橋絡部は、AlのほかにAlと共晶反応す
る元素(以下、共晶元素という。)とから成って、この
共晶元素を共晶組成より過剰に含んだ過共晶組織から構
成する。 (c)、Alと共晶反応する共晶元素は、Si、Ni、
MnまたはCuのうちの1種または1種以上とする。 (d)、橋絡部は、初晶として凝固する硬い共晶元素と
Alの金属間化合物を中心として、その周囲にAlリッ
チな固溶体と共晶元素ならびにAlの化合物との共晶組
織が凝固されて囲む組織であって、この組織の共晶組織
が連続する構造から成っている。 (e)、Al粉末やAl合金粉末の間に形成される孔隙
又は連通孔の内壁面に微小な突起又は凸部を多数形成
し、この突起又は凸部をAlと包晶反応しかつAlの融
点近傍の包晶温度を有する包晶元素から構成する。 (f)、この包晶元素はW、V、Tiのうちの1種また
は1種以上とする。
Means for Solving the Problems Porous Al according to the present invention
In the sintered material, (a), the skeleton of this sintered material is Al powder particles or Al.
In addition to the alloy powder particles, it is composed of bridging portions connecting these powder particles. (B), the bridging portion is composed of an element that eutectic-reacts with Al (hereinafter referred to as eutectic element) in addition to Al, and is a hypereutectic element containing this eutectic element in excess of the eutectic composition. It is composed of crystal structure. (C), eutectic elements that undergo eutectic reaction with Al include Si, Ni,
One or more of Mn and Cu are used. (D), the bridging portion is mainly composed of a hard eutectic element and an Al intermetallic compound which solidify as a primary crystal, and around which a eutectic structure of an Al-rich solid solution, a eutectic element and an Al compound solidifies. It is a structure surrounded and surrounded by the eutectic structure of this structure. (E) A large number of minute projections or projections are formed on the inner wall surface of the pores or communication holes formed between the Al powder and the Al alloy powder, and these projections or projections are peritectic-reacted with Al and It is composed of peritectic elements having a peritectic temperature near the melting point. (F) The peritectic element is one or more of W, V, and Ti.

【0024】すなわち、本発明に係る多孔質Al焼結材
は、アルミニウムまたはその合金から成るベ−ス粉末の
間に、無限に屈曲する連通孔を形成する孔隙が形成され
る多孔質Al焼結材において、ベ−ス粉末の間は、アル
ミニウムより高い融点を持ってアルミニウムとの間で共
晶反応する共晶元素を共晶点以上含み残部が実質的にア
ルミニウムからなり、しかも、組織が過共晶組織からな
る橋絡部によって、互いに連絡され結合され、更に、孔
隙の内壁面上に多数の突起または凸部が形成されて成る
ことを特徴とする。
That is, the porous Al sintered material according to the present invention is a porous Al sintered material in which pores forming infinitely bent communication holes are formed between base powders made of aluminum or an alloy thereof. In the material, between the base powders, a eutectic element having a melting point higher than that of aluminum and performing a eutectic reaction with aluminum is contained at a eutectic point or more, and the balance is substantially composed of aluminum, and the structure is excessive. It is characterized in that they are connected and connected to each other by a bridging portion composed of a eutectic structure, and further, a large number of protrusions or projections are formed on the inner wall surface of the pores.

【0025】そこで、これら手段たる構成ならびにその
作用について、図面によって更に具体的に説明すると、
次の通りである。
Now, the construction and operation of these means will be described more specifically with reference to the drawings.
It is as follows.

【0026】なお、図1は、本発明の一つの実施例に係
る多孔質Al焼結材の構造の一部を拡大して示す説明図
である。
FIG. 1 is an enlarged view showing a part of the structure of the porous Al sintered material according to one embodiment of the present invention.

【0027】図2は、図1に示す多孔質Al焼結材の橋
絡部の組織を模式的に示す説明図である。
FIG. 2 is an explanatory view schematically showing the structure of the bridging portion of the porous Al sintered material shown in FIG.

【0028】図3は、図2に示す橋絡部の一つの組織に
おいて初晶組織や共晶組織の析出態様を断面で示す説明
図である。
FIG. 3 is an explanatory view showing in cross section the precipitation mode of the primary crystal structure or the eutectic structure in one structure of the bridging portion shown in FIG.

【0029】図4は、比較例の橋絡部の一つの組織にお
いて図3と同様に示す初晶組織と共晶組織の析出態様を
断面で示す説明図である。
FIG. 4 is an explanatory view showing in cross section the precipitation mode of the primary crystal structure and the eutectic structure shown in FIG. 3 in one structure of the bridging portion of the comparative example.

【0030】図5は、図2に示す橋絡部の長さ方向の共
晶元素の濃度分布を、図4に示す比較例の橋絡部と併せ
て、示すグラフである。
FIG. 5 is a graph showing the concentration distribution of the eutectic element in the length direction of the bridging portion shown in FIG. 2 together with the bridging portion of the comparative example shown in FIG.

【0031】図6は、AlとAlと共晶反応する共晶元
素との状態図である。
FIG. 6 is a state diagram of Al and a eutectic element which causes a eutectic reaction with Al.

【0032】まず、図1において、符号1はAlまたは
Al合金の粉末粒子(以下、ベ−ス粉末という。)2は
これらベ−ス粉末1を連結する橋絡部、3はベ−ス粉末
2の間に形成される孔隙、更に、4は連通孔又は孔隙3
の内壁面に形成される突起又は凸部を示す。
First, in FIG. 1, reference numeral 1 is powder particles of Al or Al alloy (hereinafter referred to as base powder) 2, a bridging portion connecting these base powders 1 and 3 is base powder. The pores formed between 2 and 4 are communicating holes or pores 3.
3 shows a projection or a protrusion formed on the inner wall surface of the.

【0033】図1に示すように、ベ−ス粉末1の間には
孔隙3を形成し、これら孔隙3は連通して無限に屈曲す
る連通孔を形成する。ベ−ス粉末1の間は積極的に橋絡
部2によって連結して一体化する。このようにベ−ス粉
末1間を直接接触させて結合させることなく、橋絡部2
を介在させて結合し、この橋絡部2について、次の通
り、更に、構造的に改善をはかると、機械的強度が高め
られるほか、靭性も向上する。
As shown in FIG. 1, pores 3 are formed between the base powders 1, and the pores 3 communicate with each other to form a communication hole which bends infinitely. The base powders 1 are positively connected by the bridging portion 2 to be integrated. As described above, the bridging portion 2 can be formed without directly connecting the base powders 1 to each other to bond them together.
When the bridge portion 2 is bonded by interposing, the mechanical strength is increased and the toughness is also improved by further improving the structure as follows.

【0034】すなわち、橋絡部2はほとんど液相焼結を
利用して形成される。橋絡部2は、図1に示すように連
結させるAlやAl合金のベ−ス粉末1より細く、ベ−
ス粉末1に比べると、機械的強度が不足し、更に、端部
の結合部分は応力の集中も受け易い。このため、橋絡部
2が脆弱であると、その他の部分、つまり、ベ−ス粉末
1がどのように強化されていても焼結材全体としては機
械的特性の向上は望めない。
That is, the bridging portion 2 is formed by utilizing liquid phase sintering. The bridging portion 2 is thinner than the base powder 1 of Al or Al alloy to be connected as shown in FIG.
Compared with the powder 1, the mechanical strength is insufficient, and further, stress is likely to be concentrated on the joint portion at the end. For this reason, if the bridging portion 2 is fragile, no improvement can be expected in the mechanical properties of the sintered material as a whole, no matter how the other portion, that is, the base powder 1, is reinforced.

【0035】そこで、本発明に係るAl焼結材では、機
械的特性を向上させる上から、Al若しくはAl合金の
ベ−ス粉末同士を結合させるために、橋絡部2を形成
し、この橋絡部2の機械的特性をも向上させる。
Therefore, in the Al sintered material according to the present invention, in order to improve the mechanical properties, the bridging portion 2 is formed in order to bond the base powders of Al or Al alloy to each other. It also improves the mechanical properties of the junction 2.

【0036】換言すると、橋絡部2は、Alと共晶反応
する共晶元素またはそれを含む合金を添加して形成し、
それの凝固組織が焼結体の特性、特に、ベ−ス粉末1同
志を結合させている橋絡部2の特性に大きな影響を及ぼ
すという事実に着目して、本発明に係る多孔質Al焼結
材は成立する。
In other words, the bridging portion 2 is formed by adding a eutectic element which reacts eutectic with Al or an alloy containing the element,
Paying attention to the fact that the solidified structure of the sintered body has a great influence on the characteristics of the sintered body, particularly the characteristics of the bridging portion 2 connecting the base powders 1 to each other, the porous Al sintered body according to the present invention. The binding is established.

【0037】更に詳しく説明すると、溶質する共晶元素
が同じであって、Alとの量的な組合わせで、亜共晶と
過共晶では初晶と共晶の組合わせが相違する。すなわ
ち、図6はAlと共晶元素(一般的にMと示す)の状態
図であって、ちなみに、共晶元素MをCuとする。この
Al−Cu合金系では、亜共晶組成(仮りに、図6のc
組成とする。)だとすると、図4に示すように、初晶と
して、Alリッチで柔らかい結晶21が最初に凝固析出
する。その次に、この結晶21の周囲には、Alリッチ
の固溶体22とCuAl2のような金属間化合物23と
から成る共晶が凝固析出する。つまり、Alリッチで柔
らかい結晶21が初晶として晶出し、この周囲がこのよ
うな共晶22、23によっておおわれる。
More specifically, the eutectic elements to be solute are the same, and the combination of Al and Al is different in the combination of the primary crystal and the eutectic in the hypoeutectic and hypereutectic. That is, FIG. 6 is a state diagram of Al and a eutectic element (generally indicated as M), and the eutectic element M is Cu. In this Al-Cu alloy system, a hypoeutectic composition (probably, c in FIG.
The composition. ), As shown in FIG. 4, the Al-rich and soft crystal 21 is first solidified and precipitated as the primary crystal. Then, around this crystal 21, a eutectic composed of an Al-rich solid solution 22 and an intermetallic compound 23 such as CuAl 2 is solidified and precipitated. That is, the Al-rich and soft crystal 21 is crystallized as a primary crystal, and the periphery thereof is covered with such eutectic crystals 22 and 23.

【0038】一方、過共晶組成(仮りに、図6のd組成
とする。)だとすると、最初に、初晶として、CuAl
2のような金属間化合物23が凝固し、その次に、その
周囲に、CuAl2のような金属間化合物23とAlリ
ッチな固溶体22とから成る共晶が凝固析出する(図3
参照)。
On the other hand, assuming a hypereutectic composition (probably the composition d in FIG. 6), first, CuAl is used as the primary crystal.
The intermetallic compound 23 such as 2 solidifies, and then the eutectic composed of the intermetallic compound 23 such as CuAl 2 and the Al-rich solid solution 22 solidifies and precipitates around it (FIG. 3).
reference).

【0039】この場合、上記のような凝固析出に関与す
る共晶元素は、Alより高融点を有しかつAlと共晶反
応する元素である。このため、焼結時に、Alが軟化す
る高温時でもAlより硬く、高強度である。
In this case, the eutectic element involved in the solidification precipitation as described above is an element having a higher melting point than Al and causing a eutectic reaction with Al. Therefore, it is harder and has higher strength than Al even at a high temperature where Al softens during sintering.

【0040】すなわち、図4に示すような亜共晶組織の
橋絡部であると、凝固中心部の組織よりその周囲の組織
が硬くなるのに対し、図3に示すような過共晶組織の橋
絡部2であると、凝固中心の組織よりその周囲の組織の
方が柔らかくなる。
That is, in the case of a bridging portion having a hypoeutectic structure as shown in FIG. 4, the surrounding structure becomes harder than the solidification center structure, whereas the hypereutectic structure as shown in FIG. In the bridging portion 2, the tissue around the coagulation center becomes softer than the tissue around the coagulation center.

【0041】更に、両者の共晶部分を比べると、本発明
のように過共晶組成時の共晶の方が、亜共晶組成の共晶
よりも硬いCuAl2などの金属間化合物の相が共晶部
分に占める割合が多くなり、橋絡部2は硬質でかつ高強
度になる。
Further, comparing the eutectic portions of both, the eutectic in the hypereutectic composition as in the present invention is harder than the eutectic of the hypoeutectic composition in the phase of the intermetallic compound such as CuAl 2. Occupies a large proportion in the eutectic portion, and the bridging portion 2 is hard and has high strength.

【0042】従って、本発明のように、過共晶組織とし
て橋絡部2を構成した場合には、多孔質Al焼結材は強
度は確保されかつ大きい変形は周囲に連続した靭性のあ
る共晶組織が柔軟に受け持ち、曲げなどの加工性も向上
する。
Therefore, when the bridging portion 2 is formed as a hypereutectic structure as in the present invention, the porous Al sintered material has a sufficient strength and a large deformation is continuous to the periphery and has a toughness. The crystal structure is flexibly taken care of, and workability such as bending is improved.

【0043】図5は共晶元素の橋絡部の長さ方向の濃度
分布を示し、なかでも、(イ)は本発明のような過共晶
組成、(ロ)は比較例の亜共晶組成を示す。図5に示す
ように過共晶組成の方が亜共晶組成に比べ溶質する共晶
元素が高濃度のため降伏強さは大きく、かつ、液相焼結
時濃度勾配が大きくなる。このため、Alやその合金の
ベ−ス粉末1は、本発明のような過共晶の場合には進
み、ベ−ス粉末1との結合強度も向上する。
FIG. 5 shows the concentration distribution in the lengthwise direction of the bridging portion of the eutectic element. Among them, (a) is a hypereutectic composition as in the present invention, and (b) is a hypoeutectic crystal of a comparative example. The composition is shown. As shown in FIG. 5, the hypereutectic composition has a higher yield strength because the solute eutectic element is higher in concentration than the hypoeutectic composition, and the concentration gradient during liquid-phase sintering becomes larger. Therefore, the base powder 1 of Al or its alloy advances in the case of hypereutectic crystal as in the present invention, and the bonding strength with the base powder 1 is also improved.

【0044】本発明では、Al若しくはその合金のベ−
ス粉末相互間を結合させている橋絡部2がAlより高融
点でかつAlと共晶反応する共晶元素の過共晶組織を有
する組織構成とする。更に具体的に示すと、焼結が共晶
温度以上で行なわれると、機械的強度に優れる共晶元素
が凝固核として最初に凝固して中心部を形成し、次に、
その中心部を包むように周囲に共晶組織が凝固析出す
る。この共晶組織は、核になる中心部よりも靭性に富
む。
In the present invention, the base of Al or its alloy is used.
The bridging portion 2 connecting the powders to each other has a higher melting point than Al and a hypereutectic structure of a eutectic element that causes a eutectic reaction with Al. More specifically, when the sintering is performed at a temperature higher than the eutectic temperature, the eutectic element having excellent mechanical strength first solidifies as a solidification nucleus to form a central portion, and then,
A eutectic structure is solidified and precipitated around the core so as to surround the center. This eutectic structure is richer in toughness than the core that forms the core.

【0045】また、このように機械的強度に優れる中心
部を共晶組織が集合して、橋絡部が形成され(図2参
照)、個々の各組織において、それぞれの共晶組織は別
の共晶組織と連続的に結合している。このため、橋絡部
全体は靭性に富む共晶の基地中に硬度・強度に優る初晶
が微細に散在する理想的な組織となる。
Further, as described above, the eutectic structure is gathered in the central part having excellent mechanical strength to form a bridging part (see FIG. 2), and each eutectic structure has a different eutectic structure. It is continuously bonded to the eutectic structure. For this reason, the entire bridging portion has an ideal structure in which primary crystals excellent in hardness and strength are finely dispersed in a tough eutectic matrix.

【0046】多孔質Al焼結材において橋絡部がこのよ
うな組織形態を有するため、強度は、ベ−ス粉末より高
く靭性も確保でき、曲げ加工性問題も解決される。
Since the bridging portion has such a structural morphology in the porous Al sintered material, the strength is higher than that of the base powder, the toughness can be secured, and the bending workability problem can be solved.

【0047】そこで、Alより高融点でかつAlと共晶
反応する元素、つまり、橋絡部形成に関与する共晶元素
については、表1に示すSi、Ni、Mn、Cuが好ま
しい。
Therefore, as the element having a melting point higher than that of Al and undergoing a eutectic reaction with Al, that is, the eutectic element involved in the formation of the bridging portion, Si, Ni, Mn and Cu shown in Table 1 are preferable.

【0048】また、これら共晶元素はベ−ス粉末に対し
て単味で添加するのに較べて、Alとの合金粉として添
加するのが望ましい。このようにAlとの合金粉として
添加すると、焼結時の液相焼結によって、先にのべた組
織の橋絡部が形成できる。
Further, it is desirable to add these eutectic elements as alloy powder with Al, as compared with adding them to the base powder alone. When added as an alloy powder with Al in this way, a bridging portion having the previously mentioned structure can be formed by liquid phase sintering during sintering.

【0049】このように橋絡部をAlとの合金粉として
添加し、この合金粉を液相焼結させて形成する場合に
は、次の組成のAl合金粉を用いるのが好ましい。
When the bridging portion is added as an alloy powder with Al and the alloy powder is liquid-phase sintered as described above, it is preferable to use an Al alloy powder having the following composition.

【0050】共晶元素の下限は、共晶点の組成になる
が、上限は、共晶の一つとしてAlと固溶体を形成する
限度から決められる。
The lower limit of the eutectic element is the composition of the eutectic point, but the upper limit is determined from the limit of forming a solid solution with Al as one of the eutectics.

【0051】例えば、Siの融点はAlの融点660℃
より高い1430℃である。Alとの間で11.7%S
i組成で577℃の共晶反応を示す。したがって、Al
との間でSiは共晶点の11.7%以上含まれているこ
とが必要で、Siは15.0%以上含まれていることが
好ましい。更に、上限としては、Siのみでは高融点で
あり、液相焼結にならないのでSi100%は含まな
い。
For example, the melting point of Si is 660 ° C. of the melting point of Al.
The higher temperature is 1430 ° C. 11.7% S with Al
The i composition shows a eutectic reaction at 577 ° C. Therefore, Al
It is necessary for Si to be contained at 11.7% or more of the eutectic point, and Si is preferably contained at 15.0% or more. Further, as an upper limit, Si alone does not have a high melting point and liquid phase sintering does not occur, so Si 100% is not included.

【0052】更に、Siは耐熱性の向上に寄与し、熱膨
脹率も小さいが、あまり多いと、靭性が損なわれる。
Further, Si contributes to the improvement of heat resistance and has a small coefficient of thermal expansion, but if it is too large, the toughness is impaired.

【0053】また、Cuの共晶点は33%であるが、過
共晶では33%を含まず、33%をこえて含ませる。5
2.5%Cuをこえると、共晶の一つとしてAlとの固
溶体が形成できず、とくに、これを超すと硬質の金属間
化合物が形成され、共晶組織が金属間化合物同志のもの
となって好ましくない。なお、Cuは強度、硬さの向上
に寄与する。しかし、あまり多いと、耐食性が損なわ
れ、加工性が悪化する。この意味からも52.5%をこ
えるのは好ましくない。
Although the eutectic point of Cu is 33%, the hypereutectic does not contain 33%, and the eutectic point is contained above 33%. 5
If it exceeds 2.5% Cu, a solid solution with Al cannot be formed as one of the eutectic crystals. Especially, if it exceeds this, a hard intermetallic compound is formed, and the eutectic structure is that of intermetallic compounds. Is not desirable. Cu contributes to the improvement of strength and hardness. However, if it is too much, the corrosion resistance is impaired and the workability deteriorates. From this point of view, it is not preferable to exceed 52.5%.

【0054】すなわち、共晶組織において、金属間化合
物同志の共晶は硬質であるが粘性がなく、破断に対して
は脆弱である。
That is, in the eutectic structure, the eutectic of intermetallic compounds is hard but has no viscosity and is vulnerable to fracture.

【0055】これに対し、本発明は、橋絡部として、一
部が靭性に富むAl固溶体から成る共晶組織であり、こ
の組織が得られないと、本発明の目的が達成されない。
On the other hand, in the present invention, the bridging portion has a eutectic structure which is partially composed of an Al solid solution having high toughness, and the object of the present invention cannot be achieved unless this structure is obtained.

【0056】過共晶範囲内での組成は焼結材に必要とさ
れる機械的特性により任意に選定される。例えば、機械
的強度が曲げ加工性より重視される平板状材料では元素
の含有量の多い過共晶組成は適するし、逆に、強度より
曲げ加工性が重視される小物の筒状焼結材では共晶成分
に近い過共晶組成が選ばれる。
The composition within the hypereutectic range is arbitrarily selected according to the mechanical properties required for the sintered material. For example, a hyper-eutectic composition containing a large amount of elements is suitable for a flat plate material in which mechanical strength is more important than bending workability, and conversely, a small tubular sintered material in which bending workability is more important than strength. Then, a hypereutectic composition close to the eutectic component is selected.

【0057】この目的から云って、Siは15〜80
%、Ni6〜42%、Mn3〜20%、Cu35〜52
%が好ましい。
For this purpose, Si is 15-80.
%, Ni6 to 42%, Mn3 to 20%, Cu35 to 52
% Is preferred.

【0058】なお、Niは高温強度を高めるが、高価で
ある。これに較べて、Mnは安価であり、耐食性ならび
に加工性の向上に寄与し、高温強度の向上も達成する。
しかし、Cuに較べると、強度向上の添加効果が少な
く、この意味でCuとMnとの相剰添加が好ましい。
Although Ni enhances high temperature strength, it is expensive. Compared with this, Mn is inexpensive, contributes to the improvement of corrosion resistance and workability, and also achieves the improvement of high temperature strength.
However, compared with Cu, the effect of adding strength is less, and in this sense, the additive addition of Cu and Mn is preferable.

【0059】また、共晶元素をAl合金として配合する
場合に、その配合量は必要とされる孔隙率によって選定
される。配合量が多くなれば液相量が増加し、焼結が進
むので空隙率は少なくなる傾向を示す。この点、橋絡部
が仮りに亜共晶組成で構成する場合には、強度が劣るた
めに、強度を確保するには橋絡部を太くする必要があ
り、配合量を多くしなければならない。このようにする
と、液相量が過大になって、吸音材や濾過材等に必要な
通気性のある孔隙率の確保が困難となる。
When the eutectic element is blended as an Al alloy, the blending amount is selected according to the required porosity. If the blending amount increases, the liquid phase amount increases and the sintering proceeds, so that the porosity tends to decrease. In this respect, if the bridging portion is composed of a hypoeutectic composition, the bridging portion needs to be thicker to secure the strength because the strength is inferior. Therefore, the blending amount must be increased. . In this case, the amount of liquid phase becomes excessive, and it becomes difficult to secure the porosity with air permeability necessary for the sound absorbing material, the filtering material, and the like.

【0060】次に、以上の通りに、ベ−ス粉1の間や、
橋絡部2の間に形成される孔隙3の内壁面上に突起若し
くは凸部4を形成する。この突起4などは、焼結時に、
W、V若しくはTiのうちの1種または1種以上の包晶
元素を添加して焼結することによって、形成される。
Next, as described above, between the base powder 1 and
Protrusions or protrusions 4 are formed on the inner wall surface of the pores 3 formed between the bridging portions 2. These protrusions 4 etc. are
It is formed by adding one or more peritectic elements of W, V or Ti and sintering.

【0061】すなわち、包晶元素は、Alと包晶反応か
つAlの融点近傍の包晶温度を有する元素である。この
包晶元素は、ベ−ス粉末や共晶元素などの粉末に較べて
微細な金属粉末として添加する。このように添加焼結す
ると、孔隙の内壁面上多数の微細な凸部や突起がこのA
lと包晶反応する包晶元素は、W、V、Tiのうちの1
種または1種以上が好ましい。
That is, the peritectic element is an element having a peritectic reaction with Al and having a peritectic temperature near the melting point of Al. This peritectic element is added as a fine metal powder as compared with powders such as base powder and eutectic element. When added and sintered in this manner, many fine projections and protrusions are formed on the inner wall surface of the pores.
The peritectic element that undergoes a peritectic reaction with l is one of W, V, and Ti.
Species or one or more species are preferred.

【0062】このように孔隙内表面上に多数の微細な凸
部または突起を形成すると、孔隙の形状を複雑化し表面
積を著しく拡大することができる。
When a large number of fine projections or protrusions are formed on the inner surface of the pores in this manner, the shape of the pores becomes complicated and the surface area can be remarkably increased.

【0063】これによって吸音特性も一段と向上し、ま
た、濾過材等の用途で濾過効果も向上する。
As a result, the sound absorption characteristics are further improved, and the filtering effect is also improved in applications such as filter media.

【0064】この目的の為には、添加する包晶元素を金
属粉末として添加する場合には、この金属粉末はベ−ス
粉末などより微細な粉末であることが必要であり、ベ−
ス粉末の液相焼結時に微細な粉末形状を完全に崩すこと
なく凸部を保持しながら結合しなければならない。
For this purpose, when the peritectic element to be added is added as a metal powder, the metal powder must be a finer powder such as a base powder.
During the liquid phase sintering of the fine powder, the fine powder shape must be completely retained while maintaining the convex portions.

【0065】これらの条件に合致する包晶元素はAlと
安定な金属間化合物を形成し、この金属間化合物がベ−
ス粉のAl側に包晶反応の若干の固溶度を持つことが必
要である。
A peritectic element that meets these conditions forms a stable intermetallic compound with Al, and this intermetallic compound is a base.
It is necessary for the Al powder side to have some solid solubility in the peritectic reaction.

【0066】ちなみに、この条件に合致する包晶元素と
しては、表1に示すものが例示できる。
By the way, as peritectic elements satisfying this condition, those shown in Table 1 can be exemplified.

【0067】[0067]

【表1】 [Table 1]

【0068】このような微細な粉末として包晶元素の粉
末は、共晶元素などの粉末やベ−ス粉末に混合されると
包晶元素の粉末に較べてベ−ス粉末や共晶元素の粉末が
粗粉末であるため、ベ−ス粉末や共晶元素の粉末の周囲
に、包晶元素の粉末が集積する。
Such fine powders of peritectic elements, when mixed with powders of eutectic elements and the like and base powders, have a higher content of base powders and eutectic elements than powders of peritectic elements. Since the powder is a coarse powder, the peritectic element powder accumulates around the base powder and the eutectic element powder.

【0069】ベ−ス粉末の融点以下で固相焼結または共
晶元素による液相焼結すると、ベ−ス粉末やあるいは共
晶元素の粉末の周囲に、包晶元素の粉末は突起状または
凸部状に焼結する。
When solid phase sintering or liquid phase sintering with a eutectic element is performed below the melting point of the base powder, the peritectic element powder is in the form of protrusions or around the base powder or the eutectic element powder. Sinter into a convex shape.

【0070】包晶元素の粉末は焼結後もある程度固体形
状を保持する必要があるので、融点が焼結温度以下にな
らないような高い純度が必要である。
Since the powder of the peritectic element needs to maintain the solid shape to some extent even after sintering, it is required to have a high degree of purity such that the melting point does not fall below the sintering temperature.

【0071】突起又は凸部の形成の目的は表面積の拡大
と音の乱反射による減衰率の向上である。このために
は、焼結材の孔隙内表面上に凸部状または突起状に設け
なければならない。このため、包晶元素の粉末の粒度は
微細でなければならない。
The purpose of forming the projections or projections is to increase the surface area and improve the attenuation rate due to diffuse reflection of sound. For this purpose, it must be provided in a convex shape or a protrusion shape on the inner surface of the pores of the sintered material. Therefore, the grain size of the peritectic element powder must be fine.

【0072】[0072]

【実施例】次に、実施例について説明する。EXAMPLES Next, examples will be described.

【0073】表2に示す組成、粒度、配合量で、ベ−ス
粉末、共晶元素を含む橋絡形成用Al合金粉末ならびに
包晶元素などの粉末を混合し、その後、表3に示す焼結
条件(焼結時間、温度、雰囲気)で焼結した。
Base powder, Al alloy powder for bridging formation containing a eutectic element, and powders such as peritectic elements having the composition, particle size and blending amount shown in Table 2 were mixed, and then baked as shown in Table 3. Sintering was performed under binding conditions (sintering time, temperature, atmosphere).

【0074】その結果、表3に示す特性を持つ多孔質A
l焼結材を得た。この多孔質Al焼結材は、図1に示す
ように、ベ−ス粉末と橋絡部と突起部とから成って、ベ
−ス粉末は表2の組成と一致し、橋絡部は表2の橋絡部
形成用Al合金粉末の組成と一致し、試験番号1、2、
3の各突起は包晶元素そのものから成っていた。
As a result, the porous A having the characteristics shown in Table 3 was obtained.
1 sintered material was obtained. As shown in FIG. 1, this porous Al sintered material is composed of a base powder, a bridging portion and a projection portion, the base powder having the composition shown in Table 2, and the bridging portion having the composition In accordance with the composition of the Al alloy powder for forming the bridging portion of No. 2, the test numbers 1, 2,
Each protrusion of 3 was composed of the peritectic element itself.

【0075】なお、表2ならびに表3の試料番号21、
22、23の各焼結材は比較例である。とくに、試料番
号21はAl−Cu合金が共晶組成であり、22は亜共
晶組成であり、23は過共晶の上限を超えた組成のもの
である。
In addition, sample No. 21 in Table 2 and Table 3,
Each of the sintered materials 22 and 23 is a comparative example. In particular, Sample No. 21 has an eutectic composition of Al—Cu alloy, 22 has a hypoeutectic composition, and 23 has a composition exceeding the upper limit of hypereutectic.

【0076】[0076]

【表2】 [Table 2]

【0077】[0077]

【表3】 [Table 3]

【0078】このように得られた各Al焼結材につい
て、引張の強度ならびに曲げなどの機械的特性、孔隙
率、吸音率をしらべたところ、表3に示す通りであっ
た。
With respect to each Al sintered material thus obtained, mechanical properties such as tensile strength and bending, porosity, and sound absorption coefficient were examined, and the results are shown in Table 3.

【0079】曲げは、2.5mm厚の各Al焼結材を所
定の外径の丸棒に巻きつけた時に、そのAl焼結材に割
れが発生しないときの最小の曲率を示す。したがって、
曲げは小さいほど曲げ加工性が優れていることを示す。
Bending indicates the minimum curvature when each Al sintered material having a thickness of 2.5 mm is wound around a round rod having a predetermined outer diameter and no crack is generated in the Al sintered material. Therefore,
The smaller the bending, the better the bending workability.

【0080】吸音率は、焼結材の背後に50mmの空気
層を配置して1000〜1600Hzの音の垂直入射吸
音率を示す。
The sound absorption coefficient indicates the normal incident sound absorption coefficient of sound of 1000 to 1600 Hz when an air layer of 50 mm is arranged behind the sintered material.

【0081】試料番号1、2、3は比較例の試料番号2
1、22、23と比べて引張り強度と曲げ加工性が著し
く向上し、試料番号1、2、3には孔隙の内壁面に突起
が多数形成されているため、吸音率が著しく向上してい
る。
Sample numbers 1, 2, and 3 are sample numbers 2 of the comparative example.
Tensile strength and bending workability are remarkably improved as compared with Nos. 1, 22 and 23, and since many protrusions are formed on the inner wall surface of the pores in Sample Nos. 1, 2 and 3, the sound absorption coefficient is remarkably improved. .

【0082】[0082]

【発明の効果】以上詳しく説明したように、本発明に係
るAl焼結材では、Al又その合金のベ−ス粉末の間を
連絡結合する橋絡部を形成し、この橋絡部がAlより高
融点でかつAlと共晶反応する共晶元素を共晶点以上含
んだ過共晶組織から成っている。更に、ベ−ス粉末の間
に形成される孔隙の内壁面には、微小な突起又は凸部が
形成され、この突起又は凸部はAlと包晶反応する包晶
元素から成っている。
As described in detail above, in the Al sintered material according to the present invention, a bridging portion for forming a connecting connection between the base powders of Al or its alloy is formed, and this bridging portion is Al. It is composed of a hypereutectic structure that has a higher melting point and contains a eutectic element that has a eutectic reaction with Al and has a eutectic point or more. Furthermore, minute projections or projections are formed on the inner wall surface of the pores formed between the base powders, and these projections or projections are made of peritectic elements that undergo peritectic reaction with Al.

【0083】このため、このAl焼結材であると、機械
的強度が確保でき、従来問題とされていた曲げ加工性が
向上させることができ、橋絡部そのものを細くできるた
めに、孔隙率を高めることができ、更に、吸音材として
の吸音率や、濾過材としての濾過効率を高めることがで
きる。したがって、高速電車や自動車などや産業機器の
吸音材や濾過材、吸着材等に好適である。
Therefore, with this Al sintered material, the mechanical strength can be secured, the bending workability, which has been a problem in the past, can be improved, and the bridging portion itself can be made thin. The sound absorption coefficient as a sound absorbing material and the filtration efficiency as a filtering material can be increased. Therefore, it is suitable as a sound absorbing material, a filtering material, an adsorbing material, etc. for high-speed trains, automobiles, and industrial equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一つの実施例に係る多孔質Al焼結材
の構造の一部を拡大して示す説明図である。
FIG. 1 is an explanatory view showing an enlarged part of the structure of a porous Al sintered material according to one embodiment of the present invention.

【図2】図1に示す多孔質Al焼結材の橋絡部の組織を
模式的に示す説明図である。
FIG. 2 is an explanatory diagram schematically showing the structure of a bridging portion of the porous Al sintered material shown in FIG.

【図3】図2に示す橋絡部の一つの組織において初晶組
織や共晶組織の析出態様を断面で示す説明図である。
FIG. 3 is an explanatory view showing in cross section a precipitation mode of a primary crystal structure or a eutectic structure in one structure of the bridging portion shown in FIG.

【図4】比較例の橋絡部の一つの組織において図3と同
様に示す初晶組織と共晶組織の析出態様を断面で示す説
明図である。
FIG. 4 is an explanatory view showing in cross section a precipitation mode of a primary crystal structure and a eutectic structure shown in FIG. 3 in one structure of a bridging portion of a comparative example.

【図5】図2に示す橋絡部の長さ方向の共晶元素の濃度
分布を、図4に示す比較例の橋絡部と併せて、示すグラ
フである。
5 is a graph showing the concentration distribution of the eutectic element in the length direction of the bridging portion shown in FIG. 2 together with the bridging portion of the comparative example shown in FIG.

【図6】AlとAlと共晶反応する共晶元素との状態図
である。
FIG. 6 is a state diagram of Al and a eutectic element that causes a eutectic reaction with Al.

【符号の説明】[Explanation of symbols]

1 ベ−ス粉 2 橋絡部 3 孔隙 4 突起又は凸部 1 Base powder 2 Bridging part 3 Pore 4 Protrusion or convex part

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムまたはその合金から成るベ
−ス粉末の間に、無限に屈曲する連通孔を形成する孔隙
が形成される多孔質アルミニウム焼結材において、 前記ベ−ス粉末の間は、アルミニウムより高い融点を持
ってアルミニウムとの間で共晶反応する共晶元素を共晶
点以上含み残部が実質的にアルミニウムからなり、しか
も、組織が過共晶組織からなる橋絡部によって、互いに
連絡され結合され、更に、前記孔隙の内壁面上に多数の
突起または凸部が形成されて成ることを特徴とする多孔
質アルミニウム焼結材。
1. A porous aluminum sintered material in which pores forming infinitely bent communication holes are formed between base powders made of aluminum or an alloy thereof, wherein between the base powders, Due to the bridging portion having a eutectic element having a melting point higher than that of aluminum and performing a eutectic reaction with aluminum at a eutectic point or higher and the balance being substantially aluminum, and the structure being a hypereutectic structure, A porous aluminum sintered material, characterized in that the porous aluminum sintered material is connected to and bonded to each other, and further, a plurality of projections or projections are formed on the inner wall surface of the pores.
【請求項2】 前記突起または凸部がアルミニウムと包
晶反応しかつアルミニウムの融点近傍に包晶温度を有す
る包晶元素から成ることを特徴とする請求項1記載の多
孔質アルミニウム焼結材。
2. The porous aluminum sintered material according to claim 1, wherein the projections or projections are made of a peritectic element having a peritectic reaction with aluminum and having a peritectic temperature near the melting point of aluminum.
【請求項3】 前記共晶元素が、11.7%をこえて1
00%未満のSi、5.7%をこえて42.0%以下の
Ni、2.0%をこえて25.3%以下のMnまたは3
3%をこえて52.5%以下のCuのうちの1種または
1種以上から成ることを特徴とする請求項1または2記
載の多孔質アルミニウム焼結材。
3. The eutectic element is more than 11.7% to 1
Si of less than 00%, Ni of more than 42.0% over 5.7%, Mn of less than 25.3% over 2.0% or 3
The porous aluminum sintered material according to claim 1 or 2, which is composed of one kind or more than 52.5% of Cu in excess of 3%.
【請求項4】 前記過共晶組織が、前記共晶元素とアル
ミニウムの化合物からなる中心部とその周囲をかこむ共
晶組織とからなる単位組織の集合から成って、この共晶
組織の一つは、前記共晶元素がアルミニウムに固溶した
固溶体から成ることを特徴とする請求項1、2または3
記載の多孔質アルミニウム焼結材。
4. The hypereutectic structure is composed of a unit structure composed of a central part made of a compound of the eutectic element and aluminum and a eutectic structure surrounding the central part, and one of the eutectic structures. Is composed of a solid solution in which the eutectic element is solid-dissolved in aluminum.
The porous aluminum sintered material described.
【請求項5】 前記各単位組織において、周囲の共晶組
織が各単位組織間で結合し連結されて成ることを特徴と
する請求項1、2、3または4記載の多孔質アルミニウ
ム焼結材。
5. The porous aluminum sintered material according to claim 1, wherein in each of the unit structures, a surrounding eutectic structure is bonded and connected between the unit structures. .
【請求項6】 前記包晶元素がW、VまたはTiのうち
の1種または1種以上とすることを特徴とする請求項
1、2、3、4または5記載の多孔質アルミニウム焼結
材。
6. The porous aluminum sintered material according to claim 1, wherein the peritectic element is one or more of W, V and Ti. .
JP15677995A 1995-05-31 1995-05-31 Porous aluminum sintered material Pending JPH08325661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15677995A JPH08325661A (en) 1995-05-31 1995-05-31 Porous aluminum sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15677995A JPH08325661A (en) 1995-05-31 1995-05-31 Porous aluminum sintered material

Publications (1)

Publication Number Publication Date
JPH08325661A true JPH08325661A (en) 1996-12-10

Family

ID=15635133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15677995A Pending JPH08325661A (en) 1995-05-31 1995-05-31 Porous aluminum sintered material

Country Status (1)

Country Link
JP (1) JPH08325661A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116679A1 (en) * 2009-03-30 2010-10-14 三菱マテリアル株式会社 Process for producing porous sintered aluminum, and porous sintered aluminum
WO2010116682A1 (en) * 2009-03-30 2010-10-14 三菱マテリアル株式会社 Process for producing porous sintered aluminum, and porous sintered aluminum
JP2010236082A (en) * 2009-08-11 2010-10-21 Mitsubishi Materials Corp Method of producing aluminum porous sintered compact and aluminum porous sintered compact
WO2010140290A1 (en) * 2009-06-04 2010-12-09 三菱マテリアル株式会社 Process for production of aluminum complex comprising sintered porous aluminum body
JP2011023430A (en) * 2009-07-13 2011-02-03 Mitsubishi Materials Corp Electrode for electric double-layer capacitor, and method for manufacturing the same
WO2014133079A1 (en) 2013-03-01 2014-09-04 三菱マテリアル株式会社 Aluminum material for sintering, method for producing aluminum material for sintering, and method for producing porous aluminum sintered compact
WO2014133077A1 (en) 2013-03-01 2014-09-04 三菱マテリアル株式会社 Porous aluminum sintered compact
JP2015232174A (en) * 2014-05-16 2015-12-24 三菱マテリアル株式会社 Porous aluminum sintered body and manufacturing method of porous aluminum sintered body
WO2016002870A1 (en) * 2014-07-02 2016-01-07 三菱マテリアル株式会社 Porous aluminum heat exchange member
US20170043398A1 (en) * 2014-05-16 2017-02-16 Mitsubishi Materials Corporation Porous aluminum sintered compact and method of producing porous aluminum sintered compact
EP2939762B1 (en) * 2012-12-27 2019-02-06 Mitsubishi Materials Corporation Porous aluminum body and manufacturing method therefor
US10543531B2 (en) 2014-10-30 2020-01-28 Mitsubishi Materials Corporation Porous aluminum sintered material and method of producing porous aluminum sintered material
US10981230B2 (en) 2014-05-30 2021-04-20 Mitsubishi Materials Corporation Porous aluminum complex and method of producing porous aluminum complex

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9242297B2 (en) 2009-03-30 2016-01-26 Mitsubishi Materials Corporation Process for producing porous sintered aluminum, and porous sintered aluminum
CN102438778A (en) * 2009-03-30 2012-05-02 三菱综合材料株式会社 Process for producing porous sintered aluminum, and porous sintered aluminum
US9589732B2 (en) 2009-03-30 2017-03-07 Mitsubishi Materials Corporation Process for producing porous sintered aluminum, and porous sintered aluminum
JP2010255089A (en) * 2009-03-30 2010-11-11 Mitsubishi Materials Corp Process for producing porous sintered aluminum, and porous sintered aluminum
WO2010116682A1 (en) * 2009-03-30 2010-10-14 三菱マテリアル株式会社 Process for producing porous sintered aluminum, and porous sintered aluminum
US9815116B2 (en) 2009-03-30 2017-11-14 Mitsubishi Materials Corporation Process for producing porous sintered aluminum, and porous sintered aluminum
WO2010116679A1 (en) * 2009-03-30 2010-10-14 三菱マテリアル株式会社 Process for producing porous sintered aluminum, and porous sintered aluminum
CN102365143A (en) * 2009-03-30 2012-02-29 三菱综合材料株式会社 Process for producing porous sintered aluminum, and porous sintered aluminum
WO2010140290A1 (en) * 2009-06-04 2010-12-09 三菱マテリアル株式会社 Process for production of aluminum complex comprising sintered porous aluminum body
US8691328B2 (en) 2009-06-04 2014-04-08 Mitsubishi Materials Corporation Process for production of aluminum complex comprising sintered porous aluminum body
JP2010280951A (en) * 2009-06-04 2010-12-16 Mitsubishi Materials Corp Method for producing aluminum composite body having aluminum porous sintered compact
JP2011023430A (en) * 2009-07-13 2011-02-03 Mitsubishi Materials Corp Electrode for electric double-layer capacitor, and method for manufacturing the same
JP2010236082A (en) * 2009-08-11 2010-10-21 Mitsubishi Materials Corp Method of producing aluminum porous sintered compact and aluminum porous sintered compact
EP2939762B1 (en) * 2012-12-27 2019-02-06 Mitsubishi Materials Corporation Porous aluminum body and manufacturing method therefor
US9669462B2 (en) 2013-03-01 2017-06-06 Mitsubishi Materials Corporation Porous aluminum sintered compact
KR20150123220A (en) 2013-03-01 2015-11-03 미쓰비시 마테리알 가부시키가이샤 Porous aluminum sintered compact
WO2014133079A1 (en) 2013-03-01 2014-09-04 三菱マテリアル株式会社 Aluminum material for sintering, method for producing aluminum material for sintering, and method for producing porous aluminum sintered compact
EP2962786B1 (en) * 2013-03-01 2018-10-17 Mitsubishi Materials Corporation Aluminum material for sintering, method for producing aluminum material for sintering, and method for producing porous aluminum sintered compact
US10035187B2 (en) 2013-03-01 2018-07-31 Mitsubishi Materials Corporation Aluminum material for sintering, method for producing aluminum material for sintering, and method for producing porous aluminum sintered compact
WO2014133077A1 (en) 2013-03-01 2014-09-04 三菱マテリアル株式会社 Porous aluminum sintered compact
CN104903031A (en) * 2013-03-01 2015-09-09 三菱综合材料株式会社 Porous aluminum sintered compact
US20170028473A1 (en) * 2014-05-16 2017-02-02 Mitsubishi Materials Corporation Porous aluminum sintered compact and method of producing porous aluminum sintered compact
US20170043398A1 (en) * 2014-05-16 2017-02-16 Mitsubishi Materials Corporation Porous aluminum sintered compact and method of producing porous aluminum sintered compact
CN106102966A (en) * 2014-05-16 2016-11-09 三菱综合材料株式会社 Porous aluminum sintered body and the manufacture method of porous aluminum sintered body
US10478895B2 (en) 2014-05-16 2019-11-19 Mitsubishi Materials Corporation Porous aluminum sintered compact and method of producing porous aluminum sintered compact
US10981228B2 (en) 2014-05-16 2021-04-20 Mitsubishi Materials Corporation Porous aluminum sintered compact and method of producing porous aluminum sintered compact
JP2015232174A (en) * 2014-05-16 2015-12-24 三菱マテリアル株式会社 Porous aluminum sintered body and manufacturing method of porous aluminum sintered body
US10981230B2 (en) 2014-05-30 2021-04-20 Mitsubishi Materials Corporation Porous aluminum complex and method of producing porous aluminum complex
US10598446B2 (en) 2014-07-02 2020-03-24 Mitsubishi Materials Corporation Porous aluminum heat exchange member
JP2016014508A (en) * 2014-07-02 2016-01-28 三菱マテリアル株式会社 Porous aluminum heat exchange member
WO2016002870A1 (en) * 2014-07-02 2016-01-07 三菱マテリアル株式会社 Porous aluminum heat exchange member
US10543531B2 (en) 2014-10-30 2020-01-28 Mitsubishi Materials Corporation Porous aluminum sintered material and method of producing porous aluminum sintered material

Similar Documents

Publication Publication Date Title
JPH08325661A (en) Porous aluminum sintered material
US4283465A (en) Porous body of aluminum or its alloy and a manufacturing method thereof
JP2004536223A (en) Pressure cast parts made of high ductility aluminum alloy
JPH08229314A (en) Filter assembly and method for manufacturing filter assembly
JPH08325660A (en) Porous aluminum sintered material
JP6461954B2 (en) Method for manufacturing aluminum piston
JPH08325662A (en) Porous aluminum sintered material
CN109112352A (en) Foamed alloy and its preparation method and application for air conditioner sound-deadening and noise-reducing
CA2132236A1 (en) Filter assembly and method of making a filter assembly
JPS6184351A (en) Porous material
JPS6142761B2 (en)
JPH06330215A (en) Low density and porous aluminum alloy sintered body and its production
JPS6148566B2 (en)
JPS6047322B2 (en) Manufacturing method of porous sintered body
JP2781482B2 (en) Filter media for molten aluminum
US5441697A (en) Method of producing TiC whiskers and metallic composites reinforced by TiC whiskers
JP2002105556A (en) Porous metal matrix composite material
JPH1046209A (en) Production of porous aluminum green compact
CA2020335C (en) Method of manufacture of metal matrix composite material including intermetallic compounds with no micropores
JPS6150121B2 (en)
JP2948226B2 (en) Method for producing fiber composite member
CN109022878B (en) Foam alloy for noise reduction and noise reduction of air conditioner and preparation method and application thereof
JP4084793B2 (en) Magnesium alloy composite preform and method for producing the same
JPS61127801A (en) Production of acoustical material
JP4313442B2 (en) Metal-ceramic composite material and manufacturing method thereof