JPS5830607A - Method for measuring cross sectional shape of plate shaped body - Google Patents

Method for measuring cross sectional shape of plate shaped body

Info

Publication number
JPS5830607A
JPS5830607A JP12805981A JP12805981A JPS5830607A JP S5830607 A JPS5830607 A JP S5830607A JP 12805981 A JP12805981 A JP 12805981A JP 12805981 A JP12805981 A JP 12805981A JP S5830607 A JPS5830607 A JP S5830607A
Authority
JP
Japan
Prior art keywords
light
measuring device
spot
sectional shape
position measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12805981A
Other languages
Japanese (ja)
Inventor
Sumihiro Ueda
上田 澄広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP12805981A priority Critical patent/JPS5830607A/en
Publication of JPS5830607A publication Critical patent/JPS5830607A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To perform highly accurate measurement for a long distance, in the measurement of the cross sectional shape of the plate shaped body, by sequentially moving luminous flux which scans the plate shaped body in the thickness direction, in the longitudinal direction, and measuring the shape from the value of the discontinuous point of the outputs from a light spot position measuring device. CONSTITUTION:A light source 2 and the like spot position measuring device 4 are arranged on both sides of a steel plate 1 having the longitudinal direction X which is perpendicular to the surface of paper, so that they can be moved in the direction X by rails 6 and 7. The light source 2 comprises a laser source 11, a scanner 12, and a concave mirror 13. The position of spot light 14 is changed in correspondence with the rotary angle of the scanner as shown by alternate long and two short dashes lines in the Figure. Therefore, the spot light scans the side of the steel plate in the direction Y. When the spot light is shielded, the light does not reach the light spot position measuring device, and the output of said measuring device becomes discontinuous at this time. When the value of the discontinuous point is obtained with the light source and said measuring device being scanned in the direction X, the cross sectional shape can be measured.

Description

【発明の詳細な説明】 零発#AF′i、鋼板などの帯状の板状体の長手方向に
沿う投影断面の形状を測定するために有利に実施される
板状体断面形状の測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for measuring the cross-sectional shape of a plate-shaped body, which is advantageously carried out in order to measure the shape of a projected cross-section along the longitudinal direction of a strip-shaped plate-shaped body such as a steel plate. .

鉄鋼製造ラインなどにおいてローラによって圧延される
鋼板の厚みを検出するために、従来では、鋼板の表面に
ポテンシオメータの検出端を接触させ、この検出端の変
位をポテンシオメータで電気信Jj511?:変換して
いる。このような先行技術では、その鋼板の長手方向に
沿って多数の測定点で厚みを検出しりけれはならず、作
業性が悪く、シかも圧延ローラの近傍では厚みの断面形
状の検出が困難となる。また鋼板が高温度などの悪条件
下では、保守が困難である。
Conventionally, in order to detect the thickness of a steel plate rolled by rollers on a steel production line, etc., the detection end of a potentiometer is brought into contact with the surface of the steel plate, and the displacement of this detection end is measured using a potentiometer. : Conversion is in progress. With such prior art, the thickness must be detected at a large number of measurement points along the longitudinal direction of the steel plate, which results in poor workability and also makes it difficult to detect the cross-sectional shape of the thickness near the rolling roller. Become. Furthermore, maintenance is difficult when the steel plate is exposed to adverse conditions such as high temperatures.

本発明の目的は、板状体の比較的長距離にわたって高精
度で板状体断面形状を測定することを提供することであ
る。
An object of the present invention is to provide highly accurate measurement of the cross-sectional shape of a plate-like body over a relatively long distance.

以下、図面によって本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の一実施例の平面図であり、第2図は第
1図の切断面線■−■から見た断面図である。鉄鋼製造
ラインにおいて、板状体としての鋼板1の幅方向の一側
方(第1図の左方)には光源2を備える移動台3が配置
される。この光源2に対向して鋼板1の幅方向の他側方
(第1図の右方)KA−1光点位置測定器4が配置され
、この光点位置測定器4Fi移動台5に固定される。両
移動台3゜5は、鋼板lの長手方向(第1図の上下方向
)に平行に敷設されたレール6.7に沿りて、駆動装置
8.9によってそれぞれ移動することができる。
FIG. 1 is a plan view of an embodiment of the present invention, and FIG. 2 is a sectional view taken along the section line 1--2 in FIG. In a steel production line, a movable table 3 equipped with a light source 2 is arranged on one side in the width direction (left side in FIG. 1) of a steel plate 1 as a plate-shaped body. A KA-1 light spot position measuring device 4 is arranged on the other side in the width direction of the steel plate 1 (on the right side in FIG. 1) facing this light source 2, and this light spot position measuring device 4Fi is fixed to a moving table 5. Ru. Both movable tables 3.5 can be moved by drive devices 8.9 along rails 6.7 laid parallel to the longitudinal direction of the steel plate l (vertical direction in FIG. 1).

駆動装置8,9はサーボ制御装置lOに関連して接続さ
れており、これによって光源2と光点位置測定器4とは
、鋼板lの長手方向に沿う相対位置を一定にしたまま、
で走行することができる。
The drive devices 8 and 9 are connected in relation to the servo control device IO, so that the light source 2 and the light spot position measuring device 4 can maintain a constant relative position along the longitudinal direction of the steel plate 1.
You can run on it.

ここで、銅板10長手方向に沿う軸をX軸とし、そのX
軸に直角で銅板lの厚み方向に沿う軸をY軸として、以
下の説明を行なう。
Here, the axis along the longitudinal direction of the copper plate 10 is defined as the X axis, and the
The following description will be made with the axis perpendicular to the axis and along the thickness direction of the copper plate 1 as the Y axis.

第3図は光源2の構成を示す簡略化した斜視図である。FIG. 3 is a simplified perspective view showing the configuration of the light source 2. FIG.

光源2F!、ヘリクムネオンレーデ発生装置11と、ス
キャナ12と、凹面鏡13とから成る。ヘリクムネオン
レーデ発生装置11から発生されるスポット光14は、
スキャナ12で反射された後、凹面鏡13でさらに反射
され、鋼板10幅方向に平行に光点位置測定器4に向け
て照射される。しかも、スキャナ12はその回転角度が
順次変化し、それによってスポット光14の位置が仮想
線で示すように鋼板lの厚み方向すなわちY軸方向に変
位する。
Light source 2F! , a Helium neon lede generator 11, a scanner 12, and a concave mirror 13. The spot light 14 generated from the Helium neon lede generator 11 is
After being reflected by the scanner 12, it is further reflected by the concave mirror 13, and is irradiated parallel to the width direction of the steel plate 10 toward the light spot position measuring device 4. Moreover, the rotation angle of the scanner 12 changes sequentially, and thereby the position of the spot light 14 is displaced in the thickness direction of the steel plate l, that is, in the Y-axis direction, as shown by a virtual line.

光点位置測定器4としては、たとえば第4図に示す連続
式検出器が用いられる。この光点位置測定器4はスポッ
ト光の当る位置の(x、y)座標に応じて信号出力線1
5a、15bから信号Xi。
As the light spot position measuring device 4, for example, a continuous type detector shown in FIG. 4 is used. This light spot position measuring device 4 detects the signal output line 1 according to the (x, y) coordinates of the position where the spot light hits.
Signals Xi from 5a and 15b.

x2がそれぞれ出力され、信号出力線16a、16bか
ら信号Yl、Y2がそれぞれ出力される。
x2 are outputted, respectively, and signals Yl and Y2 are outputted from the signal output lines 16a and 16b, respectively.

これらの信号XI、X2.Yl、Y2は処理回路17に
入力され、この処理回路17において第1式および第2
式に基づく演算が行なわれる。
These signals XI, X2 . Yl and Y2 are input to the processing circuit 17, and the processing circuit 17 calculates the first equation and the second equation.
An operation based on the formula is performed.

・第1式および第2式によってX軸成分およびY軸成分
が求められ、そのX軸成分およびY@U分に応じた信号
が信号出力線18.19からそれぞれ出力される。
- The X-axis component and the Y-axis component are determined by the first and second equations, and signals corresponding to the X-axis component and Y@U are output from the signal output lines 18 and 19, respectively.

なお、光点位置測定器4としては、90度毎に4分割し
た領域に4つのフォトダイオードを配置してスポット光
が前記4つのフォトダイオードに当る面積に応じて、各
フォトダイオードから電流を導出するようにしたいわゆ
る4分割フォトリセプタであってもよい。
Note that the light spot position measuring device 4 has four photodiodes arranged in a region divided into four areas at 90 degrees, and a current is derived from each photodiode according to the area where the spot light hits the four photodiodes. A so-called four-part photoreceptor may also be used.

第5図は光点位置測定器4を含むブロック回路図である
。光点位置測定器4の出力信号線15a。
FIG. 5 is a block circuit diagram including the light spot position measuring device 4. As shown in FIG. Output signal line 15a of light spot position measuring device 4.

15btj電流値を電圧値に変換する機能を有する増幅
器20.21を介して演算回路22.23にそれぞれ接
続される。演算回路22においては(Xi−1−X2)
の演算が行なわれ、また演算回路23においてVi(X
I−X2)  の演算が行なわれる。
15btj are respectively connected to arithmetic circuits 22 and 23 via amplifiers 20 and 21 that have the function of converting current values into voltage values. In the arithmetic circuit 22, (Xi-1-X2)
is calculated, and the calculation circuit 23 calculates Vi(X
The calculation I-X2) is performed.

これらの演算回路22.23の出力は演算回路24に入
力され、この演算回路24にお−て前述の第1式に基づ
く演算が行なわれる。また光点位置測定器4の出力信号
線16a、16bFi、増幅器20.21と同様の増幅
器25.26を介して演算回路27.28にそれぞれ接
続される。演算回路27においては(Y1+Y2)  
の演算が行なわれ、演算回路28においては(Yl −
Y2 )  の演算が行なわれる。これらの演算回路2
7.28の出力は演算回路29に入力され、この演算回
路29においては前述の第2式に基づく演算が行なわれ
る。
The outputs of these arithmetic circuits 22 and 23 are input to an arithmetic circuit 24, where an arithmetic operation is performed based on the above-mentioned first equation. Further, they are connected to arithmetic circuits 27.28 via output signal lines 16a, 16bFi of the light spot position measuring device 4 and amplifiers 25.26 similar to the amplifiers 20.21, respectively. In the arithmetic circuit 27, (Y1+Y2)
is calculated, and in the calculation circuit 28, (Yl −
Y2) is calculated. These calculation circuits 2
The output of 7.28 is input to an arithmetic circuit 29, where an arithmetic operation is performed based on the above-mentioned second equation.

演算回路22.27の出力は演算回路30にそれぞれ入
力され、この演算回路30において#1(Xi+X2+
Yl−1−Y2 )が演算される。演算回路30の出力
は比較回路31に与えられる。また比較回路31には予
め設定したしき9値QTが与えられておシ、演算回路3
0からの入力がしきい値QTを下まわったときに、遅延
回路32を介してサンプル・ホールド回路33.34に
それぞれサンプル信号を与える。サンプル・ホールド回
路33.34には演算回路24.29の出力がそれぞれ
与えられておシ、前記サンプル信号が入力されることに
よって演算回路24.29の出力がサンプルされる。ま
た演算回路30の出力が再びしきい値QTを上まわった
ときには、サンプル・ホールド回路33.34にホール
ド信号が与えられる。
The outputs of the arithmetic circuits 22 and 27 are respectively input to the arithmetic circuit 30, and in this arithmetic circuit 30, #1(Xi+X2+
Yl-1-Y2) is calculated. The output of the arithmetic circuit 30 is given to a comparison circuit 31. Further, the comparator circuit 31 is given a preset 9-value QT, and the arithmetic circuit 3
When the input from 0 falls below the threshold QT, sample signals are provided to sample and hold circuits 33 and 34 via the delay circuit 32, respectively. The outputs of the arithmetic circuits 24 and 29 are provided to the sample and hold circuits 33 and 34, respectively, and the outputs of the arithmetic circuits 24 and 29 are sampled by inputting the sample signal. Further, when the output of the arithmetic circuit 30 exceeds the threshold value QT again, a hold signal is given to the sample and hold circuits 33 and 34.

なお、遅延回路32の遅延時間〒1は、各演算回路24
.29での演算処理が安定するまでの時間[;liばれ
る。
Note that the delay time 〒1 of the delay circuit 32 is
.. The time it takes for the arithmetic processing in 29 to stabilize is determined.

このようにして、演算回路24,29からX軸およびY
@威分を示す信号X、Yが出力されSfンプル・ホール
ド回路33.34からは被測定物の断面形状が不連続と
なるX軸およびY@成分を示す信5jXM 、YMがそ
れぞれ出力される。
In this way, from the arithmetic circuits 24 and 29,
Signals X and Y indicating the @power are output, and signals 5jXM and YM indicating the X-axis and Y@components where the cross-sectional shape of the object to be measured is discontinuous are output from the Sf sample/hold circuits 33 and 34, respectively. .

第6図を参照して、鋼板の上面の断面形状を測定する場
合について述べる。X軸に沿う一定の位置でY軸方向に
沿ってスポット光を第2図のように鋼板1の上面より突
き出るように上方から下方に再び下方から上方に向けて
変位させたときの動作を説明する。スポット光が上方か
ら下方に向けて順次変位するにつれて、演算回路28か
らは第6図f1)で示すような波形の信号が出力される
。すykhら(Yl−Y2 )  は、鋼板lの上方に
おiて上方から下方にスポット光が変位するにつれて次
第に減小し、鋼板1の上面に達したときには光点位置測
定器4にスポット光が到達しなくなるQで急激に立ち下
る。次いで再びスポット光が鋼板lの上面から突き出て
くると(Yl−Y2)  は急激に立ち上り、前記上面
から上方にスポット光が変、 位するにつれて(Yl−
Y2)Fi次第に増大する。
Referring to FIG. 6, a case will be described in which the cross-sectional shape of the upper surface of a steel plate is measured. We will explain the operation when the spotlight is displaced from above to below and again from below to above so that it protrudes from the upper surface of the steel plate 1 as shown in Fig. 2 along the Y-axis direction at a certain position along the X-axis. do. As the spot light is sequentially displaced from above to below, the arithmetic circuit 28 outputs a signal having a waveform as shown in FIG. 6 f1). (Yl-Y2) gradually decreases as the spot light is displaced from above to below at i above the steel plate 1, and when it reaches the upper surface of the steel plate 1, the light spot position measuring device 4 detects the spot light. It suddenly falls off at Q, where it no longer reaches. Then, when the spotlight again projects from the top surface of the steel plate l, (Yl-Y2) rises rapidly, and as the spot light moves upward from the top surface, (Yl-
Y2) Fi gradually increases.

比較器31Vcおいては、(XI +X2 +Y1 +
Y2 )が第6図(2)で示すような波形であるときに
、しきい値QTと(X1+X2+Y1−)Y2 )とが
比較される。(XI +X2 +Y1 +Y2 ) カ
しきい値QTを下まわったときには第6図(3)で、示
すように比較器31の出力が立ち′Fシ、また( Xi
 +X2+Y1+Y2)  がしきφ値QTを再び上ま
わったときに立ち上る。
In the comparator 31Vc, (XI +X2 +Y1 +
When Y2) has a waveform as shown in FIG. 6(2), the threshold QT and (X1+X2+Y1-)Y2) are compared. (XI +
+X2+Y1+Y2) rises when it again exceeds the threshold φ value QT.

演算回路29からは第6図(4)で示すような波形の信
号が出力される。期間T2においては(Yl+Y2)の
値が小さくなシネ安定となる。サンプル・ホールド回路
34においては第6図(3)のサンプル・ホールド信J
ijに応じて第6図(5)で示す波形の信号を出力する
。なお第6図(3)で示したサンプル・ホールド信号の
立ち上シから時間TIだけ遅延して第6図(6)の信号
が立ち上っており、この立ち上シは第6図(4)の演算
回路29からの信号の立ち上シに対応する。ま要路6図
(6)においてホールドされる信号のレベルは、第6図
(4)の信号の立ち上り時のレベル/lに対応する。
The arithmetic circuit 29 outputs a signal having a waveform as shown in FIG. 6(4). In the period T2, the value of (Yl+Y2) is small and the cine is stable. In the sample-and-hold circuit 34, the sample-and-hold signal J shown in FIG.
A signal having a waveform shown in FIG. 6 (5) is output in accordance with ij. Note that the signal shown in Figure 6 (6) rises with a delay of time TI from the rising edge of the sample-and-hold signal shown in Figure 6 (3), and this rising edge corresponds to the rising edge of Figure 6 (4). This corresponds to the rise of the signal from the arithmetic circuit 29. The level of the signal held in the main path (6) in FIG. 6 corresponds to the level /l at the rise of the signal in FIG. 6 (4).

このようにしてX軸方向に沿う一定の位置において、Y
軸方向に沿ってスポット光が不連続となる位置が得られ
る。光源2および光点位置測定器4は、X軸方向に沿っ
て相対位置を一定にしたままで移動されるので、鋼板2
のX軸およびY軸から成る平面内の断面形状が円滑に測
定される。
In this way, at a certain position along the X-axis direction, Y
Positions where the spot light is discontinuous along the axial direction are obtained. Since the light source 2 and the light spot position measuring device 4 are moved while keeping their relative positions constant along the X-axis direction, the steel plate 2
The cross-sectional shape within the plane consisting of the X-axis and Y-axis of is measured smoothly.

第7図は移動台5を同期して移動させるためのブロック
回路図である。移動台5のX軸方向に沿う絶対位置Xs
は位置検出器35によって検出される。この位置検出器
35からの絶対位置Xaを示す信号は、加え合せ点36
に与えられる。また予め設定した移動パターンに応じ良
信号を出力する移動パターン発生器37からの信号が加
え合せ点36に与えられる。制御装置38は、加え合せ
点36に与えられた両信号が一致するように駆動装置9
を駆動する。したがって移動台5Fi予め定めら九九パ
ターンに従って駆動装置5によってX軸方向に駆動され
る。
FIG. 7 is a block circuit diagram for moving the movable table 5 synchronously. Absolute position Xs along the X-axis direction of the moving table 5
is detected by the position detector 35. The signal indicating the absolute position Xa from the position detector 35 is added to the summation point 36
given to. Further, a signal from a moving pattern generator 37 that outputs a good signal according to a preset moving pattern is applied to the summing point 36. The control device 38 controls the drive device 9 so that both signals applied to the summing point 36 match.
to drive. Therefore, the moving table 5Fi is driven in the X-axis direction by the driving device 5 according to a predetermined multiplication table pattern.

第8図は移動台3を同期して移動されるためのブロック
回路図である。加え合せ点39には、サンプル・ホール
ド回路33からのXM成分XMを示す′信号、および適
宜定められたx*!1]成分XRを示す信号がそれぞれ
与えられる。制御装置40#−t。
FIG. 8 is a block circuit diagram for moving the movable table 3 synchronously. At the summing point 39, there is a 'signal indicating the XM component XM from the sample-and-hold circuit 33, and an appropriately determined x*! 1] A signal indicating the component XR is provided. Control device 40#-t.

それらの信号が一致するように、すなわちX軸成分XM
がXM成分XRとなるように駆動装置3を駆動し、それ
によって移動台3がX軸方向に移動する。
so that those signals match, i.e., the X-axis component
The driving device 3 is driven so that the XM component becomes XR, and the movable table 3 is thereby moved in the X-axis direction.

光点位置測定器4は、その測定器4に対する光点の相対
位置を検出するので、光点の絶対位置XaFi第3式に
よって求められる。
Since the light spot position measuring device 4 detects the relative position of the light spot with respect to the measuring device 4, the absolute position of the light spot is determined by the third equation XaFi.

xa = xs 十XM+C…(31 第3式において、Cけ光点位置測定器4のXI[lI成
分の出力値が零になる点と、移動台5の位置とのX軸方
向の差(オフセット)である。またx8は位置検出器3
5によって検出される移動台5の絶対位置である。
xa = xs 1XM+C...(31 In the third equation, the difference in the X-axis direction between the point where the output value of the ). Also, x8 is the position detector 3
This is the absolute position of the movable table 5 detected by 5.

上述のように第3式に基づいて、光点の絶対位置Xaが
求められる。し九がって、第9図で示すように、絶対位
置Xaに対するY軸成分YMを求めていけば、板状体の
断面形状たとえば鋼板の上 ・面部の形状を得ることが
できる。
As described above, the absolute position Xa of the light spot is determined based on the third equation. Therefore, as shown in FIG. 9, by finding the Y-axis component YM with respect to the absolute position Xa, it is possible to obtain the cross-sectional shape of the plate-shaped body, for example, the shape of the upper surface of the steel plate.

上述のごとく本発明によれば、簡単な構成で鋼板などの
断面形状を非接触でしかも高精度で測定することができ
るようになる。
As described above, according to the present invention, the cross-sectional shape of a steel plate or the like can be measured non-contact and with high accuracy with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

@1図は本発明の一実施例の平面図、第2図は第1図の
切断面線■−■から見た断面図、第3図は光源2の構成
を示す簡略化した斜視図、vI4図は連続式検出器を説
明する丸めのブロック回路図、第5図は光点位置測定器
4を含むブロック回路図、第6図は動作を説明するため
の波形図、第7図は駆動装置5を含むブロック回路図、
第8図は駆動装置3を含むブロック回路図、第9図は断
面形状の一例を示すグラフである。 1・・・鋼板、2・・・光源、4・・・光点位置測定器
代理人   弁理士 西教圭一部 第1図 第2図 第6図 第7図 第8図 第9図 a
@ Figure 1 is a plan view of an embodiment of the present invention, Figure 2 is a sectional view taken from the section line ■-■ in Figure 1, and Figure 3 is a simplified perspective view showing the configuration of the light source 2. Figure vI4 is a rounded block circuit diagram to explain the continuous detector, Figure 5 is a block circuit diagram including the light spot position measuring device 4, Figure 6 is a waveform diagram to explain the operation, and Figure 7 is the drive. a block circuit diagram including a device 5;
FIG. 8 is a block circuit diagram including the drive device 3, and FIG. 9 is a graph showing an example of a cross-sectional shape. 1...Steel plate, 2...Light source, 4...Light spot position measuring device Agent Patent attorney Kei Nishi Part Figure 1 Figure 2 Figure 6 Figure 7 Figure 8 Figure 9 a

Claims (1)

【特許請求の範囲】[Claims] 板状体の幅方向の一側方に、板状体の厚み方向に沿って
順次的に前記板状体の他側方に向けて平行なスポット光
を発する光源を配置し、前記他側方には前記スポット光
の光点位置を検出する光点位置測定器を配置し、両者の
前記幅方向と直角な長手方向に沿う相対位置を一定にし
たままで前記光源および光点位置測定器を前記長手方向
に移動し、光点位置測定器の出力が不連続となるときの
値から断面形状を測定することを特徴とする板状体断面
形状の測定方法。
A light source that emits parallel spot light sequentially along the thickness direction of the plate-like body toward the other side of the plate-like body is arranged on one side in the width direction of the plate-like body, and A light spot position measuring device for detecting the light spot position of the spot light is disposed in the spot light, and the light source and the light spot position measuring device are arranged while keeping the relative positions of both in a longitudinal direction perpendicular to the width direction constant. A method for measuring the cross-sectional shape of a plate-shaped body, characterized in that the cross-sectional shape of the plate-shaped body is measured from values obtained when the output of the light spot position measuring device becomes discontinuous while moving in the longitudinal direction.
JP12805981A 1981-08-14 1981-08-14 Method for measuring cross sectional shape of plate shaped body Pending JPS5830607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12805981A JPS5830607A (en) 1981-08-14 1981-08-14 Method for measuring cross sectional shape of plate shaped body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12805981A JPS5830607A (en) 1981-08-14 1981-08-14 Method for measuring cross sectional shape of plate shaped body

Publications (1)

Publication Number Publication Date
JPS5830607A true JPS5830607A (en) 1983-02-23

Family

ID=14975455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12805981A Pending JPS5830607A (en) 1981-08-14 1981-08-14 Method for measuring cross sectional shape of plate shaped body

Country Status (1)

Country Link
JP (1) JPS5830607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109506593A (en) * 2018-09-21 2019-03-22 南昌工程学院 The device and application method that the trajectory nappe angle of emergence, immersion angle measure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109506593A (en) * 2018-09-21 2019-03-22 南昌工程学院 The device and application method that the trajectory nappe angle of emergence, immersion angle measure

Similar Documents

Publication Publication Date Title
JP4452651B2 (en) Zero error correction method and zero error correction apparatus in sequential three-point method
GB1535352A (en) Remote thickness measuring systems
JPS5830607A (en) Method for measuring cross sectional shape of plate shaped body
Zeng et al. Two-directional scanning method for reducing the shadow effects in laser triangulation
JPH0123041B2 (en)
JPS6355641B2 (en)
JP2858819B2 (en) Optical scanning displacement sensor
CN101356635B (en) Apparatus and method for measuring semiconductor
JPS623609A (en) Range finder
JPS62127612A (en) Surface displacement measuring method by laser light
JPH09203688A (en) Method and device for estimating beam shape of laser scanner unit
JP3404609B2 (en) Charged beam drawing equipment
JPS63187627A (en) Automatic focusing method for charged particle beam aligner
JPH02311705A (en) Scanning type three-dimensional profile measuring apparatus
JPH07171627A (en) Device for controlling bending angle of bending machine
JPH0254106A (en) Optical displacement measuring device
JPH0783640A (en) Inclination detector and robot provided with the same detection device
JPS58155304A (en) Size measuring device
JPS6264904A (en) Apparatus for measuring shape
JPS63238412A (en) Shape measuring method
JPH0695021B2 (en) Ranging device
JPH03195915A (en) Optical scanning type displacement sensor
JPS635206A (en) Apparatus for measuring surface shape
JPH05136235A (en) Inspection device for dual-in-line type ic
JPS63231204A (en) Size measuring instrument