JPS63238412A - Shape measuring method - Google Patents

Shape measuring method

Info

Publication number
JPS63238412A
JPS63238412A JP7325587A JP7325587A JPS63238412A JP S63238412 A JPS63238412 A JP S63238412A JP 7325587 A JP7325587 A JP 7325587A JP 7325587 A JP7325587 A JP 7325587A JP S63238412 A JPS63238412 A JP S63238412A
Authority
JP
Japan
Prior art keywords
pattern
electron beam
electron
allowed
irradiate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7325587A
Other languages
Japanese (ja)
Inventor
Shinya Hasegawa
晋也 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7325587A priority Critical patent/JPS63238412A/en
Publication of JPS63238412A publication Critical patent/JPS63238412A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To measure a pattern shape with high accuracy, by using a finely converged electron beam without generating the deformation of a measuring signal due to en electric charge. CONSTITUTION:The beam of high energy electron beam 3 is allowed to irradiate the org. resist pattern 2 on a silicon substrate at an incident angle of 0 deg. and the beam of a low energy electron beam 4 is allowed to irradiate said pattern 2 in the longitudinal direction of a linear pattern at an incident angle of 60 deg. to simultaneously perform scanning. A detector 5 is placed at the position vertical to the longitudinal direction of the linear pattern to detect the secondary electron 6 from a sample pattern and the output signal wave form thereof is accumulated in the memory of a computer. Next, the line width of the pattern 2 is detected from two points becoming the average value of the max. and min. value of signal intensity is detected. By this constitution, high and low energy electron beams are allowed to simultaneously irradiate to neutralize the charge and the reflected electron and secondary electron generated by the low energy electron beam 4 do not reach the detector 5 and a measuring signal is formed only by the reflected electron and secondary electron generated by finely converged electron beam.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微細加工により形成されたパターンの・形状測
定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the shape of a pattern formed by microfabrication.

〔従来の技術〕[Conventional technology]

微細加工により基板上に形成されたパターンに電子線を
走査し、一方、検出器により基板からの反射電子、2次
電子を検出し、検出器出力信号からパターンの形状を測
定する場合に、従来は1つの電子線のみを走査してその
測定を行っていた。
Conventional methods are used to scan an electron beam over a pattern formed on a substrate by microfabrication, detect reflected electrons and secondary electrons from the substrate using a detector, and measure the shape of the pattern from the detector output signal. conducted measurements by scanning only one electron beam.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この方法によるときには高エネルギーの
電子線を用いた場合に、パターンが帯電し、パターンの
形状測定を行うことができない。
However, when using this method, the pattern becomes charged when a high-energy electron beam is used, making it impossible to measure the shape of the pattern.

また、低エネルギーの電子線を用いた場合にはパターン
の帯電は避けうるが、電子線の形状が大きくなり、パタ
ーン形状の測定精度が低下する欠点がある。
Furthermore, when a low-energy electron beam is used, charging of the pattern can be avoided, but the shape of the electron beam becomes large, which has the disadvantage that measurement accuracy of the pattern shape decreases.

本発明の目的は上記の問題点を解決する方法を提供する
ことにある。
An object of the present invention is to provide a method for solving the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち1本発明は基板上の線状パターン上に電子線を
走査し、その反射電子、2次電子を検出し、検出出力信
号からパターンの形状を測定する方法において、前記パ
ターンの長手方向と垂直な方向の位置で前記反射電子、
2次電子を検出し。
That is, the present invention provides a method for scanning a linear pattern on a substrate with an electron beam, detecting the reflected electrons and secondary electrons, and measuring the shape of the pattern from the detected output signal. the reflected electrons at a position in the direction,
Detect secondary electrons.

前記電子線より低エネルギーの電°子線をパターンの長
手方向から入射し、該低エネルギー電子線を前記電子線
と同じ速度で走査しながら測定を行うことを特徴とする
形状測定方法である。
This shape measuring method is characterized in that an electron beam with lower energy than the electron beam is incident from the longitudinal direction of the pattern, and measurement is performed while scanning the low-energy electron beam at the same speed as the electron beam.

〔作用〕[Effect]

試料パターンからの反射電子、2次電子信号に基づいて
パターンの形状を測定する場合、パターンの帯電を防止
することと、電子線を細くしぼることとが測定精度を上
げるうえに必要となる。
When measuring the shape of a pattern based on reflected electrons and secondary electron signals from a sample pattern, it is necessary to prevent the pattern from being charged and to narrow the electron beam in order to improve measurement accuracy.

第2図は電子線のエネルギーと電子線の大きさとの関係
を表わした図である0図より電子線のエネルギーが大き
い程電子線の大きさが小さくなる。
FIG. 2 is a diagram showing the relationship between the energy of an electron beam and the size of the electron beam. As shown in FIG. 0, the larger the energy of the electron beam, the smaller the size of the electron beam.

また、第3図は電子線のエネルギーと2次電子放出率と
の関係を表わしたものである0図より2次電子放出率が
1の場合には、入射電子数と同数の2次電子が放出され
、帯電を生じない、しかし、2次電子放出率が1より小
さい場合には負に、1より大きい場合には正に帯電する
。すなわち、第3図の領域■及び■では負に帯電し、領
域■では正に帯電する。一方、電子線を小さくできるエ
ネルギーは領域■に属する。従って、領域■のエネルギ
ーの電子線に領域■のエネルギーの電子線を同時に照射
することによって帯電が中和される。
Also, Figure 3 shows the relationship between the energy of the electron beam and the secondary electron emission rate.From Figure 0, when the secondary electron emission rate is 1, the same number of secondary electrons as the number of incident electrons is generated. However, if the secondary electron emission rate is less than 1, it is negatively charged, and if it is greater than 1, it is positively charged. That is, the regions (2) and (2) in FIG. 3 are negatively charged, and the region (2) is positively charged. On the other hand, the energy that can make the electron beam smaller belongs to region (■). Therefore, by simultaneously irradiating the electron beam with the energy of the region (1) and the electron beam with the energy of the region (2), the electrical charge is neutralized.

また、領域■のエネルギーの電子線の入射方向と垂直な
方向に検出器を置けば、領域■の電子線によって生じた
反射電子、2次電子は検出器に到達せず、領域■の細く
しぼった電子線により生じた反射電子、2次電子のみに
よって測定信号が形成される。
Furthermore, if the detector is placed in a direction perpendicular to the incident direction of the electron beam with energy in region ■, the reflected electrons and secondary electrons generated by the electron beam in region A measurement signal is formed only by reflected electrons and secondary electrons generated by the electron beam.

〔実施例〕〔Example〕

以下、第1図に図示の実施例により本発明を説明する。 The present invention will be explained below with reference to the embodiment shown in FIG.

シリコン基板1上に有機レジストを塗布した後。After applying an organic resist onto the silicon substrate 1.

有機レジストを線状パターン2に加工した。次に、シリ
コン基板1上の有機レジストパターン2の上に加速電圧
20KV 、電流10PAの高エネルギー電子線3のビ
ームを入射角O″で照射し、且つ加速電圧200V、電
流?pAの低エネルギー電子線4のビームを線状パター
ンの長手方向から入射角60°で照射して同時に走査し
た。一方、線状パターンの長手方向と垂直の位置に検出
器5(マイクロチャネルプレートを使用)を置き、この
検出器5を用いて試料パターンからの2次電子6を検出
し、その出力信号波形を計算機のメモリー上に蓄積して
第4 ′図のように、帯電による変形のない信号波形を
得た。次に、信号強度の最大値と最小値との平均値とな
る2点から、有機レジストパターン2の線巾が0,47
tra(測定精度±O,OQ4tm)であることがわか
った・ 〔発明の効果〕 従って1本発明によれば、帯電による測定信号の変形を
生じさせることなく細くしぼった電子線を用いて精度の
高いパターン形状測定を行うことができる効果を有する
ものである。
The organic resist was processed into a linear pattern 2. Next, a high-energy electron beam 3 with an acceleration voltage of 20 KV and a current of 10 PA is irradiated onto the organic resist pattern 2 on the silicon substrate 1 at an incident angle of O'', and low-energy electrons with an acceleration voltage of 200 V and a current of ?pA are irradiated onto the organic resist pattern 2 on the silicon substrate 1. A beam of line 4 was irradiated from the longitudinal direction of the linear pattern at an incident angle of 60° and scanned simultaneously.Meanwhile, a detector 5 (using a microchannel plate) was placed at a position perpendicular to the longitudinal direction of the linear pattern. This detector 5 was used to detect the secondary electrons 6 from the sample pattern, and the output signal waveform was stored in the computer's memory to obtain a signal waveform that was not deformed by charging as shown in Figure 4'. Next, the line width of the organic resist pattern 2 is determined to be 0.47 from the two points that are the average value of the maximum value and the minimum value of the signal intensity.
tra (measurement accuracy ±O, OQ4tm). [Effects of the Invention] Therefore, according to the present invention, accuracy can be improved by using a narrowed electron beam without causing deformation of the measurement signal due to charging. This has the effect of allowing highly accurate pattern shape measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は測定信号を得る方法を表わす模式図。 第2図は電子線のエネルギーと電子線の大きさとの関係
を示す図、第3図は電子線のエネルギーと2次電子放出
率との関係を示す図、第4図は測定信号波形図である。
FIG. 1 is a schematic diagram showing a method of obtaining measurement signals. Figure 2 is a diagram showing the relationship between the energy of the electron beam and the size of the electron beam, Figure 3 is a diagram showing the relationship between the energy of the electron beam and the secondary electron emission rate, and Figure 4 is a diagram of the measurement signal waveform. be.

Claims (1)

【特許請求の範囲】[Claims] (1)基板上の線状パターン上に電子線を走査し、その
反射電子、2次電子を検出し、検出出力信号からパター
ンの形状を測定する方法において、前記パターンの長手
方向と垂直な方向の位置で前記反射電子、2次電子を検
出し、前記電子線より低エネルギーの電子線をパターン
の長手方向から入射し、該低エネルギー電子線を前記電
子線と同じ速度で走査しながら測定を行うことを特徴と
する形状測定方法。
(1) A method in which an electron beam is scanned over a linear pattern on a substrate, reflected electrons and secondary electrons are detected, and the shape of the pattern is measured from a detection output signal, in a direction perpendicular to the longitudinal direction of the pattern. The reflected electrons and secondary electrons are detected at the position, an electron beam with lower energy than the electron beam is incident from the longitudinal direction of the pattern, and the measurement is performed while scanning the low-energy electron beam at the same speed as the electron beam. A shape measuring method characterized by:
JP7325587A 1987-03-26 1987-03-26 Shape measuring method Pending JPS63238412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7325587A JPS63238412A (en) 1987-03-26 1987-03-26 Shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7325587A JPS63238412A (en) 1987-03-26 1987-03-26 Shape measuring method

Publications (1)

Publication Number Publication Date
JPS63238412A true JPS63238412A (en) 1988-10-04

Family

ID=13512886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7325587A Pending JPS63238412A (en) 1987-03-26 1987-03-26 Shape measuring method

Country Status (1)

Country Link
JP (1) JPS63238412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086506A (en) * 2004-09-16 2006-03-30 Kla-Tencor Technologies Corp Method of making substrate charged up to certain electric potential

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086506A (en) * 2004-09-16 2006-03-30 Kla-Tencor Technologies Corp Method of making substrate charged up to certain electric potential

Similar Documents

Publication Publication Date Title
JPS639807A (en) Method and device for measuring film thickness
JPH09166428A (en) Electron microscope for length measurement
JPS63238412A (en) Shape measuring method
JP2625292B2 (en) Ion implantation uniformity prediction method
JPH0621785B2 (en) Shape measurement method
JPH10339711A (en) Inspection equipment for semiconductor device
JPS6212624B2 (en)
JPS62261911A (en) Shape measuring method
JP3758214B2 (en) Charged particle equipment
JPH0758297B2 (en) Non-contact potential measuring device
JPH0291507A (en) Measuring instrument for fine pattern
JPH04105010A (en) Method and device for shape and dimension measurement
Dyukov et al. Voltage contrast modes in a scanning electron microscope and their application
JPH057581Y2 (en)
JPS6312146A (en) Pattern-dimension measuring apparatus
JPH0474981A (en) Electron beam test apparatus
JPS62249041A (en) Surface analyzing device
JPS59119722A (en) Measuring method of size
JPS63142825A (en) Auxiliary evaluation method for ic operation
JPS5854783Y2 (en) scanning electron microscope
JPS6348410A (en) Pattern shape measuring method
JPS58132671A (en) Measuring device for voltage wherein electron beam is used
JPS62112007A (en) Shape measuring method
JPS62112008A (en) Shape measuring method
JPS62190642A (en) Charged particle beam device