JPS5830166A - Manufacture of semiconductor light receiving element - Google Patents

Manufacture of semiconductor light receiving element

Info

Publication number
JPS5830166A
JPS5830166A JP56128992A JP12899281A JPS5830166A JP S5830166 A JPS5830166 A JP S5830166A JP 56128992 A JP56128992 A JP 56128992A JP 12899281 A JP12899281 A JP 12899281A JP S5830166 A JPS5830166 A JP S5830166A
Authority
JP
Japan
Prior art keywords
layer
substrate
type
etching
multiplication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56128992A
Other languages
Japanese (ja)
Inventor
Toshiyuki Tanahashi
俊之 棚橋
Susumu Yamazaki
進 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56128992A priority Critical patent/JPS5830166A/en
Publication of JPS5830166A publication Critical patent/JPS5830166A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid meltback, when an avalanche photodiode is prepared by a liquid phase epitaxial growth method, by providing a concave part in the substrate, laminating a multiplying layer, a light absorbing layer, and a contact layer on the entire surface including said concave part, and providing a light inputting port reaching the multiplying layer from the substrate side. CONSTITUTION:The concave part is formed at the central part of the surface of the P<+> type InP substrate 11 by etching, and a P<+> type InGaAsP etching protecting layer 12 is epitaxially grown in the liquid phase on the entire surface including the concave part. Then the N type InP multiplying layer 13, the N type InGaAsP light absorbing layer 14, and the N<+> type InGaAs contact layer 15 are epitaxially grown in the liquid phase simultaneously on the layer 12. Thereafter an electrode 18 is deposited on the layer 15. The light inputting port 17 is provided at the central part of the substrate 11 by etching. A P<+> type region 19 comprising the layer 12 is exposed in the port. An electrode 16 is deposited on the part of the substrate 11 which is left at the peripheral region. In this method, the sequence of forming the growing layers is reversed with respect to the ordinary method. Thus the generation of the meltback is avoided, and a part of the multiplying layer is used as a guard ring.

Description

【発明の詳細な説明】 本発明は化合物半導体受光素子、特にアバランシェ・フ
ォトダイオードの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a compound semiconductor light-receiving device, particularly an avalanche photodiode.

1−V族化合物半導体を用いたアバランシェeフォトダ
イオード(以下APDと称す)はその結晶組gを変化さ
せることによって、波長1μm乃至7μIR程度の広い
波長域内において、その最大感度波長を設定することが
できる。例えけInP基板上に液相エピタキシャル(以
下LPEと称す)成長せしめたIn0.79 GaO,
21AsO,52Po、48の四元半導体APDにおい
て最大感度波長1.2μ餌が得られ、またInP基板上
にLPE成長せしめたInO,53Ga0.47 As
の三元半導体APDにおいて最大感度波長1.64μm
が得られている0APDの化合物半導体構造の形成KF
!、例えばInP基板上にバッファ層とするInP層、
光吸収層とするInGaAsP 層及び増倍層とするI
nPJltMI次LPE成長せしめた後に増倍層中に気
相拡散を行ってpn接合を形成する方法が従来性なわれ
ている。
An avalanche e-photodiode (hereinafter referred to as APD) using a 1-V group compound semiconductor can set its maximum sensitivity wavelength within a wide wavelength range of about 1 μm to 7 μIR by changing its crystal group g. can. For example, In0.79 GaO grown by liquid phase epitaxial (hereinafter referred to as LPE) on an InP substrate,
A maximum sensitivity wavelength of 1.2μ was obtained in the quaternary semiconductor APD of 21AsO, 52Po, 48, and InO, 53Ga0.47As grown by LPE on an InP substrate.
The maximum sensitivity wavelength in the ternary semiconductor APD is 1.64 μm.
Formation KF of compound semiconductor structure with 0APD obtained
! , for example, an InP layer as a buffer layer on an InP substrate,
InGaAsP layer as a light absorption layer and I as a multiplication layer
A conventional method is to perform vapor phase diffusion into the multiplication layer after nPJltMI-order LPE growth to form a pn junction.

しかしながらLPE法によってInGaAsP 四元成
長層上へIn溶液からInP層を成長せしめる場合に問
題を生ずる。す表わちInGaAsP四元混晶とPのみ
を含むIn溶液との間で固相−液相間の平衡が成立しな
いことである。前記第一の結晶組成例或いは波長が1.
3μ溝程度に対応するIn0.70Gm0.30 As
0.65 Po、35 程度のPを含む四元組成である
場合には、650℃の成長温度でも溶液の遇飽和度を大
会〈とることにより、四元混晶上にrnPf、ll接L
PIffi長させゐことが可能であるOしかし、これよ
り長波長領竣に対応する結晶組成、例えば前記第二の結
晶組成例ではPの量が少なくPを含むfi1mK対する
非平衝の1舎が大きくなる0この場合には四元層のメル
トバックが起〕、InP層を増倍層とすゐ前妃構造の形
成が困難となるO このメルトバックの問題tm決する手段として、成長温
度を600℃程度に低下させてIn溶液中へのOA、 
AIの溶解度を減少せしめる方法、或いは四元光吸収層
(波長1.4乃至1.6μmK対応する組成)の上にバ
ッフ1層として他の四元層(波長1.2乃至1.3μm
pc対応する組成)の薄展を形成した後にInPのLP
E成長を行なう方法などが提案されているが何れも製造
方法が複雑化している0またAPDにおいては受光部周
辺での局部的な表だれ増倍を防止して一様な増倍を行わ
せるためにガードリングが必要とされる。
However, a problem arises when an InP layer is grown from an In solution onto an InGaAsP quaternary growth layer by the LPE method. In other words, equilibrium between the solid phase and the liquid phase cannot be established between the InGaAsP quaternary mixed crystal and the In solution containing only P. The first crystal composition example or the wavelength is 1.
In0.70Gm0.30As corresponding to about 3μ groove
In the case of a quaternary composition containing about 0.65 Po, 35% P, by keeping the saturation level of the solution at a growth temperature of 650°C, rnPf, 1l contact L can be formed on the quaternary mixed crystal.
However, in the case of a crystal composition corresponding to a longer wavelength range, for example, the second crystal composition example, the amount of P is small and the non-equilibrium phase with respect to fi1mK containing P is small. In this case, meltback of the quaternary layer occurs], making it difficult to form a front layer structure using the InP layer as a multiplication layer. OA into the In solution at a temperature of about ℃,
A method of reducing the solubility of AI, or adding another quaternary layer (wavelength 1.2 to 1.3 μm K) as a buffer layer on top of the quaternary light absorption layer (composition corresponding to the wavelength 1.4 to 1.6 μmK).
InP LP after forming a thin spread of pc (corresponding composition)
E-growth methods have been proposed, but the manufacturing methods for all of them are complicated.Also, in APDs, local sag multiplication around the light receiving area is prevented and uniform multiplication is performed. A guard ring is required for this purpose.

InP層 InGaAsP ヘテp接合構造を有するA
PDのガードリング構造として第1図に断面図を示す方
法が提案されている。すなわち、n−1nP基板1上K
 n −InGaAsP層2及びn −1nPJ* 3
を順次LPE成長せしめた彼、二回のP−拡散によって
P拡散領域4及び5を形成することにょLpn接合とn
 −InGaAsP層との間のn−InP層の厚さを中
央部に比較して周辺部を薄く形成して、中央の受光部の
増倍層の耐電圧に比較してその周囲の耐電圧を高くして
ガードリングを構成するものである。
InP layer InGaAsP A with hetep junction structure
A method has been proposed as a guard ring structure for a PD, the cross-sectional view of which is shown in FIG. That is, K on the n-1nP substrate 1
n-InGaAsP layer 2 and n-1nPJ*3
He then sequentially grew the P-diffusion regions 4 and 5 by two P-diffusions to form the Lpn junction and n
- The thickness of the n-InP layer between the InGaAsP layer is made thinner in the peripheral part compared to the central part, and the withstand voltage of the surrounding area is reduced by comparing with the withstand voltage of the multiplication layer of the central light-receiving part. It is raised to form a guard ring.

この構造は引−APD等に実施される方法であゐが、ペ
テロ接合を用いた化合物半導体APDKシいて2回のP
−拡散を充分に制御して実施することは困難である。
This structure is a method that is implemented in pull-APDs, etc., but in compound semiconductor APDKs using Peter junctions, two P-APDs are used.
- Diffusion is difficult to achieve with good control.

又前記方法とは異なるガードリング構造として、第2図
(1)乃至(e)に断面図を示す方法が報告されている
0すなわち、第21’1(a)に示す如く、n+−In
P基板6 K n −InGaAsP層7、n−−In
P層8及びこれよりキャリア濃度の高いn −InP層
9を順次LPE成長せしめた後、第2図(b)K示す如
くn−IfIP層9をメナIIKエツチングし、次いで
第2図(@)K示したP”−1nF領域10をcaの気
相拡散によ1形成することによりて、n−I!IP層9
及びn  −InP層8よ)なゐ増倍層O受光WOW囲
にガードリング部を形威すゐ方法であゐ@しかしながら
本方法においては、第28伽)に示し九受光部Oメナ形
エツチングにおいては等方的なエツチング及びメナO深
さの精密な制御が要求され、更に第21iI←)に示し
たCdイオン拡散についても、キャリア濃度の異なる2
層のInP層KCdイオンを同時に拡散してしかも受光
部ム及びガードリング部Be)双方の拡散深さの精密な
制御が要求され石。一般的にはこれらol求を満足する
ヒとは容易ではなく、メナ外周部での局部的な電界集中
などを招く結果となりて、工業的実施は困難である01
1喪増倍層のキャリア濃度がn申8X10”/a11と
若干高いために1低雑音化が達成し離い欠点がある〇 本発明は、化合物半導体ムPDに関して、メルトバック
を回避し、かつ増倍層をガードリングが形成される形状
とするLPE成長法を得ることを目的とする。
Furthermore, as a guard ring structure different from the above method, a method whose cross-sectional views are shown in FIGS. 2(1) to (e) has been reported.
P substrate 6 K n -InGaAsP layer 7, n--In
After the P layer 8 and the n-InP layer 9 having a higher carrier concentration are sequentially grown by LPE, the n-IfIP layer 9 is etched by Mena IIK as shown in FIG. 2(b)K, and then, as shown in FIG. By forming the P"-1nF region 10 indicated by K by vapor phase diffusion of ca, the n-I!IP layer 9 is formed.
In this method, however, a guard ring part is formed around the multiplier layer O and the n-InP layer 8). In this case, isotropic etching and precise control of the MenaO depth are required, and also for the Cd ion diffusion shown in Section 21iI←), two etchings with different carrier concentrations are required.
It is necessary to simultaneously diffuse the KCd ions in the InP layer and to precisely control the diffusion depth of both the light receiving part and the guard ring part (Be). In general, it is not easy to meet these requirements, and this results in local electric field concentration at the outer periphery of the mena, making industrial implementation difficult.
1. Since the carrier concentration of the loss multiplier layer is slightly high at 8×10"/a11, there is a drawback that 1. low noise can be achieved. The object of the present invention is to obtain an LPE growth method in which the multiplication layer has a shape in which a guard ring is formed.

本発明は1.LPE成長層の形成順序を従来の方法とは
逆にし、増倍層上に光吸収層を形成し、最後に結晶組成
の自由度の大きいコンタクト層を形成した後に基板に光
入射孔を開口する構成とし、かつ、受光部とする増倍層
の中央部の厚さをその周囲部分よシ厚<LPE成長せし
めるために予め基板に凹部を設けること1−特徴とする
The present invention consists of 1. The order of formation of the LPE growth layer is reversed from the conventional method, and a light absorption layer is formed on the multiplication layer.Finally, a contact layer with a large degree of freedom in crystal composition is formed, and then a light entrance hole is opened in the substrate. The present invention is characterized in that a concave portion is provided in advance in the substrate in order to make the thickness of the central portion of the multiplication layer serving as the light-receiving portion smaller than the thickness of the surrounding portion by LPE.

更に増倍層直下の基板もしくはLPE成長層に増倍層と
反対の導電性を与える不純物を高濃度に含ませることに
よ、6、LPE工程における温度上昇によl> pn接
合が形成される。
Furthermore, by including a high concentration of impurities that provide conductivity opposite to that of the multiplication layer in the substrate directly below the multiplication layer or in the LPE growth layer, a l> pn junction is formed due to the temperature increase in the LPE process. .

本発明を第3図(a)及び(b)を用い、実施例によっ
て詳細に説明する。
The present invention will be explained in detail by way of examples using FIGS. 3(a) and 3(b).

第3図(a)はLPE成長層を形成した状態の実施例を
示す断面図である。P”−InP基板11には二酸化シ
リコン(Sigh)  をマスクとし、HtSO4(9
7チ) :H*0t(31qb) :HtO=90:5
:5をエツチング液として直径約150μm、深さ約2
μmOr!!J@が予め設けられている。
FIG. 3(a) is a cross-sectional view showing an example in which an LPE growth layer is formed. The P''-InP substrate 11 is coated with HtSO4 (9) using silicon dioxide (Sigh) as a mask.
7chi) :H*0t(31qb) :HtO=90:5
:Approximately 150 μm in diameter and approximately 2 in depth using 5 as etching solution
μmOr! ! J@ is provided in advance.

こO基板ll上に1工ツチング保護層12、増倍層13
、光吸収層44及びコンタクト層15を後述する如く順
次LPE成長せしめるとき、凹部で祉周囲の平担11に
比較して過冷却度が等価的に増大するために1図に示す
如く成長層の厚さが増大している。
A protective layer 12 and a multiplication layer 13 are fabricated on this substrate.
, when the light absorption layer 44 and the contact layer 15 are sequentially grown by LPE as described later, the degree of supercooling is equivalently increased in the concave part compared to the flat layer 11 around the surface, so that the growth layer is grown as shown in Fig. 1. The thickness is increasing.

各LPE成長層0成長開始置度は650 ’C1冷却速
度は0.1℃/―としている。各層の形成に用い九溶1
1!h、エツチング保護層とするP”−InGaAsP
層12#iIn : InAs :GaAs : In
P :Zn==1178.2Mg: 12311P: 
3.11F: 0211jF、増倍層とするn −1n
P層13はIn : I!IP = 11 : l0J
IIII、光吸収層とするn−InGaAsP層14は
In : IILAs : GaAs : InP基1
180.1ダニ26.811F¥1.8ダ一ンタクト層
とするn−InGaAs層15 B In : InA
s : GaAs =1165.9ダニ351キである
The growth starting position of each LPE growth layer 0 is 650'C1 cooling rate is 0.1°C/-. Nine melts 1 used for forming each layer
1! h, P''-InGaAsP as etching protection layer
Layer 12 #iIn: InAs: GaAs: In
P:Zn==1178.2Mg: 12311P:
3.11F: 0211jF, n −1n as a multiplication layer
The P layer 13 is In:I! IP = 11: l0J
III, the n-InGaAsP layer 14 serving as a light absorption layer has an In:IILAs:GaAs:InP base 1
180.1 tick 26.811F ¥1.8 n-InGaAs layer 15 as a dust layer B In: InA
s: GaAs = 1165.9 mites 351 ki.

各層tag長時jlを履次10秒、8分、3分及び50
分とし平担部でのjI厚は履次0.2μfi、IJm町
2μ例及び205mを得ている。本実施例において、凹
部の中央においては増倍層とするn −InP層13の
厚さは約1.5μ餌となシ、平担部に比較して約0.5
μm厚く成長している。続いてP+−InP基板11の
LPE成長層の反対面上のLPE成長層に対向する直径
約200声mの円の周囲に、金−亜tし 鉛等よシなる厚さ300乃至400 mm程度の電極1
6を形成した後に、前記電極16の開口よ)やや小さい
開口をもつレジストマスクを用いて、P+−InP基板
11をHBr(47% ) : HF(50’1G)=
10:1のエツチング液で、P”−InGaAgPエツ
チング保瞳層12tHF(50%):HNOm(61%
)=1 :1のエツチング液で選択的に除去して光入射
口17を形成する。
Each layer tag length time is 10 seconds, 8 minutes, 3 minutes and 50 minutes.
The jI thickness at the flat section was 0.2μfi, IJm thickness was 2μ, and 205m. In this example, the thickness of the n-InP layer 13 serving as a multiplication layer in the center of the recessed portion is approximately 1.5 μm, and the thickness is approximately 0.5 μm compared to that in the flat portion.
It grows to a μm thickness. Next, on the opposite side of the LPE grown layer of the P+-InP substrate 11, around a circle with a diameter of about 200 m facing the LPE grown layer, a layer of gold, zinc, lead, etc. is applied to a thickness of about 300 to 400 mm. electrode 1
6, using a resist mask with a slightly smaller opening (than the opening of the electrode 16), the P+-InP substrate 11 is coated with HBr (47%) : HF (50'1G) =
P''-InGaAgP etched pupil retaining layer 12tHF (50%):HNOm (61%) with a 10:1 etching solution.
)=1:1 etching solution to form a light entrance hole 17.

次にコンタクト層15の全表面に電極18を金−錫等に
より厚さ300乃至400 mm程度に形成する。第3
図(b)は以上説明した本実施例のAPDの断面図を示
す。
Next, an electrode 18 is formed on the entire surface of the contact layer 15 using gold-tin or the like to a thickness of about 300 to 400 mm. Third
Figure (b) shows a cross-sectional view of the APD of this embodiment described above.

増倍層12内にP+領域を形成するために、一般的には
前記先入射口17形放後イオン注入及びアニールを実施
する方法等があるが、本実施例においては、エツチング
保護層12tZntドープし九P”−InGaAsP層
によりて形成したために、LPE工程中にZnイオンが
増倍層中に拡散し、P+領域19従うてpH接合が既に
形成されているために、改めてP+領域を形成する必要
はない〇更に増倍層12の形状が受光部とする中央部分
が、その周!!部分に比較して前記の如く厚く形成され
てお〕、一方このP+領域19の厚さ社均−であるため
に%  pH接合と光吸収層との間の距離は中央部分よ
シ周囲部分が短く、ガードリングが構成されている。
In order to form a P+ region in the multiplication layer 12, there is generally a method of performing ion implantation and annealing after the above-mentioned pre-injection port 17 type, but in this embodiment, the etching protection layer 12t is Znt-doped. Since it is formed from a P''-InGaAsP layer, Zn ions diffuse into the multiplication layer during the LPE process, and a P+ region 19 is therefore formed, and a pH junction is already formed, so a P+ region is formed anew. This is not necessary; furthermore, the shape of the multiplication layer 12 is such that the central portion, which is the light-receiving portion, is formed to be thicker than the peripheral portion as described above], while the thickness of this P+ region 19 is - Therefore, the distance between the % pH junction and the light absorption layer is shorter at the periphery than at the center, forming a guard ring.

本実施例において線光吸収層14は最大感度波長が1.
5stfiであるIn0.58 Gm0.42 As0
.9 Po、1でToうて、従来の方法の如く、光吸収
層14上にニー増倍層をLP)3成長せしめようとすれ
ば、前述し九メルトバッタO問題が生ずるが本発15!
においてはLPIC成長の順序を反転してこれを解決し
ている0光吸収層14上KLPE成長されたコンタクト
層IBは!l”−4mGmAmよルなシメルトバックの
問題は生じない。以上の特徴は光吸収層14が最大感度
波長1.64μmであるPを含まない三元のIn0.5
3 Ga0.47 As層であってもそのまま成立する
In this embodiment, the line light absorption layer 14 has a maximum sensitivity wavelength of 1.
5stfi In0.58 Gm0.42 As0
.. If you try to grow a knee multiplier layer on the light absorbing layer 14 using 9 Po, 1 as in the conventional method, the above-mentioned 9 melt grasshopper problem will occur, but the present invention 15!
This problem is solved by reversing the order of LPIC growth in 0. The contact layer IB is grown by KLPE on the optical absorption layer 14! l''-4mGmAm, the problem of simmert back does not occur.The above characteristics are that the light absorption layer 14 is made of ternary In0.5 containing no P and has a maximum sensitivity wavelength of 1.64μm.
3 It also holds true even if it is a Ga0.47 As layer.

tた光吸収層14の最大感度波長が1.3μfn智度以
下のPの多い結晶組成の場合にも前記朶施例の方法はそ
のまま適用可能であるが、更にコンタクト層15をn 
 −InPによりて構成することも可能である。
The method of the above embodiment can be applied as is even in the case of a P-rich crystal composition in which the maximum sensitivity wavelength of the light absorption layer 14 is less than 1.3 μfn, but if the contact layer 15 is further
- It is also possible to construct it by InP.

次に前記実施例においては基板11と増倍層13との関
にエツチング保睦層12を介在せしめたが、基板11及
び基板11に光入射口17を開口するエツチング液の選
択にょシエッチング保―層12は必ずしも必要ではない
。このエツチング保霞層12を介在せしめない場合にお
いて、基板11として増倍層13と反対の導電性を4え
る不純物を高饋度に含む材料を使用するならば、pH接
合の形成に関して前記実施例と同様の効果が得られる。
Next, in the embodiment described above, the etching protection layer 12 was interposed between the substrate 11 and the multiplication layer 13. - Layer 12 is not absolutely necessary. In the case where this etching protection layer 12 is not interposed, if a material containing a high degree of impurity that has conductivity opposite to that of the multiplication layer 13 is used as the substrate 11, the above-mentioned embodiments regarding the formation of the pH junction can be used. The same effect can be obtained.

更に前記実施例はInP/ InGaAsP系APD 
テlるが、他の化合切半導体例えばGaAs/AlGa
As +Garb /GaAJAa8b 岬にょるAP
Dに関しても本発明を適用して同勢の効果を得ることが
可能であゐ。
Furthermore, the above embodiment is an InP/InGaAsP-based APD.
However, other compound semiconductors such as GaAs/AlGa
As +Garb /GaAJAa8b Misaki Nyoru AP
The same effect can be obtained by applying the present invention to D as well.

本発明は以上説明した如く、化合物半導体AヤDに関し
て凹部を設は九基板面に増倍層、光吸収層及びコンタク
ト層管順次形成し、しかる後に基板側より増倍層に達す
る光入射口を設けることによシ、メルトバッタを回避し
、かつ増倍層をガードリングが形成される形状とするL
PE成長阪を与えるものでありて、更に増倍層直下の基
板鬼゛シ〈tfLPE成長層に増倍層と反対の導電性を
与える不純物を高換度Kttせることによりpn接合形
成もLPE工程中に完了する特徴を有し、化合物半導体
APDの製造に大きい効果を与える0
As explained above, in the present invention, a concave portion is formed for the compound semiconductors A and D, and a multiplier layer, a light absorption layer, and a contact layer tube are sequentially formed on the nine substrate surfaces, and then a light entrance that reaches the multiplier layer from the substrate side. By providing L, melt batter can be avoided and the multiplication layer can be shaped to form a guard ring.
It provides a PE growth barrier, and furthermore, it is possible to form a p-n junction in the LPE process by adding a high concentration of impurity to the LPE growth layer that gives conductivity opposite to that of the multiplication layer. 0, which has the characteristics of being completed in the middle and has great effects on the manufacturing of compound semiconductor APDs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図体)乃至(C)#i従来技術を示す断面
図、第3図体)及び伽)は本発明の実旅例を示す断面図
である。 図において、1はn−I−基板、2はn −InGaA
sP層、3tfn−ItLP層、4tiP拡散領域、5
はP拡散領域、6はn+−InP基板、7 u n −
InGaAsP層、8ha−1rlP層、9はn−1n
P層、10社P”−IIP領域、11は基板、12はエ
デチング保護層、13社増倍層、14は光吸収層、15
はコンタクト層、16は電極、17は光入射口、18は
電極、19社P十領域を示すO P/ 図 7y2f2(lLJ PZ図 ルノ ?rン、ど βづ (C> P予y″′ 矛ヲ図(b)
Figures 1 and 2) to (C)#i are cross-sectional views showing the prior art, and Figures 3) and 3) are cross-sectional views showing practical examples of the present invention. In the figure, 1 is an n-I-substrate, 2 is an n-InGaA
sP layer, 3tfn-ItLP layer, 4tiP diffusion region, 5
is a P diffusion region, 6 is an n+-InP substrate, 7 un −
InGaAsP layer, 8ha-1rlP layer, 9 is n-1n
P layer, 10 P"-IIP area, 11 substrate, 12 etching protection layer, 13 multiplication layer, 14 light absorption layer, 15
is the contact layer, 16 is the electrode, 17 is the light entrance, 18 is the electrode, and 19 is the P area. Spear figure (b)

Claims (1)

【特許請求の範囲】[Claims] ψ基板上に化合物半導体よルなる光吸収層及び増倍層を
エビタキVヤル成長法によ多形成する半導体受光素子の
製造方法において、凹部を設けた前記基板面上に前記増
倍層、前記光吸収層及びコンタクト層を順次形成し、し
かる後に前記基板側よル前記増倍層に達する開口を選択
的に設けること管%黴とする半導体受光素子の製造方法
In a method for manufacturing a semiconductor light-receiving element, in which a light absorption layer and a multiplication layer made of a compound semiconductor are formed on a ψ substrate by an Ebitaki V-Yal growth method, the multiplication layer and the multiplication layer are formed on a surface of the substrate provided with a recessed portion. A method of manufacturing a semiconductor light-receiving element, comprising sequentially forming a light absorption layer and a contact layer, and then selectively providing an opening reaching the multiplication layer on the substrate side.
JP56128992A 1981-08-18 1981-08-18 Manufacture of semiconductor light receiving element Pending JPS5830166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56128992A JPS5830166A (en) 1981-08-18 1981-08-18 Manufacture of semiconductor light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56128992A JPS5830166A (en) 1981-08-18 1981-08-18 Manufacture of semiconductor light receiving element

Publications (1)

Publication Number Publication Date
JPS5830166A true JPS5830166A (en) 1983-02-22

Family

ID=14998444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56128992A Pending JPS5830166A (en) 1981-08-18 1981-08-18 Manufacture of semiconductor light receiving element

Country Status (1)

Country Link
JP (1) JPS5830166A (en)

Similar Documents

Publication Publication Date Title
EP0156156A1 (en) Avalanche photodiodes
US4656494A (en) Avalanche multiplication photodiode having a buried structure
JPH02159775A (en) Semiconductor photodetector and manufacture thereof
JPH03293780A (en) Semiconductor photodetector
JPH02202071A (en) Semiconductor photodetector and manufacture thereof
JP2996943B2 (en) Semiconductor light receiving device and method of manufacturing the same
JP2793238B2 (en) Semiconductor light receiving device and method of manufacturing the same
JPH01164075A (en) Avalanche photodetector
JPS5830166A (en) Manufacture of semiconductor light receiving element
JPH05102517A (en) Avalanche photodiode and its manufacturing method
JP2664158B2 (en) Method for manufacturing semiconductor light receiving device
JPS6138872B2 (en)
JPH0241185B2 (en)
JP3074574B2 (en) Manufacturing method of semiconductor light receiving element
JPH0410233B2 (en)
JPH041740Y2 (en)
KR20000025908A (en) Method for manufacturing planar pin photodiode using ion implanting
JPH0382085A (en) Semiconductor photodetector and manufacture thereof
JPS6328349B2 (en)
JPS6222475B2 (en)
JPH065786B2 (en) Semiconductor device
JPH02253666A (en) Semiconductor photodetector
JPS6244869B2 (en)
JPS58162077A (en) Semiconductor photodetector
JPS6222545B2 (en)