JPS5830146A - Manufacture of mis type semiconductor device - Google Patents

Manufacture of mis type semiconductor device

Info

Publication number
JPS5830146A
JPS5830146A JP12834881A JP12834881A JPS5830146A JP S5830146 A JPS5830146 A JP S5830146A JP 12834881 A JP12834881 A JP 12834881A JP 12834881 A JP12834881 A JP 12834881A JP S5830146 A JPS5830146 A JP S5830146A
Authority
JP
Japan
Prior art keywords
wiring
gate
layer
substrate
lower layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12834881A
Other languages
Japanese (ja)
Other versions
JPS6246065B2 (en
Inventor
Masataka Shinguu
新宮 正孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12834881A priority Critical patent/JPS5830146A/en
Priority to EP82304305A priority patent/EP0072690A3/en
Publication of JPS5830146A publication Critical patent/JPS5830146A/en
Publication of JPS6246065B2 publication Critical patent/JPS6246065B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent gate insulating film from breakdown by a method wherein a lower layer wiring to be connected to the gate remains connected to an Si substrate for the escape of charges parasitic on the lower layer wiring until the completion of the upper layer wiring, in a multilayer wiring building process. CONSTITUTION:A field oxide film 12, oxide thin filsm 15 and 15', polycrystalline Si gate electrode 16 are formed on a P<-> type Si substrate 11, and are activated by the forming of N layers 18a, 18b, and 19 by P ion implantation. The entire surface is then covered with a PSG layer 17 wherein windows 20 and 21 are provided, which is followed by the formation of an Al-made source/drain wiring (not illustrated), gate wiring 22, a branch wiring 22' between the gate electrode 16 and the N layer 19. Next, a coating of a PSG layer 23 is applied, wherein windows 24 and 25 are provided to be deposited with an Al layer 27'. Then a resist mask 26 is provided for the formation of an upper wiring 27, which is followed by the sectioning by etching of the branch wiring 22'. In this construction, the lower layer gate wiring 22 remains connected to the substrate 11 via a reverse direction junction between the layer 19 and the substrate 11 until the comletion of the upper wiring 27 to be connected thereto, which allows the high potential charges accumulated in the process of work to escape to the substrate 11 via said junction, thereby preventing the gate oxide film 15 from breakdown.

Description

【発明の詳細な説明】 本発明はMIB型半導体懺雪O製造方法に係り、特に多
層配線構造のMII11!半導体装會O製造方法KWす
ゐ・ 多層配曽構造OMIIIm!半導体装置を製造する際、
従来O製造方法においては多層配線形成工程の成る段階
で、半導体素子のゲー)K接続している下層配線は電気
的に遊いた状1i(7レーテインダ)Kなる・そOため
に例か01m由、例えば層間絶縁膜にリアクティブ・イ
オン・エツチング等のドライ・エツチング法で配曽接続
窓管形成する際のイオン成るいはラジカルによる衡撃等
により、前配下層配Iak電凋が蓄積され、該下層配線
O電bV。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an MIB-type semiconductor device, particularly MII11! having a multilayer wiring structure. Semiconductor device manufacturing method KW Sui・Multilayer structure OMIIIm! When manufacturing semiconductor devices,
In the conventional O manufacturing method, at the stage of the multilayer interconnection formation process, the lower layer interconnections connected to the gates of the semiconductor element become electrically loose (1i (7 rate leads)). For example, when a connecting window tube is formed on an interlayer insulating film by a dry etching method such as reactive ion etching, the previous underlying layer Iak electric current is accumulated due to the impact of ions or radicals. The lower layer wiring voltage bV.

8−ト絶縁膜O耐圧を上mgた場合、ゲート絶縁属を貫
いて放電が起とシ素子が破壊されるという間融があうた
・ 本発明は上記問題点を除去する目的で、多層配m形成工
@において、上層配線0誉続が完了する首でグーン門続
する下層配線を半導体基板と電気的Km続しておき、し
下層配置11に寄生する電荷を半導体基板に放出せしに
5為手段を含むMIEN半導体半導体装置方製造方法1
援供 卸ち本発明はMIam半導体半導体装製1方法において
、ゲー)k接続すゐ下層配!Iの一端部を半導体基板と
電気的に讐続せしめておき、該下層配線上に層間絶縁膜
を形成し、該層間絶縁jII#IC前記下層配線の上層
配線との蕾続領域を表出する第10@−及び前記一端N
K至る領域を横断表出する[20協を形成し、皺眉間絶
縁膜上に上層配線材料層を形成し、蚊上層配線材料層を
選択的にエツチングして、層関門縁膜上に前記第1の窓
において前記下層配線#Ir壷続する上層配線を形成し
た後に1前記層間絶縁@V第2の窓内に表出する領域0
fIB記下層配線を選択的にエツチング除去して、該ゲ
ート電liK接続する下層配線を半導体基板と1気的に
接続する一端部から切υはなす工程を有すること全特徴
とする・ 以下本発明t−**US+について、第11iVk示す
要旨説明用上画模式−1第2図(+1)乃至(e)K示
す第1の実施例の工程断面図、及び第3図(a)乃至(
e)に示す第20!!施例の工程断面図を用いて詳細に
説明する。
8- If the withstand voltage of the gate insulating film is increased to more than mg, a discharge occurs through the gate insulating metal and the element is destroyed. In the m formation process @, the lower layer wiring that is connected to the semiconductor substrate is electrically connected to the semiconductor substrate at the neck where the upper layer wiring 0 connection is completed, and the parasitic charges in the lower layer arrangement 11 are not released to the semiconductor substrate. 5 MIEN semiconductor device manufacturing method 1 including means
The present invention is a method for manufacturing MIam semiconductor devices, in which the lower layer wiring is connected! One end of I is electrically connected to the semiconductor substrate, and an interlayer insulating film is formed on the lower layer wiring to expose a region where the lower layer wiring connects with the upper layer wiring. 10th@- and the one end N
Form an upper wiring material layer on the glabellar insulating film, selectively etch the upper wiring material layer, and then expose the upper wiring material layer on the layer barrier rim film. After forming the upper layer wiring that connects the lower layer wiring #Ir in the window 1, the area 0 exposed in the interlayer insulation @V second window 1
The present invention is characterized by a step of selectively etching and removing the lower layer wiring fIB and cutting the lower layer wiring connected to the gate electrode from one end where it is integrally connected to the semiconductor substrate.Hereinafter, the present invention t -**For US+, upper schematic diagram for explaining the gist shown in 11iVk-1 Fig. 2 (+1) to (e) Process sectional view of the first embodiment shown in
No. 20 shown in e)! ! A detailed explanation will be given using process cross-sectional views of examples.

本発−O方法において社第1図に示すようにゲート電極
1及びソース・ドレイン領域2〜2bが形成された半導
体基板上に設けた下層絶縁属に通常07J#xを用いて
ソース・ドレイン領域2 ”p 2 bK対するコンタ
クト@t3m、3b及びゲート電Mlに対するコンタク
ト窓5C1−形成する際に、半導体基板(腋領域に拡散
領域が形成されることもある)に対する:1ノタクト窓
3dを合わせて形成しておく、そして下層絶縁属上に通
常の方法を用いて前記コンタクト窓から導出される下層
の配amちソース・ドレイン配、114m、4b及びゲ
ート配線4Cを形成する際、ゲート配置m4CK枝配I
!4C/を設け、該枝配線4CIは前記コンタクト窓3
dを介して半導体基板(又はし領域に3成されている拡
散領域)K接続させておく・そしてこれら下層配線が形
成された基板上に設けた層間絶縁膜に上層と下層の配縁
tII絖させるためO配!I接続窓(バイア・ホール)
′5【形成する際<、g層間絶縁膜に前記グー1配11
0校配@4C’の一部領域を横断表出するエツチング窓
6を合せて形成し、次いで該層間絶縁膜に通常0方法に
よ抄上層配線材料層を形成し、次いて通常の方法を用い
て該上層配線材料層の選択エツチングを行うて層閏絶縁
謄上に前記配#I魯続窓5においてゲート配線に接続す
る上層配線7を形成し、続いて前記眉間絶縁膜のエツチ
ング窓6内に表出しているゲート配線の校配!14C’
を選択的にエツチング除して、上層配置7と接続管終う
た下層のゲート配線4cを半導体基板(又は該領域に形
成されている拡散領域)#IC伊続されているコンタク
トm4dから41Jりはなし、以後保睡膜形成など通常
の方法に従うてMI8型半導体候曾が形成される。
In the present invention-O method, as shown in FIG. 1, 07J#x is usually used for the lower layer insulating material provided on the semiconductor substrate on which the gate electrode 1 and the source/drain regions 2 to 2b are formed. 2" Contacts for p 2 bK @t3m, 3b and contact window 5C1 for gate electrode Ml - When forming contact window 5C1 for semiconductor substrate (diffusion region may be formed in the armpit region): 1 contact window 3d together Then, when forming the lower layer wiring (am), source/drain wiring (114m, 4b) and gate wiring (4C) led out from the contact window on the lower layer insulating layer using a normal method, the gate wiring (m4CK branch) is formed. Arrangement I
! 4C/ is provided, and the branch wiring 4CI is connected to the contact window 3.
The semiconductor substrate (or the diffusion region formed in the region) is connected to K through d.The upper and lower layer interconnections tII are then connected to the interlayer insulating film provided on the substrate on which these lower layer wirings are formed. O arrangement to let you do it! I connection window (via hall)
'5 [When forming <, g the above-mentioned goo 1 layer 11 on the interlayer insulating film
An etching window 6 that crosses and exposes a part of the area of the wiring pattern @4C' is also formed, and then an upper wiring material layer is formed on the interlayer insulating film by a normal method, and then a normal method is applied. Selective etching of the upper layer wiring material layer is performed using the etching method to form the upper layer wiring 7 connected to the gate wiring in the wiring connection window 5 on the layer insulation film, and then the etching window 6 of the glabella insulation film is formed. The layout of the gate wiring exposed inside! 14C'
By selectively etching and removing the upper layer arrangement 7 and the connecting tube, the lower layer gate wiring 4c is connected to the semiconductor substrate (or the diffusion region formed in the region) #IC contacts m4d to 41J are removed. Thereafter, an MI8 type semiconductor structure is formed by a conventional method such as formation of a retentive film.

次に本発明の方法を二つの実施例について工程−面図を
用いて説明する・ 襖1の実施例においては通常の方fP、を用いて第2図
体)に示すように、例えばP−型シリコン(Si)基敬
11上にフィールド酸化M12を形成し、該フィールド
酸化III 2に素子形成領域13を表出する慾及び保
護接続形成領域14を表出する窓を形成し、次いで上記
領域にゲート酸化膜1B及び薄い酸化膜15−を同時に
形成し、次いでゲート酸化膜ls上に多結晶8iゲート
電1116を形成し、次いで第2MJ(b)f示すよう
に該ゲート電極16及びア5イールド酸化膜12をマス
クとして基板11面KN型不純物イオン(例えばりんイ
オンP )を選択的に注入し%骸イオン注入領域を活性
化して素子形成領域l5KN 型ソース・ドレイン領域
18!1.18bを保+a接続形成領域14KN+型拡
散領域19を形成し1次いで第2図(C1に示すように
該基板上にりん珪酸ガラスPSG、I!からなる下層絶
縁膜17を形成し1次いで通常の方法を用いて該下層絶
縁膜17にソース・ドレイン領域1g!、18bK対す
るコンタクト窓(徨断面以外の領域Oため図示せず)と
多結晶Biゲート電極16及びN1型拡散領域19kM
するコンタクト窓20及び21を形成し、次いで通常の
方法により該下層絶縁膜!7上に1例えはアルミニウム
(A1)からなるソース・ドレイン配?11(図示せず
)及び前記コンタクト窓20においてゲート電極16に
+ 接続し且つ前記コンタクト窓21におhてN 型拡散1
域19に接続する枝配線22’を有するゲート配@22
を形成する0次いで第2瀕(d)に示すように該基板上
にPEG等からなる眉間絶縁膜23會形成し1次めで通
常の方法によ)該層間絶縁膜23にゲート配!22に対
する配線接続窓24及びエツチング窓(前記枝配線切断
r6)25を形成する。次いで該層間絶縁真上に上層配
線材料層例順 えばAjlJjlを堆積形成し、次いで第2図(e)に
示すよう!Ic7オートレジスト・パターン26をマス
クとして上層ムi属27’の選択エツチングを行って配
線4i1杭窓24においてゲート配線22に接続する上
層1配線27を形成した後、続いて前記エツチング窓2
5内に表出する領域の1からなるゲート配−〇技配置1
I22’を選択的にエツチング除去して、ゲート配−2
2をN 型拡散lJ域から切りはなす。
Next, the method of the present invention will be explained using process diagrams for two embodiments. In the embodiment of fusuma 1, the normal type fP is used, and as shown in the second figure), for example, A field oxide M12 is formed on the silicon (Si) substrate 11, a window is formed in the field oxide III 2 to expose the element forming region 13 and a protective connection forming region 14, and then a window is formed in the above region. A gate oxide film 1B and a thin oxide film 15- are formed at the same time, and then a polycrystalline 8i gate electrode 1116 is formed on the gate oxide film ls, and then the gate electrode 16 and the A5 yield are formed as shown in the second MJ(b)f. Using the oxide film 12 as a mask, KN-type impurity ions (for example, phosphorus ions P) are selectively implanted into the substrate 11 surface to activate the ion-implanted regions and protect the element formation region 15KN-type source/drain regions 18!1.18b. A +a connection forming region 14KN+ type diffusion region 19 is formed, and then a lower insulating film 17 made of phosphosilicate glass PSG and I! is formed on the substrate as shown in FIG. 2 (C1), and then a conventional method is used. Then, in the lower insulating film 17, a contact window for the source/drain region 1g!, 18bK (not shown because it is a region other than the deep cross section), a polycrystalline Bi gate electrode 16, and an N1 type diffusion region 19kM is formed.
Contact windows 20 and 21 are formed, and then the lower insulating film is removed by a conventional method. For example, is there a source/drain circuit made of aluminum (A1) on top of 7? 11 (not shown) and an N type diffusion 1 connected to the gate electrode 16 in the contact window 20 and connected to the gate electrode 16 in the contact window 21.
Gate wiring @22 with branch wiring 22' connected to area 19
Next, as shown in the second stage (d), a glabellar insulating film 23 made of PEG or the like is formed on the substrate, and a gate is formed on the interlayer insulating film 23 by a conventional method. A wiring connection window 24 and an etching window (the branch wiring cutting r6) 25 for the wiring connection window 22 are formed. Next, an upper wiring material layer, for example AjlJjl, is deposited directly above the interlayer insulation, and then as shown in FIG. 2(e)! After selectively etching the upper layer layer 27' using the Ic7 autoresist pattern 26 as a mask to form the upper layer 1 wiring 27 connected to the gate wiring 22 at the wiring 4i1 pile window 24, the etching window 2 is then etched.
Gate arrangement consisting of 1 of the area exposed within 5 -〇 Technique arrangement 1
I22' is selectively etched away to form gate interconnection 2.
2 from the N-type diffusion lJ region.

なお上記′J4施例において、下層のゲート配M22は
該配−22に優絖する上層配線27が形成されるまでは
、N 型拡散領域19とP−型Sl基板11閣に形成さ
れる20〜30[VJ程度の降伏電圧を有する逆方向接
合を介してP−1184基板11に電気的#C接続され
ているので、多層配線形成工程においてゲート配mK蓄
積される高電位は該接合を介して81基板11Km出さ
れ、該寄生電荷によシグート酸化JI115が破壊され
ることがない0第一の実施例においてけP−型Bt基板
KN  N拡散の保!I接a領域を形成したが、P 型
拡散を7オトレジストをマスクとして施してもよい0そ
の場合、ゲート電極とP  118j基板はオーム性接
触で結合される・またN−型Bt基板を使用し九場合も
伯鏝接続領域に行なう拡散はN 梨もP 型も可能であ
る。
In the 'J4 embodiment described above, the lower layer gate wiring M22 is formed in the N-type diffusion region 19 and the P-type Sl substrate 11 until the upper layer wiring 27 is formed on the lower layer gate wiring 22. Since it is electrically connected to the P-1184 substrate 11 via a reverse junction with a breakdown voltage of about ~30[VJ], the high potential accumulated in the gate interconnection mK during the multilayer wiring formation process is transferred via the junction. In the first embodiment, the P-type Bt substrate KN N diffusion is maintained so that the Sigut oxide JI115 is not destroyed by the parasitic charge. Although the I-contact a region is formed, P-type diffusion may be performed using the 7-type photoresist as a mask.In that case, the gate electrode and the P118j substrate are connected by ohmic contact.Also, an N-type Bt substrate is used. In the case of nine, the diffusion performed in the connection region is possible for both N type and P type.

第2の実施例においてはゲート配線と基板との電気的接
続領域に接合を設けない・即ち第3図体)に示すように
前記第ton施例と同様通常の方法に従って、例えばP
−型8i基板11面の素子形成領域13上にゲート酸化
膜15を、保護接続形成領域14上に薄lA11i化換
15’を、又他の領域上にフィールド酸化膜12を形成
し、ゲート酸化膜15上に多結晶SIゲート電&16を
形成してなる破処層基板上に、第3図(b)に示すよう
に保護接続形成領域14を覆うフォト・レジスト・パタ
ーン28を形成し、NU不純物イオン(例えばりんイオ
ンP)の選択注入を行い、次いで前記7オート・レジス
ト・パターン28を除去し念後、前6[′イオン注入領
域を活性化して、Nllソース・ドレイン領域18a、
18bt形成し、次いで該基板上に前記実施例同様に下
層絶縁膜17管形成し、びいて下層絶縁膜17にソース
・ドレイン領域対するコンタクト窓20及び29全形成
し、次いで該下層絶縁膜17上に、ALからなるソース
・ドレイン配m(図示せず)及び、ゲートを惚16に接
続し且つP−型Si基;111に接続する枝配線22′
を有するゲート配@221[成する。次いで第1の実施
例と同Il第3図(d)K示すように1該基板上に層間
絶縁膜23を形成し、次すで該層間絶縁11I!23!
(ゲート配IIH22に対する配鱒接続窓24及びエツ
チング窓(枝配線切断窓)25會+@或44−成する・
次いで該層間絶縁膜23上に上層A1膜を堆積形成し、
次いで第!1図(@)K示すようにフォト・レジスト・
パターン26をマスクとして上1−Aj膜27’の選択
エツチングを行って配縁接続窓24においてゲート配m
22に接続する上層A1配線27を形成した後、前記エ
ツチング窓25内に表出する領域のゲート配線O枝配置
m22を選択的にエツチング除去して、ゲート配線22
をp−型Si基@11との豪Ill!部から切りはなす
0なおuti施例においてはゲート配線O技M22’と
P−型St基板11の接続はオーiックな接続になるが
、N型Si基板を用いたllkは該壁絖部にlθ〜25
M程舵の降伏電圧を有するシ璽ットキ・バリアが形成さ
れる・そしていずれの場合もゲート配線に上層配線が接
続されるまでにゲート配4Ilに蓄積される電荷は一前
記IiP絖部を介して基板に放出されるので、該寄生電
荷によりゲート酸化膜が破壊されることがない。
In the second embodiment, no junction is provided in the electrical connection region between the gate wiring and the substrate (in other words, as shown in Figure 3), for example, P
- A gate oxide film 15 is formed on the element formation region 13 on the surface of the type 8i substrate 11, a thin lA11i conversion film 15' is formed on the protective connection formation region 14, and a field oxide film 12 is formed on other regions. As shown in FIG. 3(b), a photoresist pattern 28 covering the protective connection formation region 14 is formed on the destroyed layer substrate formed by forming the polycrystalline SI gate electrode 16 on the film 15. Selective implantation of impurity ions (for example, phosphorus ions P) is performed, and then, after removing the 7 auto-resist patterns 28, the previous 6[' ion implantation regions are activated, and the Nll source/drain regions 18a,
18 bt is formed, then a lower insulating film 17 is formed on the substrate in the same manner as in the above embodiment, contact windows 20 and 29 for the source/drain regions are completely formed in the lower insulating film 17, and then a lower insulating film 17 is formed on the lower insulating film 17. In addition, a source/drain wiring m (not shown) made of AL and a branch wiring 22' connecting the gate to the gate 16 and to the P-type Si group 111 are provided.
A gate arrangement @221 [forms]. Next, as in the first embodiment, as shown in FIG. 3(d)K, an interlayer insulating film 23 is formed on the substrate, and then the interlayer insulating film 11I! 23!
(Make the wiring connection window 24 and etching window (branch wiring cutting window) 25 + @ or 44- to the gate wiring IIH 22.
Next, an upper layer A1 film is deposited on the interlayer insulating film 23,
Next! As shown in Figure 1 (@) K, the photoresist
Using the pattern 26 as a mask, the upper 1-Aj film 27' is selectively etched to form the gate wiring in the wiring connection window 24.
After forming the upper layer A1 wiring 27 connected to the gate wiring 22, the gate wiring O branch arrangement m22 in the area exposed in the etching window 25 is selectively removed by etching.
Australia Ill with p-type Si group @11! In the 0-UTI example in which the gate wiring is cut from the wall hole, the connection between the gate wiring O technique M22' and the P-type St substrate 11 is an authentic connection, but in the llk using the N-type Si substrate, the wall hole to lθ~25
A shutoff barrier having a breakdown voltage of about M is formed.And in either case, the charge accumulated in the gate interconnection 4Il by the time the upper layer interconnection is connected to the gate interconnection is transferred through the IiP hole. Since the parasitic charges are released to the substrate, the gate oxide film is not destroyed by the parasitic charges.

以上、第一および第二〇実施例について説明したが、本
発明は84基板およびAl配置1に限足されない・他O
化合物半導体基板を使用してもよく、配縁材料もチタン
(Ti)やモリブデン(MO)など所望O金属1使用で
きる。
Although the first and 20th embodiments have been described above, the present invention is not limited to the 84 substrates and the Al arrangement 1.
A compound semiconductor substrate may be used, and a desired O metal such as titanium (Ti) or molybdenum (MO) can be used as the interconnection material.

また相補型MIt半導体装置にも使用できることは首う
までもない。
It goes without saying that it can also be used for complementary MIt semiconductor devices.

以上説明したように本発明によれば、多層配線構造t)
MIS型半導体装着を製造する際に、多層配線形成工8
1においてゲート電極に接続された下層配線に蓄積され
る電荷によつてゲート絶縁膜が破壊されることがなくな
るので製造歩留tbが向上する。なお本発明の方法にお
いてはグー)K接続する下層配線における基歇とO接続
領域は、最終的にゲート配線から切りはなされるので配
線容緻が増加することがなく、従って素子O動作速度が
低下することはない・
As explained above, according to the present invention, the multilayer wiring structure t)
When manufacturing MIS type semiconductor mounting, multilayer wiring forming process 8
In No. 1, the gate insulating film is not destroyed by charges accumulated in the lower wiring connected to the gate electrode, so the manufacturing yield tb is improved. In addition, in the method of the present invention, the base and O connection regions in the lower layer wiring for K connection are finally cut off from the gate wiring, so the wiring density does not increase, and therefore the element O operation speed decreases. There's nothing to do

【図面の簡単な説明】[Brief explanation of drawings]

11園は本発明の方法O1!旨説明用上面模式−−@ 
211U(a)乃M (e)はIIIの実施例の工程断
面図、第゛″辷・ 3図(alh至(旬は第!O実施例の工程断面図である
。 図において、lはゲート電−12ae2bはソース・ド
レイン領域、3L 3b、3c、3dはコンタクト窓、
4 me 4 bはソース・ドレイン配線%4Cはグー
)配置!s4”aグー)配ailO枝配線、5は配線接
続窓(バイア・ホール)、6はエツチング窓、7は上層
配線%11はP1シリコン基板、12はフィールド酸化
膜、13は素子形成領域、14は保!Ill絖形成領域
、15はゲート酸化膜、15−一薄い酸化膜、16紘多
結晶シリコン・ゲート電21.29はコンタクト窓、2
2はゲート配線、22’は同枝配線、23は層間絶縁膜
、24は配線接続窓、25はエツチング窓(枝配線切断
窓)、26.28は7オ+争レジスト・パターン、27
’は上層アルンニウム膜、27は上層アルミニウム配線
を示す・ 第 i 日 第 2 図
11th garden is method O1 of the present invention! Top view diagram for explanation--@
211U(a) to M(e) are process cross-sectional views of the third embodiment, and Figures 211U(a) to 3(e) are process cross-sectional views of the third embodiment. -12ae2b are source/drain regions, 3L 3b, 3c, 3d are contact windows,
4 me 4 b is source/drain wiring %4C is goo) arrangement! s4"a goo) layout AILO branch wiring, 5 is a wiring connection window (via hole), 6 is an etching window, 7 is an upper layer wiring%11 is a P1 silicon substrate, 12 is a field oxide film, 13 is an element formation area, 14 15 - Thin oxide film, 16 - polycrystalline silicon gate electrode 21. 29 is contact window, 2
2 is a gate wiring, 22' is a branch wiring, 23 is an interlayer insulating film, 24 is a wiring connection window, 25 is an etching window (branch wiring cutting window), 26. 28 is a 7+ resist pattern, 27
' indicates the upper layer aluminium film, and 27 indicates the upper layer aluminum wiring.

Claims (1)

【特許請求の範囲】[Claims] ゲート電1lkK讐絖すゐ下層配!IO一端部を半導体
基鈑と電気的Km続せしめておき、該下層配線上に層間
絶縁膜をi11成し、該層間絶縁膜に前配下層配MO上
層配線とcll続領域を表出する@10窓、及び前記一
端mK至る領域管横断表出す石第20窓管形成し該層間
絶縁膜上に上層配線材料層を形成し、該上層配線材料層
を選択的にエツチングして、層間絶縁膜上に前記第10
窓において前記下層配線Km続する上層配着を形成した
後に一前記層間絶縁IIO第20窓内に表出する領域O
前記下層配線を選択的にエツチング除去して、該ゲート
電1に接続する下層配IIを半導体基板と電気的に接続
する一端部から切ルはなす工程を有することを特徴とす
るMI811半導体装置の調造方法0
Gate power 1lkK enemy wire lower layer arrangement! One end of the IO is electrically connected to the semiconductor substrate by Km, an interlayer insulating film is formed on the lower layer wiring, and a region connecting the previous lower layer MO upper layer wiring and CLL is exposed on the interlayer insulating film. 10 windows and a 20th window tube exposed across the area tube up to the one end mK are formed, an upper wiring material layer is formed on the interlayer insulating film, and the upper wiring material layer is selectively etched to form an interlayer insulating film. Above said 10th
A region O exposed within the 20th window of the interlayer insulation IIO after forming the upper layer wiring Km connected to the lower layer wiring in the window.
Preparation of MI811 semiconductor device characterized by comprising a step of selectively etching away the lower layer interconnection and cutting off the lower layer interconnection II connected to the gate electrode 1 from one end electrically connected to the semiconductor substrate. Manufacturing method 0
JP12834881A 1981-08-17 1981-08-17 Manufacture of mis type semiconductor device Granted JPS5830146A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12834881A JPS5830146A (en) 1981-08-17 1981-08-17 Manufacture of mis type semiconductor device
EP82304305A EP0072690A3 (en) 1981-08-17 1982-08-16 A mis device and a method of manufacturing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12834881A JPS5830146A (en) 1981-08-17 1981-08-17 Manufacture of mis type semiconductor device

Publications (2)

Publication Number Publication Date
JPS5830146A true JPS5830146A (en) 1983-02-22
JPS6246065B2 JPS6246065B2 (en) 1987-09-30

Family

ID=14982582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12834881A Granted JPS5830146A (en) 1981-08-17 1981-08-17 Manufacture of mis type semiconductor device

Country Status (1)

Country Link
JP (1) JPS5830146A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503034A (en) * 1989-03-06 1991-07-11 スペクトラ インコーポレーテッド Ink supply system for ink jet heads

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503034A (en) * 1989-03-06 1991-07-11 スペクトラ インコーポレーテッド Ink supply system for ink jet heads

Also Published As

Publication number Publication date
JPS6246065B2 (en) 1987-09-30

Similar Documents

Publication Publication Date Title
EP0646959A1 (en) Metallization and bonding process for manufacturing power semiconductor devices
JP2007074004A (en) Inter-layer insulating structure and its forming method
CN105830211A (en) Elongated contacts using litho-freeze-litho-etch process
JPS60226163A (en) Method of producing cmos structure having schottky bipolar transistor
GB2028581A (en) Last-stage programming of semiconductor integrated circuits by ion implantation
DE102013101935A1 (en) Protective layers for conductive pads and methods for their formation
US20070080404A1 (en) Semiconductor device
CN85103535A (en) The method of processing submicron groove and the device of making in this way in material (for example semi-conducting material)
JPH0673370B2 (en) Integrated circuit contact manufacturing method
JP3069468B2 (en) Method for manufacturing semiconductor device
JPS5830146A (en) Manufacture of mis type semiconductor device
EP0072690A2 (en) A MIS device and a method of manufacturing it
JP2001526003A (en) Semiconductor device having MOS transistor
US4345365A (en) Method for fabricating an integrated circuit
JPS5950104B2 (en) Hand tie souchi
JPH0917867A (en) Method of forming contact part in semiconductor device
JPH0492466A (en) Semiconductor device and manufacture thereof
CN205752104U (en) Planar gate power unit structure
JP3712616B2 (en) Method for manufacturing a semiconductor device having wiring partially extending in a semiconductor substrate
JP2569809B2 (en) Method for manufacturing semiconductor device
JP3350170B2 (en) Power MOS type semiconductor device and method of manufacturing the same
JPS61267365A (en) Semiconductor device
EP0428067A2 (en) Semiconductor integrated circuit and method of manufacturing the same
JPS6028247A (en) Semiconductor device
JP2618479B2 (en) Method for manufacturing semiconductor device