JPS5830142A - Mamufacture of semiconductor device - Google Patents

Mamufacture of semiconductor device

Info

Publication number
JPS5830142A
JPS5830142A JP12835081A JP12835081A JPS5830142A JP S5830142 A JPS5830142 A JP S5830142A JP 12835081 A JP12835081 A JP 12835081A JP 12835081 A JP12835081 A JP 12835081A JP S5830142 A JPS5830142 A JP S5830142A
Authority
JP
Japan
Prior art keywords
layer
film
polycrystalline
shaped groove
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12835081A
Other languages
Japanese (ja)
Inventor
Yoshinobu Monma
門馬 義信
Kazuo Tanaka
和夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12835081A priority Critical patent/JPS5830142A/en
Publication of JPS5830142A publication Critical patent/JPS5830142A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/763Polycrystalline semiconductor regions

Abstract

PURPOSE:To realize an effective dielectric isolation by a method wherein a P type Si substrate is provided with some V-shaped grooves reaching an N epitaxial layer and an insulating film is broken into openings at the groove pointed bottoms, the grooves are filled with P type polycrystalline Si, and the pointed bottoms are provided with channel cut regions by heat oxidation. CONSTITUTION:A two layer mask of an SiO2 layer 23 and Si3N4 layer 24 is laid down on an N epitaxial layer 22 on a P<-> type Si substrate 21 provided with an N<+> buried layer and is anisotropically etched for the formation of V-shaped grooves 27 with their pointed bottoms reaching the substrate 21, and is subjected to heat oxidation wherein an SiO2 film 28 is formed to cover the entire surface. An HF-base etchant is applied to etch the film 28 approximately into half, whereby holes 29 are created at the pointed bottoms. An undoped polycrystalline Si layer 30 approximately two times the depth of the V-shaped grooves 27 is built by CVD and is abraded until the Si3N4 layer 24 is exposed, when the top of the polycrystalline Si layer 30 is lower than the top of the Si3N4 layer 24. BF2 ion implantation followed by annealing results in the creation of P<+> channel cuts 3 at the pointed bottoms. Then, wet oxidation is performed at approximately 950 deg.C whereby an SiO2 thick film 32 is formed on the surface of the P<+> polycrystalline Si layer 30'. In this way, the width of the bird's beak 33 is approximately one third a beak expected in a conventional method, integration is enhanced, the region 31 is in some degree enlarged, resulting in an NPN bipolar device without device capacitance increase and parasitic pnp combinations.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に係り、特にパイポーy
m半導体装置におけるアイソレージ璽ン領域の形成方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device.
The present invention relates to a method for forming an isolation region in a semiconductor device.

半導体集積回路装置においては共通基板上にトランジス
タ環条くの回路素子を形成するが、このときこれらの回
路素子同士が相互に電気的な影替を受けないように素子
間を分離絶縁Tる必要がある。この分離絶縁に際して多
く用いられている方法に、l0P(アイソレージ璽ン・
バイ・オキサイド−アンド−ポリ7リコン)と称する絶
縁物アインレーシ冒ンがある・ 従来の絶縁物アイル−シ冒ンの形成方法は、例えば第1
図(a)に示すようにP−型Sj基板1上に形成された
N型SIエビタ中シャル層2の表面に、熱酸化により薄
い二酸化シリコン(SiOt)j13を形成し、その上
に窒化シリコン(S!sN+)膜4を形成し、次いで第
1図の)に示すように7オト・レジスト・パターン5を
マスクとして前記5IaN、膜4及び8i0.膜3にN
fi8iエピタキシャル層2のV字状溝形成領域6面を
表出する窓を形成し、次いで第1図(C)に示すように
前記8i、N、膜4及びSiO,膜3をマスクとして異
方性エツチングによりN型Siエピタキシャル層2を貫
いて「型Si基板1内に達する7字状溝7を形成し、次
いで第1図(d)に示すように前記Si、N、膜4をマ
スクとして選択熱酸化により7字状溝7内面に第1のS
in、絶縁膜8を形成し、次いで第1図(e)に示すよ
うに該基板上に7字状溝7の深さの2(転)程度の厚さ
の多結晶シリコン層9を気相成長し、次いでポリッシン
グを行って第1図(f)に示すようにv字状#II7内
のみに多結晶シリコン層9を残留形成せしめ、次いで第
1図(2)に示Tように前記SL。
In a semiconductor integrated circuit device, circuit elements arranged around transistors are formed on a common substrate, but at this time, it is necessary to isolate and insulate these circuit elements so that they are not affected electrically by each other. There is. One of the methods often used for this separation is l0P (isolation).
There is an insulator inlay film called bioxide-and-poly7 silicon.The conventional method for forming an insulator inlay film is, for example, the first
As shown in Figure (a), a thin layer of silicon dioxide (SiOt) 13 is formed by thermal oxidation on the surface of the N-type SI layer 2 formed on the P-type Sj substrate 1, and silicon nitride is deposited on top of it. (S!sN+) film 4 is formed, and then the 5IaN, film 4 and 8i0. N on membrane 3
A window is formed to expose the 6 sides of the V-shaped groove formation region of the fi8i epitaxial layer 2, and then, as shown in FIG. A 7-shaped groove 7 is formed by penetrating the N-type Si epitaxial layer 2 and reaching into the Si substrate 1 by etching, and then, as shown in FIG. 1(d), using the Si, N, film 4 as a mask, The first S is formed on the inner surface of the 7-shaped groove 7 by selective thermal oxidation.
In, an insulating film 8 is formed, and then, as shown in FIG. The polycrystalline silicon layer 9 is grown and then polished to form a residual polycrystalline silicon layer 9 only in the V-shaped #II7 as shown in FIG. 1(f), and then the SL .

N、膜4をマスクとして選択熱酸化を行りて7字状溝7
内の多結晶シリコン層9の表面に通常0.8〜l〔μm
)程度の浮い第2のSin、絶縁膜10を形成する方法
が行われていた。しかし上記従来方法においては、ノン
ドープ・多結晶シリコン層と単結晶Si層の酸化レート
が同程度であるために、第1図(g)に示すように多結
晶シリコン層9の選択酸化Gこ際して、8i、N、M4
下部のN型Siエピタキシャル層2にも側面から8i0
.膜が成長し、素子形成領域11の縁部に1.5〜2(
、am)程度の広い幅にバーズ・ビーク12が形成され
る。従って素子を形成する際に機能領域が該バーズ・ビ
ークと重なりた場合には素子特性が変化し製造歩留まり
が低下するので、骸歩留才り低下を防ぐためには予め素
子形成領域を広く形成しておく必要があり、集積度の低
下を招くという問題がありた・又このような絶縁物分離
構造に詔いては、接合容量を小さくして高速化をはかる
ために、P−型別基板の不純物濃度を低く維持しようと
すると、V字状溝先端部におけるsio、膜と接してい
るP−型8i基板の界面がNllに反転し易くなり、分
離耐圧の低下、リーク電流の増大等の現象を生じるので
基板の高抵抗化が制限されるという問題がある。そこで
上記反転を防止する手段としてP−型S1基板の7字溝
領域に予めP屋不純物を導入してチャネル・カット領域
を形成しておく方法も試みられたが、この場合は素子容
量の増加や寄生PNPの発生等をもたらし好ましくなか
った。
N, selective thermal oxidation is performed using the film 4 as a mask to form the figure 7 groove 7.
Usually 0.8 to 1 [μm] on the surface of the polycrystalline silicon layer 9 within
), a method of forming the second insulating film 10 with a floating second Si layer has been used. However, in the conventional method described above, since the oxidation rates of the non-doped polycrystalline silicon layer and the single-crystalline silicon layer are about the same, the selective oxidation of the polycrystalline silicon layer 9 as shown in FIG. 8i, N, M4
8i0 is also applied from the side to the lower N-type Si epitaxial layer 2.
.. The film grows to a thickness of 1.5 to 2 (
, am), the bird's beak 12 is formed with a wide width. Therefore, if a functional area overlaps the bird's beak when forming an element, the element characteristics will change and the manufacturing yield will decrease. Therefore, in order to prevent a drop in the element yield, it is necessary to form a wide element forming area in advance. However, in order to reduce the junction capacitance and increase the speed, the use of such an insulator isolation structure has led to the problem of lowering the degree of integration. If an attempt is made to maintain the impurity concentration low, the interface of the P-type 8i substrate in contact with the sio film at the tip of the V-shaped groove tends to be reversed to Nll, resulting in phenomena such as a decrease in isolation voltage and an increase in leakage current. Therefore, there is a problem in that increasing the resistance of the substrate is restricted. Therefore, as a means to prevent the above-mentioned inversion, a method was attempted in which a channel cut region was formed by introducing P-type impurities into the 7-groove region of the P-type S1 substrate in advance, but in this case, the element capacitance increased. This was undesirable because it caused the occurrence of parasitic PNP and parasitic PNP.

本発明は上記問題点に鑑み、バイポーラ型半導体装置の
絶縁物分離を行うに際して、素子形成領域面積の減少を
極めて少くおさえ、且つ素子容量の増加やを生PNP効
果の発生をなくした製造方法を提供する。
In view of the above-mentioned problems, the present invention provides a manufacturing method that minimizes the reduction in the area of the element formation region and eliminates the increase in element capacitance and the generation of the PNP effect when performing insulator separation of bipolar semiconductor devices. provide.

即ち本発明は半導体装置の製造方法において%第1導電
型半導体基板上に形成された第2導電型41体エピタキ
シャル層に、その表面から半導体基板内に達するV字状
溝を形成し、該V字状溝の内面に選択的に絶縁膜を形成
し、厚さ制御エツチング4こより該絶縁膜におけるV字
状溝の先端部を櫟う領域に穴を形成し、骸V字状溝内に
多結晶シリコン層を形成し、該多結晶シリコン層に選択
的に第1導1に聾不純物を高濃度に導入し、熱酸化法に
より該多結晶シ替コン層の上面に選択的に二酸化シリコ
ン絶縁膜を形成すると同時に、該多結晶シリコン層に導
入された第1導電型不純物を、前記V字状溝先端部の絶
縁膜の穴を介して半導体基板内に導入し、V字状溝先端
部近傍にチャネルのカット領域を形成Tる工程を有する
ことを特徴とする。
That is, in a method for manufacturing a semiconductor device, the present invention forms a V-shaped groove reaching into the semiconductor substrate from the surface of the epitaxial layer of the second conductivity type 41 formed on the semiconductor substrate of the first conductivity type, and An insulating film is selectively formed on the inner surface of the V-shaped groove, and a hole is formed in the insulating film in a region surrounding the tip of the V-shaped groove by thickness control etching. A crystalline silicon layer is formed, a deaf impurity is selectively introduced into the polycrystalline silicon layer at a high concentration, and silicon dioxide insulation is selectively applied to the upper surface of the polycrystalline silicon layer by a thermal oxidation method. At the same time as forming the film, the first conductivity type impurity introduced into the polycrystalline silicon layer is introduced into the semiconductor substrate through the hole in the insulating film at the tip of the V-shaped groove, and The method is characterized by a step of forming a channel cut region in the vicinity.

以下本発明を一実施例について、第2図(a)乃至0)
に示す工程断面図を用いて詳細に説明する。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 2(a) to 0).
This will be explained in detail using the process cross-sectional diagram shown in FIG.

本発明の方法により例えばNPN型/<イボーラIOを
形成Tるには、先ず第2図(a)に示すように100面
を主面とするp−[81基板21上lこ通常の方法でN
型8i工ピタキシヤル層22が形成された被処理基板上
に、熱酸化により1000〔又〕程度の厚さのsio、
膜23を形成し、その上に化学気相成長法(OVD)に
より例えば1000〜2000〔^〕程度の厚さの81
.N4膜24を形成する・次いで第2図−)に示すよう
に7オト・レジスト・Iくターン25をマスクとして通
常のエツチング法により”sNa!11424及びその
下部の810.膜23に、Nfi81エピタキシャル層
22面層表2面る分離領域加工用窓26を形成する。次
いで前記フォト・レジスト・パターン25を除した後、
前記8i、N、膜24及びSin、膜23をマスクとし
て、水醗化カリウム(KOH)等からなる異方性エツチ
ング法により選択エツチングを行りて、第2図(C)に
示すようlこ前記分離領域加工用窓26内にN型S1工
ピタキシヤル層22を買いてP−型S1基板21内に達
する7字状溝27を形成する。次いで前記Si、N4膜
24を耐酸化マスクとして選択的に熱酸化を行い、第2
図(d)に示すように7字状溝27の内面に例えば厚さ
5000(A)以上程度の第1のSin、絶縁膜28を
形成し、次いで該8 i 0.絶縁膜28をふり酸系エ
ツチング液を用いて約1/2程度の厚さにコントロール
・エツチングする・このコントロール−エツチング後の
状態を示したのが第2図(e)で、図に示すように該エ
ツチング壷こおいてエツチング・レートの高い7字状溝
27先端におけるStO,絶縁膜28の不連続面には穴
29が形成される。次いで第2図(Dに示すように該被
処理基板上にOVD法により7字状溝27の深さの2〔
倍〕程度の厚さのノン・ドープ多結晶S1層30を形成
する。なお蚊多結晶Si層30は、Sin。
To form, for example, an NPN type Ibora IO using the method of the present invention, first, as shown in FIG. N
On the substrate to be processed on which the type 8i pitaxial layer 22 has been formed, a sio film with a thickness of about 1000 [again] is formed by thermal oxidation.
A film 23 is formed, and a film 81 having a thickness of, for example, about 1000 to 2000 [^] is formed thereon by chemical vapor deposition (OVD).
.. N4 film 24 is formed. Next, as shown in FIG. A window 26 for processing a separation region is formed on two sides of the layer 22. Next, after removing the photoresist pattern 25,
Using the 8i, N, film 24, and Sin film 23 as masks, selective etching is performed by an anisotropic etching method using potassium hydroxide (KOH), etc., as shown in FIG. 2(C). In the window 26 for processing the isolation region, the N-type S1 pittaxial layer 22 is used to form a 7-shaped groove 27 that reaches the inside of the P-type S1 substrate 21 . Next, selective thermal oxidation is performed using the Si, N4 film 24 as an oxidation-resistant mask, and a second
As shown in Figure (d), a first Sin insulating film 28 having a thickness of, for example, 5000 (A) or more is formed on the inner surface of the 7-shaped groove 27, and then the 8 i 0. The insulating film 28 is controlled and etched to about 1/2 the thickness using a fluoric acid-based etching solution.The state after this control-etching is shown in FIG. 2(e), as shown in the figure. In the etching pot, a hole 29 is formed on the discontinuous surface of the StO insulating film 28 at the tip of the 7-shaped groove 27 where the etching rate is high. Next, as shown in FIG. 2 (D), a depth of 2 [
A non-doped polycrystalline S1 layer 30 is formed to have a thickness of about 1.5 times the thickness of the above. Note that the mosquito polycrystalline Si layer 30 is made of Sin.

膜との密着性を向上せしめるために、最初の500〜1
000(A)程度を減圧OVD法で形成させることが奸
才しい。次いで該基板上の多結晶Si層30を上面から
順次ボリツシイングして行き、第2図Q)に示すように
SIs N4J[24の全面を表出せしめる。なお多結
晶SiはS輸N4より軟らかいので、この際7字状溝2
7内の多結晶Si層30の上面は81.N4膜24上面
より低くなる。次いで第2図(h)に示すように、”5
Nal[24をマスクとして7字状溝27内の多結晶S
i層30の上面に、例えば50(Key)  程度の加
速エネルギーで二ふり化硼素イオン(BFlt)を2X
10’・(atm/F/)程度の高濃度に注入し、次い
で1000(Ell’)程度の温度で1〔時間〕程度ア
ニールを行りて、P型不純物Bを均一に高濃度に含んだ
多結晶84層(P+型多結晶si層)30′を形成する
。なお前記P型不純物のイオン注入をほう素イオ/(B
 )により行う際には、加速エネルギー20(Key)
注入量2 x 10” (atm/、/ )程度の条件
が適当である。又このアニール処理によってP+屋多結
晶84層30′に含まれる高操度の硼素Bは7字状溝2
7先端部の第1のsio、絶縁膜28の穴29を通して
P″″型Si基板21内に熱拡散し、V字溝27先端部
近傍にP+型領域即ちP+型チャネル・カット領域3が
形成される。次いで該基板を加湿酸素(0,)中で加熱
し、第2図0)に示すように耐酸化膜であるSi、N4
111j24に覆われていない7字状溝27内のP艷型
多結晶Si層30′表面を選択的に熱酸化して、該領域
に例えばaooo〔X〕程度の厚い第2のSin、絶縁
M32を形成する。なおこの選択熱酸化lこおいて、高
濃度に不純物がドープされた多結晶Si即ち高′a度に
硼素■がドープされたP増多結晶Si層は、単結晶81
即ちN型8i工ピタキシヤル層よりも大きな酸化レート
を示し、特に熱酸化温度が低くなる程その差が大きくな
る。モして950(C)程度の温度では高不純物濃度の
多結晶84層の酸化レートは単結晶Si層の〔倍〕程度
に遅する。従って上記選択熱酸化に当りては、酸化速度
を考慮すると950(c)程度の温度における加圧酸化
が適当である。そしてこのように高不純物111度の多
結晶S1層と単結晶Si 層との間には大きな酸化レー
トの差があるので、上記実施例の選択熱酸化において、
8’lN4膜24下部のN型SNエビタキグヤル層22
が側面から酸化される量は従来に比べ大幅に減少し、バ
ーズ−ビーク33の幅は従来の1/3程度即ち0.5〔
μm〕程度となる。なセ該選択熱酸化工程により前記P
+型チャネル−カット領域31は若干拡大する。
In order to improve adhesion with the membrane, the first 500 to 1
000 (A) by the reduced pressure OVD method. Next, the polycrystalline Si layer 30 on the substrate is sequentially borsted from the top surface to expose the entire surface of the SIs N4J[24] as shown in FIG. 2Q). Note that polycrystalline Si is softer than S-imported N4, so in this case, the 7-shaped groove 2
The upper surface of the polycrystalline Si layer 30 in 7 is 81. It is lower than the upper surface of the N4 film 24. Then, as shown in FIG. 2(h), "5
Polycrystalline S in the figure 7 groove 27 using Nal[24 as a mask
For example, boron difluoride ions (BFlt) are deposited 2X on the top surface of the i-layer 30 with an acceleration energy of about 50 (Key).
The P-type impurity B was implanted at a high concentration of about 10'. 84 polycrystalline layers (P+ type polycrystalline Si layer) 30' are formed. Note that the ion implantation of the P-type impurity is performed using boron ion/(B
), acceleration energy 20 (Key)
Conditions for the implantation amount to be approximately 2 x 10" (atm/, / ) are appropriate. Also, by this annealing process, the highly manipulated boron B contained in the P+ya polycrystalline 84 layer 30' is transferred to the figure 7 groove 2.
Heat is diffused into the P'' type Si substrate 21 through the hole 29 of the insulating film 28, and a P+ type region, that is, a P+ type channel cut region 3 is formed near the tip of the V-shaped groove 27. be done. Next, the substrate is heated in humidified oxygen (0,) to form an oxidation-resistant film of Si, N4, as shown in FIG.
The surface of the P-type polycrystalline Si layer 30' in the 7-shaped groove 27 that is not covered by the 111j24 is selectively thermally oxidized, and a second Si layer with a thickness of about aooo [X], for example, and an insulating M32 are applied to the area. form. In this selective thermal oxidation, the polycrystalline Si layer doped with impurities at a high concentration, that is, the P-enhanced crystalline Si layer doped with boron to a high degree, is formed by a single crystal 81
That is, it exhibits a higher oxidation rate than the N-type 8i pitaxial layer, and the difference becomes larger as the thermal oxidation temperature becomes lower. Furthermore, at a temperature of about 950 (C), the oxidation rate of the polycrystalline 84 layer with a high impurity concentration is about twice as slow as that of the single crystal Si layer. Therefore, in the selective thermal oxidation described above, pressure oxidation at a temperature of about 950 (c) is appropriate in consideration of the oxidation rate. Since there is a large difference in oxidation rate between the polycrystalline S1 layer with high impurity concentration of 111°C and the single crystal Si layer, in the selective thermal oxidation of the above example,
8'lN4 film 24 lower N type SN Ebitakiguyal layer 22
The amount of oxidation from the sides has been significantly reduced compared to the conventional one, and the width of the bird's beak 33 is about 1/3 that of the conventional one, or 0.5 [
μm]. By the selective thermal oxidation step, the P
The +-type channel-cut region 31 is slightly enlarged.

このようにして絶縁物分離領域の形成を終った被処理基
板は該基板浅面のSi、N、膜24及びその下部のsi
o、膜23を除去し、第2図0)lこ示すように素子形
成領域34のN!8iエピタキシャル層22面を表出せ
しめた後、通常の方法に従って紋領域にトランジスタ等
の回路素子の機能領域を形成する。なお図において、3
5はN+型コレクターコンタクト領域、36はP型ベー
ス領域、37はN+型工建ツタ領域、38はSin、膜
を表わしている。そして以後図示しないが、通常の方法
で絶縁膜の形成、配線パターンの形成等がなされてNP
N型パイボーラエ0が提供される。
After the formation of the insulator isolation region in this manner, the substrate to be processed consists of the Si, N, film 24 on the shallow surface of the substrate, and the Si film 24 on the shallow surface of the substrate.
o, the film 23 is removed, and the N! of the element forming region 34 is removed as shown in FIG. After exposing the surface of the 8i epitaxial layer 22, a functional region of a circuit element such as a transistor is formed in the pattern region according to a conventional method. In the figure, 3
5 is an N+ type collector contact region, 36 is a P type base region, 37 is an N+ type vine region, and 38 is a Sin film. Although not shown, an insulating film, a wiring pattern, etc. are then formed using normal methods to form the NP.
N-type piborae 0 is provided.

なお上記実施例においては本発明をNPN型パイボーツ
半導体装置について説明したが、本発明の方法はPNP
fJの半導体装置にも適用できる。
In the above embodiments, the present invention was explained with respect to an NPN type Pivot semiconductor device, but the method of the present invention is applicable to a PNP type
It can also be applied to fJ semiconductor devices.

以上説明したように本発明の方法によれば、バイポーラ
型半導体装置におけるV字状溝構造を有する絶縁物分離
領域を形成するに際して、素子形成領域に浸入して形成
される酸化機のバーズ・ビークの幅を極めて狭くおさえ
ることができるので、バイポーラ型半導体装置の集&度
を向上せしめることかできる。
As explained above, according to the method of the present invention, when forming an insulator isolation region having a V-shaped groove structure in a bipolar semiconductor device, the bird's beak of the oxidizer that is formed by penetrating into the element formation region Since the width of the bipolar semiconductor device can be kept extremely narrow, the integration density of the bipolar semiconductor device can be improved.

字状婢先端近傍の狭い領域に形成できるので、素子容量
の増加やを性PNPの発生がなくなり、バイポーラ型半
導体装置の動作速度の向上が図れる。
Since it can be formed in a narrow region near the tip of the shape, there is no increase in element capacitance or generation of PNP, and the operating speed of the bipolar semiconductor device can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

1g1図(a)乃至億)は従来の方法の工程断面図で、
第2図(a)乃至0)は本発明の方法の工程断面図であ
る。 図において、21はP″″諷シリコン基板、22はN型
シリコン・エピタキシャル層、23は二酸化シリコン膜
、24は窒化シリコン膜、25は7オト・レジスト・パ
ターン、26は分離領域加工窓、27はV字状溝、28
は第1の二酸化シリコン絶縁膜、29は穴、30はノン
・ドープ多結晶シリコン層、30′はP+証多結晶シリ
コン層、31はP+型チャネル・カット領域、32は第
2の二酸化シリコン絶縁膜、33はバーズ・ビーク、B
P、+は二ふっ化硼素イオンを示す。 単 1 回 秦 2 口
Figures 1g1 (a) to 10) are process cross-sectional views of the conventional method,
FIGS. 2(a) to 2(a) are cross-sectional views of the process of the method of the present invention. In the figure, 21 is a P'''' silicon substrate, 22 is an N-type silicon epitaxial layer, 23 is a silicon dioxide film, 24 is a silicon nitride film, 25 is a 7-hole resist pattern, 26 is an isolation region processing window, 27 is a V-shaped groove, 28
29 is a first silicon dioxide insulation film, 29 is a hole, 30 is a non-doped polycrystalline silicon layer, 30' is a P+ type polycrystalline silicon layer, 31 is a P+ type channel cut region, and 32 is a second silicon dioxide insulation film. Membrane, 33 is Bird's Beak, B
P and + represent boron difluoride ions. Single 1 times Qin 2 mouths

Claims (1)

【特許請求の範囲】[Claims] 第1導電型牛導体基板上に形成された第2導電型半導体
エピタキシャル層lこ、その表面力)ら半導体基板内に
達するV字状溝を形成し、#v字状溝の内面に選択的に
絶縁膜を形成し、厚さ制御エツチングにより該絶*Mに
おけるV字状溝の先端部を覆う領域曇こ穴を形成し、該
V字状溝内に多結晶シリコン層を形成し、該多結晶シリ
コン層に選択的に高濃度の第1導電型不純物を導入し、
熱酸化法により該多結晶シリコン層の上面に選択的に二
酸化シリコン絶縁膜を形成すると共に、該多結晶シリコ
ン層に導入された第1導電型不純物を前記V字状溝先端
部の絶縁膜の穴を介して半導体基板内に導入し、V字状
溝先端部近傍にチャネル・カット領埴を形成する工程を
有することを特徴とする半導体装置の製造方法。
A V-shaped groove reaching into the semiconductor substrate is formed from the second conductivity type semiconductor epitaxial layer formed on the first conductivity type conductive substrate (its surface force), and selectively An insulating film is formed in the V-shaped groove, a region of the hole covering the tip of the V-shaped groove is formed by thickness control etching, a polycrystalline silicon layer is formed in the V-shaped groove, and a polycrystalline silicon layer is formed in the V-shaped groove. selectively introducing high concentration first conductivity type impurities into the polycrystalline silicon layer;
A silicon dioxide insulating film is selectively formed on the upper surface of the polycrystalline silicon layer by a thermal oxidation method, and the first conductivity type impurity introduced into the polycrystalline silicon layer is added to the insulating film at the tip of the V-shaped groove. 1. A method of manufacturing a semiconductor device, comprising the step of introducing a semiconductor substrate into a semiconductor substrate through a hole and forming a channel cut region near the tip of a V-shaped groove.
JP12835081A 1981-08-17 1981-08-17 Mamufacture of semiconductor device Pending JPS5830142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12835081A JPS5830142A (en) 1981-08-17 1981-08-17 Mamufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12835081A JPS5830142A (en) 1981-08-17 1981-08-17 Mamufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5830142A true JPS5830142A (en) 1983-02-22

Family

ID=14982633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12835081A Pending JPS5830142A (en) 1981-08-17 1981-08-17 Mamufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5830142A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153685A (en) * 2001-05-18 2008-07-03 Fuji Electric Device Technology Co Ltd Method for manufacturing semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544743A (en) * 1978-09-26 1980-03-29 Fujitsu Ltd Manufacture of semiconductor device
JPS5575233A (en) * 1978-12-04 1980-06-06 Fujitsu Ltd Manufacturing semiconductor integrated circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544743A (en) * 1978-09-26 1980-03-29 Fujitsu Ltd Manufacture of semiconductor device
JPS5575233A (en) * 1978-12-04 1980-06-06 Fujitsu Ltd Manufacturing semiconductor integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153685A (en) * 2001-05-18 2008-07-03 Fuji Electric Device Technology Co Ltd Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US4638347A (en) Gate electrode sidewall isolation spacer for field effect transistors
JPH0355984B2 (en)
EP0258396A1 (en) Fabrication process for stacked mos devices.
JPS6237551B2 (en)
EP0126292B1 (en) Semiconductor device having an element isolation layer and method of manufacturing the same
JPH09167777A (en) Semiconductor device and its fabrication
JPH06232247A (en) Manufacturing of semiconductor layer isolated on insulation layer
JPS58220444A (en) Manufacture of semiconductor device
JPS5830142A (en) Mamufacture of semiconductor device
JP2000100931A (en) Semiconductor device and manufacture thereof
JPS59181529A (en) Semiconductor device and manufacture thereof
JPS61292371A (en) Semiconductor device
JPH08162523A (en) Semiconductor device, and its manufacture
JPS59177941A (en) Manufacture of element isolation region
JPH0778833A (en) Bipolar transistor and its manufacture
RU2244985C1 (en) Method for manufacturing complementary vertical bipolar transistors as parts of integrated circuits
JPH06140500A (en) Semiconductor device
JPH0423828B2 (en)
JPS61134073A (en) Manufacture of semiconductor device
JPH0669044B2 (en) Method for manufacturing semiconductor device
JPH0514430B2 (en)
JPS59195840A (en) Manufacture of semiconductor device
JPH01111373A (en) Manufacture of semiconductor device
JPH01214166A (en) Semiconductor integrated circuit device with bipolar transistor
JPH07169949A (en) Manufacture of semiconductor device