JPS583012Y2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPS583012Y2
JPS583012Y2 JP1977103704U JP10370477U JPS583012Y2 JP S583012 Y2 JPS583012 Y2 JP S583012Y2 JP 1977103704 U JP1977103704 U JP 1977103704U JP 10370477 U JP10370477 U JP 10370477U JP S583012 Y2 JPS583012 Y2 JP S583012Y2
Authority
JP
Japan
Prior art keywords
cooling water
condenser
water
evaporator
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1977103704U
Other languages
Japanese (ja)
Other versions
JPS5430361U (en
Inventor
藤原力弥
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP1977103704U priority Critical patent/JPS583012Y2/en
Publication of JPS5430361U publication Critical patent/JPS5430361U/ja
Application granted granted Critical
Publication of JPS583012Y2 publication Critical patent/JPS583012Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Description

【考案の詳細な説明】 本考案は水冷式の凝縮器を有する冷蔵庫用の冷凍装置で
あって、しかも逆サイクル運転による空冷式蒸発器の除
霜を可能にした冷凍装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration system for a refrigerator having a water-cooled condenser, and moreover, is capable of defrosting an air-cooled evaporator by reverse cycle operation.

冷凍装置において、冷媒の循環方向を逆転させることに
より蒸発器の除霜を行うことば既に知られているが、こ
の逆サイクル除霜運転時には凝縮器が一時的に蒸発器と
して作用するため、該凝縮器を水冷式とする場合は冷却
水の凍結を招くことになる。
In refrigeration equipment, it is already known that the evaporator is defrosted by reversing the circulation direction of the refrigerant, but during this reverse cycle defrosting operation, the condenser temporarily acts as an evaporator, so the condenser If the device is water-cooled, the cooling water will freeze.

このような理由から、従来の冷凍装置においては凝縮器
を水冷式とする場合は逆サイクル除霜方式を採用するこ
とができなかった。
For these reasons, in conventional refrigeration systems, it has not been possible to employ a reverse cycle defrosting system when the condenser is water-cooled.

本考案は凝縮器を水冷式とする場合であっても冷却水の
凍結を防止しつつ逆サイクル除霜運転を行うことができ
るようにするため、凝縮器を冷却するための冷却水循環
回路には、凝縮器から冷却塔に至る高温冷却水管路中に
貯水槽を設ける一方、該貯水槽の出口側には前記冷却塔
をバイパスして直接低温冷却水管路に連通し、且つ制御
弁によって開閉されるバイパス管を設け、除霜運転時、
前記貯水槽内の高温冷却水を前記バイパス管を通して直
接凝縮器へ還流させ熱源として利用できるようにした冷
凍装置を提供することを目的としてなされたものである
This invention enables reverse cycle defrosting operation while preventing cooling water from freezing even when the condenser is water-cooled. A water storage tank is provided in the high-temperature cooling water pipe leading from the condenser to the cooling tower, while the outlet side of the water tank bypasses the cooling tower and directly communicates with the low-temperature cooling water pipe, and is opened and closed by a control valve. A bypass pipe is installed to prevent defrosting.
The object of this invention is to provide a refrigeration system in which high-temperature cooling water in the water storage tank is directly returned to the condenser through the bypass pipe so that it can be used as a heat source.

以下図示の実施例を参照して本考案の冷凍装置を説明す
ると、図において符号30は冷凍装置における冷媒循環
回路を示し、同20は水冷式凝縮器12に対する冷却水
の循環回路を示している。
The refrigeration system of the present invention will be described below with reference to the illustrated embodiment. In the figure, reference numeral 30 indicates a refrigerant circulation circuit in the refrigeration apparatus, and 20 indicates a cooling water circulation circuit for the water-cooled condenser 12. .

先づ冷媒循環回路30の概要を説明すると、通常の冷凍
運転時には冷媒は実線矢印Xの如(循環し、逆サイクル
除霜運転時には冷媒は破線矢印Yで示す如く循環する。
First, an overview of the refrigerant circulation circuit 30 will be explained. During normal refrigeration operation, the refrigerant circulates as shown by the solid line arrow X, and during reverse cycle defrosting operation, the refrigerant circulates as shown by the broken line arrow Y.

即ち、冷凍運転時には圧縮機10から吐出された高温の
ガス冷媒は管路A1四路切換弁11、管路Bを経て水冷
式の凝縮器12に至りここで冷却されて液化せしめられ
る。
That is, during the refrigeration operation, the high temperature gas refrigerant discharged from the compressor 10 passes through the conduit A1, the four-way switching valve 11, and the conduit B to the water-cooled condenser 12, where it is cooled and liquefied.

凝縮器12において液化せしめられた冷媒は管路C1管
路り中の逆止弁14、管路Eを通って管路F中の膨張弁
15へ達してここで減圧された後、管路Gから空冷式の
蒸発器13内へ流入する。
The refrigerant liquefied in the condenser 12 passes through the check valve 14 in the conduit C1 and the expansion valve 15 in the conduit F through the conduit E, where it is depressurized and then transferred to the conduit G. and flows into the air-cooled evaporator 13.

蒸発器13内に流入した冷媒は蒸発して冷蔵庫9内の空
気を冷却した後、管路H1四路切換弁11及び管路Jを
通って圧縮機10へ還流するものである。
The refrigerant that has flowed into the evaporator 13 evaporates to cool the air inside the refrigerator 9, and then returns to the compressor 10 through the pipe H1, the four-way switching valve 11, and the pipe J.

一定時間(例えば1時間)以上、冷凍運転を行うと、蒸
発器13に多量の着霜が生じるのでこの霜を除去するた
めに四路切換弁11を操作して逆サイクル除霜運転を行
うことになる。
If the refrigeration operation is performed for a certain period of time (for example, one hour) or more, a large amount of frost will form on the evaporator 13, so in order to remove this frost, the four-way selector valve 11 must be operated to perform a reverse cycle defrosting operation. become.

この場合は圧縮機10から吐出された高温のガス冷媒は
蒸発器13側へ供給され、該蒸発器13に付着した霜を
溶融除去するとともに、ガス冷媒は液化する。
In this case, the high temperature gas refrigerant discharged from the compressor 10 is supplied to the evaporator 13 side, and the frost adhering to the evaporator 13 is melted and removed, and the gas refrigerant is liquefied.

この液冷媒は管路G、逆止弁16、膨張弁17を通って
凝縮器12へ至り、ここで冷却水から吸熱して蒸発した
後、管路B1四路切換弁11、管路Jを通って圧縮機1
0へ還流するものである。
This liquid refrigerant passes through the pipe G, the check valve 16, and the expansion valve 17, and reaches the condenser 12, where it absorbs heat from the cooling water and evaporates. through compressor 1
It refluxes to 0.

次に、冷却水循環回路20の概要を説明すると、この冷
却水循環回路20においては凝縮器12から冷却水を冷
却する冷却塔3に至る高温冷却水管路21中に凝縮器1
2から流出した高温の冷却水を一定量(例えば30t)
だけ貯溜する貯水槽1を設けている。
Next, to explain the outline of the cooling water circulation circuit 20, in this cooling water circulation circuit 20, a condenser 1 is connected to a high temperature cooling water pipe 21 leading from a condenser 12 to a cooling tower 3 that cools the cooling water.
A certain amount (for example, 30 tons) of high temperature cooling water flowing out from 2.
A water storage tank 1 is provided for storing water.

冷却塔3内で冷却された冷却水は低温冷却水管路22を
通ってポンプ4によって凝縮器12へ供給される。
The cooling water cooled in the cooling tower 3 is supplied to the condenser 12 by the pump 4 through the low temperature cooling water pipe 22.

又、高温冷却水管路21側に設けられている貯水槽1の
出口側と低温冷却水管路22との間は冷却塔3をバイパ
スするバイパス管5によって接続されている。
Further, the outlet side of the water storage tank 1 provided on the high temperature cooling water pipe 21 side and the low temperature cooling water pipe 22 are connected by a bypass pipe 5 that bypasses the cooling tower 3.

高温冷却水管路21とバイパス管5の分岐部には三方弁
からなる制御弁2が設けられており、この制御弁2は後
記するごとく、除霜運転時、前記貯水槽1の水温が所定
温度以下に低下したとき、高温冷却水の全部を冷却塔3
をバイパスして直接低温冷却水管路22側へ流すごとく
切換作動するようになっている。
A control valve 2 consisting of a three-way valve is provided at the branching part of the high-temperature cooling water pipe 21 and the bypass pipe 5, and as will be described later, this control valve 2 controls the water temperature of the water storage tank 1 to a predetermined temperature during defrosting operation. When the temperature drops to below, all high temperature cooling water is transferred to the cooling tower 3.
The switching operation is such that the cooling water is bypassed and directly flows to the low temperature cooling water pipe 22 side.

即ち、制御弁2は調節器8によってその動作を制御され
るが、この実施例では調節器8は貯水槽1内の冷却水温
度を検知装置7によって検出して該冷却水温度が所定温
度(例えば20℃)以下になったときに高温冷却水をバ
イパス管5を通して低温冷却水管路22側へ流すべく制
御弁2を切換又は開度調整するようになっている。
That is, the operation of the control valve 2 is controlled by the regulator 8. In this embodiment, the regulator 8 detects the temperature of the cooling water in the water storage tank 1 using the detection device 7, so that the temperature of the cooling water reaches a predetermined temperature ( For example, when the temperature drops below 20° C., the control valve 2 is switched or the opening degree is adjusted so that the high-temperature cooling water flows through the bypass pipe 5 to the low-temperature cooling water pipe 22 side.

続いて冷媒循環回路30と冷却水循環回路20の相互作
用について説明すると、冷媒循環回路30側が通常の冷
凍運転を行っている場合(冷媒は実線矢印Xの方向に流
通する)は、冷却水循環回路20側では冷却水は実線矢
印Xで示す如く、即ち、凝縮器12、貯水槽1、制御弁
2、冷却塔3、ポンプ4、凝縮器12の順序で循環する
Next, to explain the interaction between the refrigerant circulation circuit 30 and the cooling water circulation circuit 20, when the refrigerant circulation circuit 30 side is performing normal refrigeration operation (the refrigerant flows in the direction of the solid line arrow X), the interaction between the cooling water circulation circuit 30 and the cooling water circulation circuit 20 On the side, the cooling water circulates in the order shown by the solid arrow X, that is, the condenser 12, the water tank 1, the control valve 2, the cooling tower 3, the pump 4, and the condenser 12.

尚、図示の実施例では通常の冷凍運転中でも、温水槽1
内の冷却水温度が低下した場合(20″C以下)には、
調節器8が制御弁2を動作せしめてバイパス管5側へ高
温冷却水の全部を流通させる如く作用する。
In the illustrated embodiment, even during normal refrigeration operation, the hot water tank 1
If the temperature of the cooling water inside the tank drops (below 20"C),
The regulator 8 operates the control valve 2 to allow all of the high temperature cooling water to flow to the bypass pipe 5 side.

即ち、冷却水の温度が低下し過ぎると凝縮器12の凝縮
圧力が低下し、このため蒸発器13の蒸発圧力が低下す
るために圧縮機10への液バツク現象が発生するおそれ
がある。
That is, if the temperature of the cooling water drops too much, the condensing pressure in the condenser 12 will drop, and as a result, the evaporation pressure in the evaporator 13 will drop, so there is a risk that liquid backflow to the compressor 10 will occur.

しかしながら図示の実施例によれば冷却水が所定温度以
下に低下したときは、冷却水が冷却塔3をバイパスして
流通するので、凝縮器12には高温の冷却水が流通し、
このため凝縮器12の凝縮圧力は所定以下に低下しない
のでこのような液バツク現象を未然に防止することがで
きる。
However, according to the illustrated embodiment, when the temperature of the cooling water drops below a predetermined temperature, the cooling water bypasses the cooling tower 3 and flows, so high temperature cooling water flows to the condenser 12.
Therefore, the condensing pressure of the condenser 12 does not drop below a predetermined level, so that such a liquid back phenomenon can be prevented.

次に冷媒循環回路30側が逆サイクル除霜運転に切換っ
た場合は、凝縮器12は一時的に蒸発器として作用し、
冷媒は凝縮器12に流入する冷却水から吸熱して除霜の
ための主たる熱源とする。
Next, when the refrigerant circulation circuit 30 side switches to reverse cycle defrosting operation, the condenser 12 temporarily acts as an evaporator,
The refrigerant absorbs heat from the cooling water flowing into the condenser 12 and serves as the main heat source for defrosting.

一方、冷却水は急速に温度降下するが、該冷却水の温度
が20℃以下に低下すると、検知装置7がこれを検知し
、調節器8が制御弁2を動作せしめてバイパス管5側へ
冷却水の全量を流通させる。
On the other hand, the temperature of the cooling water drops rapidly, and when the temperature of the cooling water drops below 20°C, the detection device 7 detects this, and the regulator 8 operates the control valve 2 to direct the cooling water to the bypass pipe 5 side. Distribute the entire amount of cooling water.

これによって貯水槽1内の高温の冷却水は冷却塔3をバ
イパスして直接凝縮器12へ供給され、凝縮器12内に
おける冷却水の凍結を防止するとともに、蒸発器13に
対して十分なる除霜用熱源を提供することができる。
As a result, the high-temperature cooling water in the water storage tank 1 bypasses the cooling tower 3 and is directly supplied to the condenser 12, which prevents the cooling water from freezing in the condenser 12 and provides sufficient cooling to the evaporator 13. A heat source for frost can be provided.

尚、本考案の方式では貯水槽1内の冷却水は通常の冷凍
運転時における冷凍の凝縮の排熱によって加熱されるも
のであり、この排熱を除霜用の熱源として利用するもの
であるから冷凍装置の排熱を有効に利用することができ
る点で大きなオ溢をもたらすものである。
In addition, in the method of the present invention, the cooling water in the water storage tank 1 is heated by the waste heat of condensation during normal refrigeration operation, and this waste heat is used as a heat source for defrosting. This brings about a big advantage in that the exhaust heat from the refrigeration equipment can be used effectively.

貯水槽1の容量は冷凍装置の冷凍能力に応じて適宜設計
することができる(たとえば出力3馬力の冷凍装置で約
30t)。
The capacity of the water storage tank 1 can be appropriately designed depending on the refrigeration capacity of the refrigeration system (for example, about 30 tons for a refrigeration system with an output of 3 horsepower).

図示の実施例に関する説明は入路上記の通りであるが、
本考案を実施するについては次のような構成の追加又は
変更が可能である。
A description of the illustrated embodiment is given above, but
When implementing the present invention, the following configurations can be added or changed.

(1)制御弁2の制御を温水槽1内の冷却水温度とは無
関係にタイマーによって行う。
(1) The control valve 2 is controlled by a timer regardless of the temperature of the cooling water in the hot water tank 1.

たとえば1時間の冷凍運転の後に10分間の逆サイクル
除霜運転を七ツトシ、それに合わせて制御弁2の開閉制
御を行う。
For example, after one hour of freezing operation, seven ten minutes of reverse cycle defrosting operation are performed, and the control valve 2 is controlled to open and close accordingly.

(2)制御弁2はバイパス管5の中間に設けてもよい。(2) The control valve 2 may be provided in the middle of the bypass pipe 5.

この場合、凝縮器12から流出した前記冷却水をバイパ
ス管5に全部又は1部バイパスさせるようにしてもよい
ものである。
In this case, all or part of the cooling water flowing out of the condenser 12 may be bypassed to the bypass pipe 5.

尚、図において符号9は冷蔵庫、18及び19は感温筒
を示している。
In the figure, reference numeral 9 indicates a refrigerator, and 18 and 19 indicate temperature-sensitive cylinders.

次に本考案の効果を説明すると、本考案の冷凍装置は凝
縮器12のための冷却水循環回路20中に高温冷却水を
プールする貯水槽1を設けておき、冷凍装置における逆
サイクル除霜運転時に該高温冷却水をバイパス管5を通
して凝縮器12へ供給するようにして除霜運転時におけ
る熱源として利用するようにしたものであるから、凝縮
器12内の冷却水の凍結は未然に防止され、しかも該凝
縮器12を介して冷媒に供与された高温冷却水の熱が蒸
発器13での除霜作用を促進させることになるから逆サ
イクル除霜運転の時間も可及的に短縮され、効率的な冷
凍装置の運転を行うことができる。
Next, to explain the effect of the present invention, the refrigeration system of the present invention has a water storage tank 1 for pooling high temperature cooling water in the cooling water circulation circuit 20 for the condenser 12, and reverse cycle defrosting operation is performed in the refrigeration system. Since the high-temperature cooling water is sometimes supplied to the condenser 12 through the bypass pipe 5 and used as a heat source during defrosting operation, freezing of the cooling water in the condenser 12 is prevented. Moreover, since the heat of the high-temperature cooling water supplied to the refrigerant through the condenser 12 promotes the defrosting action in the evaporator 13, the time of reverse cycle defrosting operation is shortened as much as possible. The refrigeration equipment can be operated efficiently.

又、貯水槽1内の高温冷却水が保有する熱は本来排熱と
して捨てられていたものであるが、本考案はこの熱を除
霜用熱源として利用するものであり、電気ヒータなどの
別熱源が不要となり、電気ヒータ用の配線も不要となる
ので装置全体のコストダウンに寄与する効果がある。
In addition, the heat held by the high-temperature cooling water in the water storage tank 1 was originally discarded as waste heat, but in this invention, this heat is used as a heat source for defrosting, and it can be used as a heat source for defrosting. This eliminates the need for a heat source and also eliminates the need for wiring for an electric heater, which has the effect of contributing to reducing the cost of the entire device.

尚、図示の実施例における如く、貯水槽1内の冷却水温
度の低下に従って制御弁2を動作させるようにすれば、
特に冬期における通常の冷凍運転時の凝縮圧力を所定以
下に低下させ7゛ヨいように調整できる効果があり、従
って液バツク現象をも防止することができるものである
Incidentally, if the control valve 2 is operated as the temperature of the cooling water in the water tank 1 decreases as in the illustrated embodiment,
Particularly in winter, the condensation pressure during normal refrigeration operation can be lowered to a predetermined value or less and can be adjusted by 7 degrees, thereby preventing the liquid back phenomenon.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本考案の実施例にかかる冷凍装置の冷媒及び冷却水
回路図である。 1・・・・・・貯水槽、2・・・・・・制御弁、3・・
・・・・冷却塔、5・・・・・・バイパス管、8・・・
・・・調節器、10・・・・・・圧縮機、11・・・・
・・四路切換弁、12・・・・・・凝縮器、13・・・
・・・蒸発器、20・・・・・・冷却水循環回路、21
・・・・・・高温冷却水管路、22・・・・・・低温冷
却水管路、30・・・・・・冷媒循環回路。
The figure is a refrigerant and cooling water circuit diagram of a refrigeration system according to an embodiment of the present invention. 1...Water tank, 2...Control valve, 3...
... Cooling tower, 5 ... Bypass pipe, 8 ...
... Regulator, 10... Compressor, 11...
...Four-way switching valve, 12...Condenser, 13...
... Evaporator, 20 ... Cooling water circulation circuit, 21
...High temperature cooling water pipe line, 22...Low temperature cooling water pipe line, 30...Refrigerant circulation circuit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機10、四路切換弁11、水冷式の凝縮器12及び
空冷式の蒸発器13を有し前記蒸発器13で冷蔵庫9内
の空気を冷却する冷凍装置であって、前記蒸発器13の
除霜運転時前記四路切換弁11の切換操作により、該蒸
発器13へ高温ガス冷媒を供給し得る如き冷媒循環回路
30を構成するとともに、前記凝縮器12を冷却するた
めの冷却水循環回路20には前記凝縮器12から冷却塔
3に至る高温冷却水管路21中に貯水槽1を設ける一方
、該貯水槽1の出口側には前記冷却塔3をバイパスして
直接低温冷却水管路22に連通し且つ制御弁2によって
開閉されるバイパス管5を設け、前記蒸発器13に対す
る除霜運転時には前記制御弁2の操作により、前記貯水
槽1内の高温冷却水を前記バイパス管5及び低温冷却水
管路22を通して直接前記凝縮器12へ還流させるよう
にしたことを特徴とする冷凍装置。
This refrigeration system has a compressor 10, a four-way switching valve 11, a water-cooled condenser 12, and an air-cooled evaporator 13, and cools the air inside the refrigerator 9 with the evaporator 13. A refrigerant circulation circuit 30 is constructed which can supply high temperature gas refrigerant to the evaporator 13 by switching the four-way switching valve 11 during defrosting operation, and a cooling water circulation circuit 20 is used to cool the condenser 12. A water storage tank 1 is provided in the high-temperature cooling water pipe 21 leading from the condenser 12 to the cooling tower 3, while a water storage tank 1 is provided at the outlet side of the water storage tank 1 to bypass the cooling tower 3 and directly connect to the low-temperature cooling water pipe 22. A bypass pipe 5 is provided which communicates with the evaporator 13 and is opened and closed by a control valve 2. During defrosting operation for the evaporator 13, the high temperature cooling water in the water storage tank 1 is transferred to the bypass pipe 5 and low temperature cooling by operating the control valve 2. A refrigeration system characterized in that water is directly refluxed to the condenser 12 through a water pipe 22.
JP1977103704U 1977-08-01 1977-08-01 Refrigeration equipment Expired JPS583012Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1977103704U JPS583012Y2 (en) 1977-08-01 1977-08-01 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1977103704U JPS583012Y2 (en) 1977-08-01 1977-08-01 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS5430361U JPS5430361U (en) 1979-02-28
JPS583012Y2 true JPS583012Y2 (en) 1983-01-19

Family

ID=29044456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1977103704U Expired JPS583012Y2 (en) 1977-08-01 1977-08-01 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS583012Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS472940U (en) * 1971-02-01 1972-09-01

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190050U (en) * 1975-01-16 1976-07-19
JPS565000Y2 (en) * 1975-04-15 1981-02-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS472940U (en) * 1971-02-01 1972-09-01

Also Published As

Publication number Publication date
JPS5430361U (en) 1979-02-28

Similar Documents

Publication Publication Date Title
US4660384A (en) Defrost apparatus for refrigeration system and method of operating same
JPH11173711A (en) Dual refrigerator
JP3854675B2 (en) Ice heat storage device
JPS583012Y2 (en) Refrigeration equipment
JP2963566B2 (en) Absorption type cold / hot water unit
JP2569796B2 (en) Thermal storage type air conditioner
JP2507642B2 (en) Moisture collection device
JPH05126440A (en) Freezer
JP2006118772A (en) Air refrigerant type refrigeration device
JP2789852B2 (en) Ice making equipment
JP3027650B2 (en) Absorption type cold / hot water unit
JPH1151503A (en) Cooling apparatus
JP2924460B2 (en) Air conditioner
JP2001012843A (en) Method of defrosting for brine cooling system
JP2008292016A (en) Freezer, air conditioner and method for controlling them
JPS595815B2 (en) Two-stage compression refrigeration equipment
JPS6230683Y2 (en)
KR920009306B1 (en) Refrigerating cycle
JP2001108256A (en) Hot water supplying device
JPH1130450A (en) Air conditioner
JPH068460Y2 (en) Cooling water control circuit
JPS5852148B2 (en) Two-stage compression refrigeration equipment
JP3244774B2 (en) Automatic cooling / heating switching method and apparatus in absorption chiller / heater
JP2737543B2 (en) Heat pump water heater
JPH10170086A (en) Air conditioner