JPS5829191A - Driving method for replicate gate - Google Patents

Driving method for replicate gate

Info

Publication number
JPS5829191A
JPS5829191A JP56127710A JP12771081A JPS5829191A JP S5829191 A JPS5829191 A JP S5829191A JP 56127710 A JP56127710 A JP 56127710A JP 12771081 A JP12771081 A JP 12771081A JP S5829191 A JPS5829191 A JP S5829191A
Authority
JP
Japan
Prior art keywords
bubble
pulse
driving
pattern
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56127710A
Other languages
Japanese (ja)
Other versions
JPS611831B2 (en
Inventor
Kazuo Matsuda
松田 和雄
Makoto Ohashi
誠 大橋
Yoshio Sato
良夫 佐藤
Tsutomu Miyashita
勉 宮下
Kazunari Yoneno
米納 和成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56127710A priority Critical patent/JPS5829191A/en
Priority to CA000409485A priority patent/CA1187175A/en
Priority to EP82304326A priority patent/EP0072696A3/en
Priority to US06/408,849 priority patent/US4434476A/en
Publication of JPS5829191A publication Critical patent/JPS5829191A/en
Publication of JPS611831B2 publication Critical patent/JPS611831B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0858Generating, replicating or annihilating magnetic domains (also comprising different types of magnetic domains, e.g. "Hard Bubbles")

Abstract

PURPOSE:To obtain a high density bubble device with a short access time, through the combination of a bubble stretching pulse and a bubble disconnecting pulse. CONSTITUTION:A pulse 11 to bridge a bubble between a minor loop and a major line while stretching to a stripe shape magnetic domain, and a pulse 12 of opposite polarity for bubble disconnection are combined with each other. The pulse 12 can be located between the pulses 12 to stretch the bubbles. The operating characteristics in using this pulse as a replicate gate is as shown in Figure. That is, a broad operating characteristic and stable operation can be obtained.

Description

【発明の詳細な説明】 本発明はイオン注入またはY!GKよるバブル駆動層を
有する′磁気バブルメモリ素子のレグリケードゲートの
駆動法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes ion implantation or Y! This invention relates to a method for driving a reglicade gate of a magnetic bubble memory device having a bubble driving layer formed by GK.

磁気バブルメモリ素子を利用して情報の蓄積、。Storage of information, utilizing magnetic bubble memory elements.

論理演算等を行なう磁気バブル利用装置は、不揮発性、
高記憶密駄及び低消費電力等積々の特徴をもち、さらに
は機械的要素を全く含まない固体素子であることから非
常に高い信頼性を有している。
Devices using magnetic bubbles that perform logical operations, etc. are non-volatile,
It has numerous features such as high memory density and low power consumption, and is also extremely reliable because it is a solid-state device that does not contain any mechanical elements.

このような磁気バブルメモリ装置にも最近の情報量の増
加、装置の/」・型化資求などによシ記憶密度の増加が
求められている。ところが従来の磁気パズルメモリに用
いられる素子は、パズルの転送/譬ターンが磁性薄膜上
に蒸着し九ノ譬−マロイを4真食刻によシ形成されてい
るため、その寸法精度が可視光による露光の精度に制限
され、/4ターンを小さくして記憶密度を増加すること
が困難になって来ている。このため最近、イオン注入法
又はYXG(イツトリウム鉄ガーネット)薄膜による転
送パターンの形成法が開発されている。代表してイオン
注入法によるデバイスについて鹸明すると、第1図の平
面図および第2図の断面図に示す如くガドリニウム・ガ
リウム・ガーネ、)(GGG)Jk板1の上にバブル用
結晶となる磁性ガーネットの薄膜2を液相エピタキシャ
ル成長させて形成し、この磁性薄JglI[2に対しパ
ターン3以外の部分4に水素、ネオン、ヘリウム等のイ
オンを注入して・ダターン3を形成する。このようにパ
ターン3を形成した素子はイオンが注入された部分4の
磁化容異軸方向が矢印aの如く面内方向と一致し、パタ
ーン部分3の磁化容易軸方向は矢印すの如くもとのまま
の面内方向と垂直である。従りてバブル5は回転磁界に
よりてパターン30周縁に沿って矢印1の如く転送され
る。そしてこのパターン3はb形中四角形を連接した形
状であシ、従来のパーiロイΔターンの如くギヤラグを
必要としないため寸法精IEが緩くとも良く、従ってパ
ターンが小さくでき高密度化が実現される。このような
磁気バブルメモリ素子のメジャーのマイナー構成の場合
、そのレグリケードゲートには第3図に示す如き構造の
ものが提案されている。これを図によシ説明すると、符
号6はメジャーライン、7はマイナールーフ、8はメジ
ャーラインとマイナールーフ”Ktたがるヘアピン状の
コンダクタパターン、9はシェブロン形にイオン注入を
行なわなかったバブル切断用のパターンである。そして
マイナーループ7の先端ム部とメジャーライン60カス
グ′Bとを対向さ場、この2点を結ぶ線Ka2てコンダ
クタパターン8を配置し、メジャーライン6とマイナー
ルーグアの中間付近にパターン9を形成したものである
。このノ量ターン90役5tra第4図に示すようにダ
イヤ毫ンド型の非インシラΔターンlOを形成させ、こ
れに面内磁界を同図のように印加したとき、・り一ン1
0の上方にバブルを吸引するチャージドウオールが発生
したとすると、下方にはバブルを反撥切断する方向のチ
ャージドウオールが発生することを利用している。従っ
て第3図のヘアピン状コンダクタノターン8によってバ
ブルが引き伸ばされ、かつA・及びB部が吸引となる回
転磁界の位相のとき、パターン9のE及びD部には反撥
のチャージトウーオールが発生しバブルを切断する役割
を果している。このようなレゾリケー)f−)の駆動に
は単に矩形状のパルス電流を用いても良いが、さらに高
速かつ安定した駆動法の開発が要求されている。本発明
はとの要求に基づいて案出されたものである。
Such magnetic bubble memory devices are also required to have an increased storage density due to the recent increase in the amount of information and the need for more compact devices. However, in the elements used in conventional magnetic puzzle memories, the puzzle transfer/puzzle turns are deposited on a magnetic thin film and formed by etching the nine-malloy four times, so its dimensional accuracy is limited to visible light. It is becoming difficult to reduce the /4 turn and increase the storage density due to limitations on exposure accuracy. For this reason, recently, a method of forming a transfer pattern using an ion implantation method or a YXG (yttrium iron garnet) thin film has been developed. As a representative example of a device using the ion implantation method, as shown in the plan view of FIG. 1 and the cross-sectional view of FIG. A thin film 2 of magnetic garnet is formed by liquid phase epitaxial growth, and ions such as hydrogen, neon, helium, etc. are implanted into a portion 4 of the magnetic thin JglI[2 other than the pattern 3 to form a datan 3. In the element in which the pattern 3 is formed in this way, the magnetization different axis direction of the ion-implanted portion 4 coincides with the in-plane direction as shown by the arrow a, and the easy magnetization axis direction of the pattern portion 3 is the same as the original direction as shown by the arrow a. It is perpendicular to the same in-plane direction. Therefore, the bubble 5 is transferred along the periphery of the pattern 30 as shown by the arrow 1 by the rotating magnetic field. This pattern 3 has a shape of connected rectangles in the b shape, and does not require a gear lug like the conventional Perloy Δ turn, so the dimensional precision IE can be loose, so the pattern can be made smaller and higher density can be achieved. be done. In the case of a major/minor configuration of such a magnetic bubble memory element, a structure as shown in FIG. 3 has been proposed for the regricade gate. To explain this with a diagram, 6 is a major line, 7 is a minor roof, 8 is a hairpin-shaped conductor pattern with a major line and minor roof, and 9 is a chevron-shaped bubble without ion implantation. This is a pattern for cutting.Then, with the tip part of the minor loop 7 and the major line 60 kasug'B facing each other, the conductor pattern 8 is placed along the line Ka2 connecting these two points, and the conductor pattern 8 is placed between the major line 6 and the minor loop 60. A pattern 9 is formed near the middle of the pattern 9.As shown in FIG. When applied as follows, ・Rin 1
If a charged wall that attracts bubbles is generated above zero, a charged wall that repulses and cuts the bubbles is generated below. Therefore, when the bubble is stretched by the hairpin-shaped conductor turn 8 in FIG. 3 and the phase of the rotating magnetic field is such that parts A and B are attracted, repulsive charged wool is generated in parts E and D of the pattern 9. It plays the role of cutting the bubble. Although it is possible to simply use a rectangular pulse current to drive such a resolute (f-), there is a need to develop an even faster and more stable driving method. The present invention was devised based on the requirements of the following.

このため本発明においては、磁気バブル用結晶基板上に
イオン注入によるバブル駆動層あるいはYIG等の面内
異方性を有するバブル駆動層を形成し九磁気バブルメモ
リ素子のレノリケ−1”−)の駆動法において、レグリ
ケードの;ンダクタパターンにはバブルを伸長させるパ
ルス電流と、それに!I続くバブル切断用の逆極性のパ
ルス−流とを組合わせ九Δルス電流を流すことを特徴と
するものである。
For this reason, in the present invention, a bubble driving layer by ion implantation or a bubble driving layer having in-plane anisotropy such as YIG is formed on a crystal substrate for magnetic bubbles, and The driving method is characterized in that a 9Δ Lus current is passed through the Reglicade's inductor pattern by combining a pulsed current for expanding the bubble, followed by a pulsed current of opposite polarity for cutting the bubble. be.

一以下添付図面に基づいて本発明の実施例につき詳細K
l!明する。
1.Details K for the embodiments of the invention based on the attached drawings
l! I will clarify.

第5WJに本発明法に用いる/llスス流の波形図を示
す、第5図(畠)に示す波形はf−)内に入りたバブル
をスト2イグ状磁区に引き伸ばしてマイナールーフとメ
ジャーラインとの間にまえがせる九め0/#ルス11と
、その後に続くバブル切断用の逆極性のΔルス12とが
組合わされている。なおこのバブル切断用OΔルス12
は第5図(b)のようにバブルを伸長させるパルス11
の中間K h −z ”C%jL%fh0 このようなパルスを第3図に示したレグリケー)r−)
に用い九ときの動作特性を第6図乃至第9図に示す。な
おノヤルス紘第5図(荀の波形を用い、そのパルスの台
幅は、τ@ m4 Am e TH=O,OSハ#ち−
Q、3μSとム駆動磁界は500・、駆動周波数は10
0 kHzとした。そして第6崗u/4ルス110電流
値■1を120aAに一定とし、/fルス先端の位相θ
とバブル切断用のdルス12の電流!宜とを変化させた
ときの動作特性であル、第7図はIl ml 20mA
a Il m70mAに一定し、位相0とバイアス磁界
H,とを変化させ九′2−きの動作特性である。
The 5th WJ shows a waveform diagram of the /ll soot flow used in the method of the present invention. A ninth 0/# Lux 11 placed in front of the 0/# Lux 11 is combined with a Δ Lux 12 of opposite polarity for cutting the bubble that follows. In addition, this bubble cutting OΔ Lus 12
is the pulse 11 that extends the bubble as shown in Figure 5(b).
The intermediate K h −z ”C%jL%fh0 Such a pulse is shown in Fig. 3)
6 to 9 show the operating characteristics when used in the 9th mode. In addition, using the waveform of Figure 5 of Noyarusu Hiroshi (Xu), the width of the pulse is τ @ m4 Ame TH=O, OS ha
Q, 3 μS, driving magnetic field is 500, driving frequency is 10
The frequency was set to 0 kHz. Then, the 6th wave u/4 pulse 110 current value ■1 is constant at 120 aA, and the phase θ of the tip of /f pulse
And the current of d rus 12 for bubble cutting! Figure 7 shows the operating characteristics when changing the Il ml 20mA.
The operating characteristics are as follows: a Il m is constant at 70 mA, and the phase 0 and the bias magnetic field H are varied.

また第8図はθユ0’、I雪諺120mAに一定し、バ
ブル切断用の電流■、とバイアス磁界H1どを変化させ
たときの動作特性である。第9図はH,−H8の動作マ
ージンを本発明法と従来法とを比軟して示したもので、
本発明法はL二〇”m Il 罵70−11.■120
mAの場合の上限を曲線ム、下限をにで示し、従来法の
矩形波を用いた場合の上限をaWii B s下限をB
′で示しえ。以上の第6図乃至第9図よ多本発明法は広
い動作特性と、安定し九動作が得られることがわかる。
Further, FIG. 8 shows the operating characteristics when θ is constant at 0', I is constant at 120 mA, and the bubble cutting current 2, bias magnetic field H1, etc. are varied. Figure 9 shows the operating margins of H and -H8 in comparison between the method of the present invention and the conventional method.
The method of the present invention is L20"m Il 70-11.■120
In the case of mA, the upper limit is shown by curve M, the lower limit is shown by , and the upper limit when using the conventional square wave is aWii B.
Show it with '. As shown in FIGS. 6 to 9 above, it can be seen that the method of the present invention has wide operating characteristics and stable operation.

以上説明した如く本発明のレプリケー)f−)の駆動法
はバブル引き伸゛し用パルスとバブル切断用パルスとを
組合わせることにより、広くかつ安定な動作特性が得ら
れ、これによシ従来イオン注入バブルデバイスにおいて
行なわれていなかったプロ、フレグリケートを実現する
ことが可能となシアクセスタイムの短い高密度バブルデ
バイスが達成できる効果がある。
As explained above, the driving method of the replica (f-) of the present invention provides wide and stable operating characteristics by combining the bubble stretching pulse and the bubble cutting pulse. There is an effect that a high-density bubble device with a short access time can be achieved, which can realize pro-fragric acid, which has not been done in ion-implanted bubble devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はイオン注入法によ多形成される磁気バブルメ篭
り素子の千面自、第2図は第1図の■−璽線における断
面図、第3図はイオン注入法によ〕形成された磁気バブ
ルメモリ素子のレグリケードダートの平′rM図、第4
図はそのバブル切断用パターンの動作原理を説明する説
明図、第5図は本発明Kかかるレプリケートゲートの駆
動法に用いるパルスの実施例O波形図、第6図乃至第9
図は本発明法の実施例の動作特性図であって、第6図は
一−■8、第7図は一−Hい第8図はI雪−Hい第9図
祉H1−H,の各特性図である。 6−メシヤーライン、7−!イナーループ、8−コンダ
クタΔターン、9−バブル切断用/fターン、11−バ
ブル引!伸り用パルス、12−バブル切断用パルス。 特許出願人 富士通株式金社 特許出願代理人 弁理士  青 木   朗 弁理士  藺 舘 和 之 弁理士  内 1)幸 男 弁理士  山 口 昭 之 第5面 第6図 位相e(度)
Figure 1 shows a thousand-faced magnetic bubble cage element formed by the ion implantation method, Figure 2 is a sectional view taken along the line - - in Figure 1, and Figure 3 shows the magnetic bubble cage element formed by the ion implantation method. Fig. 4 is a flat diagram of the regricade dart of the magnetic bubble memory element.
FIG. 5 is an explanatory diagram illustrating the operating principle of the bubble cutting pattern, FIG. 5 is an embodiment O waveform diagram of pulses used in the replicate gate driving method according to the present invention K, and FIGS. 6 to 9
The figures are operational characteristic diagrams of an embodiment of the method of the present invention, in which Fig. 6 is 1-■8, Fig. 7 is 1-H, Fig. 8 is I-H, Fig. 9 is H1-H, FIG. 6- Messiah line, 7-! Inner loop, 8-conductor Δ turn, 9-bubble cutting/f-turn, 11-bubble pull! Stretching pulse, 12-bubble cutting pulse. Patent Applicant: Fujitsu Kinsha Patent Application Representative Patent Attorney: Akira Aoki, Patent Attorney: Kazuyuki Itate, Patent Attorney: 1) Yukio, Patent Attorney: Akira Yamaguchi, Page 5, Figure 6, Phase e (degrees)

Claims (1)

【特許請求の範囲】[Claims] 1、 9気バブル用結晶基板上にイオン注入によるパズ
ル駆動層あるいはYIG(イットリクム鉄ガーネ、ド)
勢の面内異方性を有するバブル駆動層を形成した磁気バ
ブルメモリ素子のレグリケードr−)の駆動法において
、レプリケー)?−)のコンダクタ−ターンにはバブル
を伸長させるパルス電流と、それに引続くバブル切断用
の逆極性のパルス電流とを組合わせたパルス電流を流す
ことを特徴とするレグリケードr−Fの駆動法。
1. Puzzle driving layer or YIG (yttricum iron garnet) by ion implantation on the crystal substrate for the 9-air bubble.
In a method for driving a magnetic bubble memory device in which a bubble driving layer having a certain amount of in-plane anisotropy is formed, a replication)? A method for driving Reglicade r-F, characterized in that a pulsed current that is a combination of a pulsed current for expanding a bubble and a subsequent pulsed current of opposite polarity for cutting the bubble is passed through the conductor turn of (-).
JP56127710A 1981-08-17 1981-08-17 Driving method for replicate gate Granted JPS5829191A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56127710A JPS5829191A (en) 1981-08-17 1981-08-17 Driving method for replicate gate
CA000409485A CA1187175A (en) 1981-08-17 1982-08-16 Magnetic bubble memory device and method for operating the same
EP82304326A EP0072696A3 (en) 1981-08-17 1982-08-17 Method for operating a magnetic bubble memory device
US06/408,849 US4434476A (en) 1981-08-17 1982-08-17 Magnetic bubble memory device and method for operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56127710A JPS5829191A (en) 1981-08-17 1981-08-17 Driving method for replicate gate

Publications (2)

Publication Number Publication Date
JPS5829191A true JPS5829191A (en) 1983-02-21
JPS611831B2 JPS611831B2 (en) 1986-01-20

Family

ID=14966789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56127710A Granted JPS5829191A (en) 1981-08-17 1981-08-17 Driving method for replicate gate

Country Status (1)

Country Link
JP (1) JPS5829191A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174263A (en) * 1983-10-25 1985-09-07 ダナ、コ−パレイシヤン Welding method
JPH0287115U (en) * 1988-12-23 1990-07-10
US10132361B2 (en) 2012-08-31 2018-11-20 Hino Motors, Ltd. Method for manufacturing propeller shaft

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174263A (en) * 1983-10-25 1985-09-07 ダナ、コ−パレイシヤン Welding method
JPH0580316B2 (en) * 1983-10-25 1993-11-08 Dana Corp
JPH0287115U (en) * 1988-12-23 1990-07-10
US10132361B2 (en) 2012-08-31 2018-11-20 Hino Motors, Ltd. Method for manufacturing propeller shaft

Also Published As

Publication number Publication date
JPS611831B2 (en) 1986-01-20

Similar Documents

Publication Publication Date Title
Wolfe et al. Ion implanted patterns for magnetic bubble propagation
US4086571A (en) Magnetic bubble domain generator and annihilator
US4080591A (en) Replicator for cross-tie wall memory system incorporating isotropic data track
US3438016A (en) Domain tip propagation shift register
JPS5829191A (en) Driving method for replicate gate
US4075613A (en) Logic gate for cross-tie wall memory system incorporating isotropic data tracks
JPS57198544A (en) Manufacture of magnetic recording medium
Van Den Berg et al. Wall clusters in thin soft ferromagnetic configurations
CA1046635A (en) Disk generator
Taylor Charged walls in amorphous magnetic films
Knowles The Estimation of Domain Wall Velocity in aSquare Loop'Ferrite, and some Observations on the Reversal Process
US3760385A (en) Optical scanner
JPS5896705A (en) Magnetic bubble memory element
JPS6037547B2 (en) Gate driving method for ion-implanted magnetic bubble memory device
JPS622388B2 (en)
JPH033187A (en) Bloch line memory device
JPS5928290A (en) Ion-implanted bubble memory element
SU1169020A1 (en) Shift register
JPS5829192A (en) Replicate transfer gate for magnetic bubble memory
GB1564137A (en) Digital magnetic memory systems
JPS5996592A (en) Magnetic storage element
JPS58102384A (en) Magnetic bubble memory element
JPS58200490A (en) Contiguous disc type magnetic bubble element
JPS5591105A (en) Magnetic thin film
SCHWEE et al. Advanced mass memories