JPS582886A - Power source circuit unit - Google Patents

Power source circuit unit

Info

Publication number
JPS582886A
JPS582886A JP10154281A JP10154281A JPS582886A JP S582886 A JPS582886 A JP S582886A JP 10154281 A JP10154281 A JP 10154281A JP 10154281 A JP10154281 A JP 10154281A JP S582886 A JPS582886 A JP S582886A
Authority
JP
Japan
Prior art keywords
voltage
power supply
circuit
arithmetic
supply voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10154281A
Other languages
Japanese (ja)
Other versions
JPH0228153B2 (en
Inventor
宗次 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10154281A priority Critical patent/JPH0228153B2/en
Publication of JPS582886A publication Critical patent/JPS582886A/en
Publication of JPH0228153B2 publication Critical patent/JPH0228153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、例えば電卓中電子式時計などの液哀等の表
示手段を備えた電子回路の電源回路装置Kllする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power supply circuit device for an electronic circuit, for example, an electronic clock in a calculator, etc., which is equipped with a display means for displaying information.

最近のLSI (大規模集積回路)の発達に伴い、電卓
や電子式時計などの電子装置は、その演算回路をただ1
個のL8Xのみで実現しているものが一般的となってき
た。かつ、消費電流も3v又は1.5v程度の電圧で1
0#A以下というように非常に低い消費電力の製品が実
現出来るようKなってきた。このようなLSIの進歩に
伴い5−・その電源の方も着しく変化して来ている。す
;なわち、電卓や電子式゛時計などの小型電子装置゛は
、電源として各種の電池゛を使用しているが、製品゛の
低消費電力化に伴い使用電池も小型軽量でより電流容量
の小さいものが可能に&ってき九、。
With the recent development of LSI (Large-Scale Integrated Circuits), electronic devices such as calculators and electronic watches have only one arithmetic circuit.
It has become common for devices to be implemented using only one L8X. Moreover, the current consumption is 1 at a voltage of about 3v or 1.5v.
It has become possible to realize products with very low power consumption, such as 0#A or less. With the progress of LSIs, their power supplies have also undergone drastic changes. In other words, small electronic devices such as calculators and electronic clocks use various types of batteries as power sources, but as products consume less power, the batteries used are also smaller, lighter, and have higher current capacity. The smaller ones are possible & the 9th.

以上のような背景から、最近では電卓□子電子式時計な
どの電子装置に太陽電池が使用されるようKなってきて
いる。。
Due to the above-mentioned background, solar cells have recently been used in electronic devices such as calculators and electronic watches. .

第1図は太陽電池の照度100〜500ルクスの場合の
負荷特性、すなわち電圧−電流特性の一例である。図の
如く、太陽電池の特性としては、周囲の照度が高くなる
と電力容量は高くなり、照度が低くなると電力容量は低
くなる特性を有している。このような特性の為に、太陽
電池を使用した電子装置の演算回路には、酸化銀電池等
の一般の電池のような一定の電圧を供給することが出来
ない。すなわち周囲の照度の変化中、光源に対す邊製品
の向きなどKよって、その電源電圧が大きく変化する1
、電子装置の演算回路には最小動作電圧(vEIDMI
M )があ如、動作電圧がこのV   よりも低くなる
と演算回路D′11厘!舅 は誤動作する。このvDDMIMの値は例えば標準動作
電圧が−a、ovo電車用LSIテは−2,2Vli度
である。太陽電池を使用する場合、製品の使用状況によ
って、動作電圧がこのvDDMIIIの値の上下Km動
する場合がごく自然に起こる。この丸め、製品が誤−作
1している状鯵にやる場合が頻繁に起ζる。
FIG. 1 shows an example of the load characteristics, that is, the voltage-current characteristics, when the illuminance of the solar cell is 100 to 500 lux. As shown in the figure, the solar cell has a characteristic that as the surrounding illuminance increases, the power capacity increases, and as the illuminance decreases, the power capacity decreases. Because of these characteristics, it is not possible to supply a constant voltage to the arithmetic circuits of electronic devices using solar cells, unlike a general battery such as a silver oxide battery. In other words, when the ambient illuminance changes, the power supply voltage changes greatly depending on the orientation of the product relative to the light source.
, the minimum operating voltage (vEIDMI) is required for the arithmetic circuits of electronic devices.
M), if the operating voltage becomes lower than this V, the arithmetic circuit D'11! My father-in-law malfunctions. The value of this vDDMIM is, for example, the standard operating voltage is -a, and the value of the ovo train LSI is -2.2Vli degrees. When using a solar cell, it is quite natural for the operating voltage to fluctuate by Km above or below the value of vDDMIII depending on the usage conditions of the product. This rounding often occurs when the product is made incorrectly.

この発明は上記実情に鑑みてなされたもので、その目的
は、周囲の状況により変動する電源電圧の影響による誤
動作を防止し得る電子回路の電子回路全体を提供するこ
とにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an entire electronic circuit that can prevent malfunctions due to the influence of power supply voltage that varies depending on surrounding conditions.

以下、図面を参照してこの発□明の一実施例を説明する
。先ず、異体的な構成例を説明するに際し、この発明の
詳細な説明する。すなわち、第1図に示した太陽電池の
特性から明らかなように、駆動すべき負荷の抵抗値が一
定とすると、照度が下がると負荷にかかる電圧が下がる
。例えば負荷抵抗RL=400 kΩのとき、照度20
0ルクスで負荷Kかかる電圧は−2,85Vli度であ
るが、照度が150ルクスに落ちると電圧は−2,6V
Kなる。しかし、照度が150ルクスのとき負荷抵抗が
RL=500 kΩであると負荷にかかる電圧は−2,
75Vである。以上のことから、電源電圧が下がると、
電源Kかかる負荷抵抗値が上がるような電子回路を実現
すると、電源電圧の低下の1度を小さくすることが出来
る。
An embodiment of this invention will be described below with reference to the drawings. First, when explaining an example of a different configuration, the present invention will be explained in detail. That is, as is clear from the characteristics of the solar cell shown in FIG. 1, if the resistance value of the load to be driven is constant, as the illuminance decreases, the voltage applied to the load decreases. For example, when the load resistance RL = 400 kΩ, the illuminance is 20
At 0 lux, the voltage applied to load K is -2.85 Vli degrees, but when the illuminance drops to 150 lux, the voltage becomes -2.6 V.
K becomes. However, when the illuminance is 150 lux and the load resistance is RL = 500 kΩ, the voltage applied to the load is -2,
It is 75V. From the above, when the power supply voltage decreases,
If an electronic circuit is realized in which the load resistance value applied to the power supply K increases, it is possible to reduce the drop in the power supply voltage by one degree.

この発明社このような電子回路を*現することを可能に
する電源装置を提供するもので、具体的には電源電圧が
下がると、表示装置の駆動を停止することKよって、電
源にかかる負荷抵抗を上げるようKしたものである。
This invention company provides a power supply device that makes it possible to realize such an electronic circuit.Specifically, when the power supply voltage drops, the drive of the display device is stopped, thereby reducing the load on the power supply. K is added to increase the resistance.

以下、第2図及び第3図に示す最も一般的な液晶表示装
置を有する電子装置を例として、この発明の詳細な説明
する。
The present invention will be described in detail below, taking as an example an electronic device having the most common liquid crystal display device shown in FIGS. 2 and 3.

°第2図は、電車等に一般的に用いられている7七グメ
ント1〜1の液晶表示ノリ−ンである。
Figure 2 shows a 77 segment 1-1 liquid crystal display commonly used in trains and the like.

この例は3分のi?、−ティのものであるのでパックグ
レート用の信号はCOMJ 、 COMj 。
This example is i in 3? , -T, so the pack rate signals are COMJ, COMj.

COM Iの3種類であり、セグメント信号は一桁当り
、80 +81 +8mの3種類である。
There are three types of COM I, and three types of segment signals per digit: 80 + 81 + 8 m.

第3図は第2図の液晶を駆動する信号波形のマ 1 一例であって、図の如<O,−V、−V。Figure 3 shows the signal waveform map 1 that drives the liquid crystal shown in Figure 2. As an example, as shown in the figure <O, -V, -V.

3  !ID  3 0D ■□の4値の電圧レベルを用いて液晶を駆動する。又、
図でわかるように各セグメントがオン(点灯)している
時はセグメント−パックプレート間K lv□Iの電位
差が印加され、オフ(非点灯)している時は1HVoo
lの電位差が印加されている。この液晶駆動用の4値の
電圧レベルは抵抗による電圧分割によって発生させるの
が一般的である。この丸め、液晶を駆動させている時社
、仁の電源電圧分割用の抵抗Kかな瞥の電流が流れると
とKfkD、電子回路全体の負荷抵抗を下げる大きな要
因になっている。そこでこの発明を用いて、電源電圧が
下がると、電源型5− 圧分割用抵抗に電流が流れないようにし′t1&晶の駆
動を停止するようにした回路の一例が第4図である。
3! The liquid crystal is driven using four voltage levels of ID 3 0D ■□. or,
As shown in the figure, when each segment is on (lit), a potential difference of Klv□I is applied between the segment and the pack plate, and when it is off (not lit), a potential difference of 1HVoo is applied.
A potential difference of l is applied. These four voltage levels for driving the liquid crystal are generally generated by voltage division using resistors. When the current flows through the resistor K, which is used to divide the power supply voltage, and KfkD, which drives the liquid crystal, becomes a major factor in lowering the load resistance of the entire electronic circuit. FIG. 4 shows an example of a circuit in which the present invention is used to prevent current from flowing through the power supply type 5-voltage dividing resistor and stop driving the 't1 & crystal when the power supply voltage drops.

第4図で、11は液晶駆動回路、12〜14は電源電圧
分割用抵抗、1jはコンデンサ、I6〜IIIIINチ
ャンネル型MOB )う、ンジスタ、20゜21はPチ
ャンネ、ル型Mo5) 7ンジスタ、22.。
In Fig. 4, 11 is a liquid crystal drive circuit, 12 to 14 are power supply voltage dividing resistors, 1j is a capacitor, I6 to III IN channel type MOB), 20° and 21 are P channel, L type MOB), 7 transistors, 22. .

〜24は抵抗、25は演算回路、26は例えば太陽電池
の電源である。第4図の回路は負論理の場合を示してお
り11.演算回路25には09に対して負の電圧が印加
される。
24 is a resistor, 25 is an arithmetic circuit, and 26 is a power source for, for example, a solar cell. The circuit in FIG. 4 shows the case of negative logic; 11. A negative voltage with respect to 09 is applied to the arithmetic circuit 25.

上記トランジスタ11〜19、トランジスタ21及び抵
抗22〜24によシミ源電圧検出回路21が構成されて
いる。トランジスタ1gは定電圧回路で、このトランジ
スター9のr−)A点の電位は、電源26の電位VDD
Iよりもトランジスタ19のスレッシ1ホールド電圧V
□分r −) 8点の電位は、vI=lvl)gll−
vtll ’ B、 +1.とな〕、トランジスタ11
をオン状lにする。但6− し、RIは抵抗IJ%msは抵抗24の値を示す。トラ
ンジスタ180ソースC点の電位は、トランジスタ18
のオン抵抗R0Nと抵抗22では抵抗21の値を示す。
A stain source voltage detection circuit 21 is constituted by the transistors 11 to 19, the transistor 21, and the resistors 22 to 24. The transistor 1g is a constant voltage circuit, and the potential at point r-)A of this transistor 9 is the potential VDD of the power supply 26.
Threshold 1 hold voltage V of transistor 19 than I
□min r −) The potential at the 8 points is vI=lvl)gll−
vtll' B, +1. ], transistor 11
is turned on. However, RI is the resistance IJ% ms is the value of the resistance 24. The potential at the source point C of the transistor 180 is
On-resistance R0N and resistor 22 indicate the value of resistor 21.

とれより、トランジスタ1aのダート・ソース間の電圧
t” 1vDll −1vnell  IV、lとなシ
、■、□が0vllK近づくに従って小さくなシ、オン
抵抗l。1が急激に大きく表る。このことから、vne
tが0vllK近づくと0点の電位は急激−〇’llK
近づく3.この変化量は抵抗22の値でコントロール出
来る。トランジスタ11とトランジスタ21は波形整形
用のCMOBインバータ、トランジスタ1σとトランジ
スタ20は液晶駆動回路11と電源電圧分割用抵抗12
〜14へ駆動電圧V□2を供給するC&&)8インバー
タである。今、電源電圧V□、が下が夛、0点の電位v
cがトランジスタ1rとトランジスタ21・゛とi′か
ら成るCMO8インΔ−夕の回路のスレ、シュホールド
電圧(v、。)以下になりたとすると、液晶駆動回路1
1と電源電圧分割用抵抗12〜14に印加される駆動電
圧vDD2はOvとなり、表示装置としては電源2#が
オフされたことになる。また、電源電圧vDD、が止が
り、0点の電位V、がV□。
From this, as the voltage between the dirt and the source of the transistor 1a, t'' 1vDll -1vnell IV,l, and , ■, and □ approach 0vllK, the smaller , and the on-resistance, l.1 suddenly becomes larger. ,vne
When t approaches 0vllK, the potential at point 0 suddenly -〇'llK
Approaching 3. This amount of change can be controlled by the value of the resistor 22. Transistor 11 and transistor 21 are CMOB inverters for waveform shaping, transistor 1σ and transistor 20 are liquid crystal drive circuit 11 and power supply voltage dividing resistor 12.
C&&)8 inverter which supplies drive voltage V□2 to ~14. Now, the power supply voltage V□ is lower than the voltage at the 0 point V
If c becomes below the threshold voltage (v,.) of the CMO 8-inch circuit consisting of transistor 1r, transistors 21.
1 and the drive voltage vDD2 applied to the power supply voltage dividing resistors 12 to 14 becomes Ov, which means that the power supply 2# of the display device is turned off. Further, the power supply voltage vDD stops, and the potential V at the 0 point becomes V□.

以上になったとすると、前記駆動電圧vDD2はvDD
、と等しくなり、表示装置としては電源がオンされ九こ
とになる。0点の電位V、がV□。を交差するときのv
DD、の値は抵抗22でコントロールすることが出来る
ことは以上の説明から明らかである。そこで、例えば標
準動作電圧が−avで、最小動作電圧(V    ’)
が−22v11D誠X置 の演算回路25において0点の電位vcがV□。−を交
差するときのVDDIの値をV!−−43VK選定した
とする。この電子回路の表示装置に印加される駆動電圧
VD□の波形は電源電圧V、□の変動に対して第5図に
示したものとなる。この図で明らかなように、演算回路
25の動作電圧範囲内の電位Vより4v□、がOvlm
lKあると■1114はOvとなシ、vDI)、カvx
ヨクも大キくするとV□2 a VDDIと等しくなる
。このため、電源電圧VDDIが、演算回路25の最小
動作電圧(V、□□)よりも充分に大きい時は表示装置
が駆動される。そして、vDD、が前記(vD、Mx□
)K近づくと、表示駆動電圧v0112がOvになる。
If it is above, the drive voltage vDD2 is vDD
, and the display device is powered on. The potential V at point 0 is V□. v when crossing
It is clear from the above explanation that the value of DD can be controlled by the resistor 22. So, for example, if the standard operating voltage is -av, the minimum operating voltage (V')
In the arithmetic circuit 25 of the -22v11D station, the potential vc at the 0 point is V□. - The value of VDDI when crossing V! --Assume that you have selected 43VK. The waveform of the driving voltage VD□ applied to the display device of this electronic circuit is as shown in FIG. 5 with respect to fluctuations in the power supply voltages V and □. As is clear from this figure, Ovlm is 4v□ from the potential V within the operating voltage range of the arithmetic circuit 25.
■1114 is Ov, vDI), Kavx
If Yoku is also increased, it becomes equal to V□2 a VDDI. Therefore, when the power supply voltage VDDI is sufficiently higher than the minimum operating voltage (V, □□) of the arithmetic circuit 25, the display device is driven. Then, vDD is the above (vD, Mx□
)K, the display drive voltage v0112 becomes Ov.

すなわち、表示装置の駆動が停止されることによって、
電源に加わる負荷抵抗値が上がり電源電圧が下がりにく
くなる。従って演算回路25が誤動作する状態が起こシ
にくくなる。
That is, by stopping the driving of the display device,
The load resistance value applied to the power supply increases, making it difficult for the power supply voltage to drop. Therefore, a situation in which the arithmetic circuit 25 malfunctions is less likely to occur.

以上のようにこの発明によれば、電源電圧が演算回路の
動作電圧範囲内の任意の電圧Vよシ! 4高いか低いかを検出する電“置型圧検出回路を設け、
電源電圧がVよりも高い場合には演算結! 未表示装置を駆動し、逆に低い場合には演算結果表示装
置の駆動を停止するようKしたので、411に太陽電池
のような周囲の状況によって起電圧が変動し易い電源を
使用した電子装置の翳動作防止に有効である。なお、上
記演算回路における演算の意味紘少くとも表示されるべ
き信号を作)出すことを示す広い意味をもつ。
As described above, according to the present invention, the power supply voltage can be set to any voltage V within the operating voltage range of the arithmetic circuit! 4.Equipped with an electric pressure detection circuit that detects whether it is high or low.
If the power supply voltage is higher than V, the calculation is concluded! Since we decided to drive the non-display device and stop driving the calculation result display device if it is low, 411 applies to electronic devices that use a power source whose electromotive voltage is likely to fluctuate depending on the surrounding conditions, such as a solar cell. It is effective in preventing shadow movement. Note that the meaning of the operation in the above-mentioned arithmetic circuit has a broad meaning indicating at least the production of a signal to be displayed.

9−9-

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は太陽電池の電圧−電流特性図、第2図は一般的
な液晶表示装置の表示・臂ターン図、第3図は上記表示
装置の駆動電圧波形図、第4図はこの発明の一実施例に
係る液晶表示装置の回路図、第5図は上記装置の駆動電
圧波形図である。 11・・・液晶駆動回路、12〜14・・・電源電圧分
割用抵抗、1#〜1#・・・Nチャンネルm1MO8ト
ランジスタ、20〜21・・・Pチャンネル型MO8)
ランジスタ、22〜24・・・抵抗、2C・・・電源、
21・・・電源電圧検出回路。 出願人代理人  弁理士 鈴 江 武 彦104− 第1Wi 第2図 53 52 51 jl!3W!i
Fig. 1 is a voltage-current characteristic diagram of a solar cell, Fig. 2 is a display/arm turn diagram of a general liquid crystal display device, Fig. 3 is a driving voltage waveform diagram of the above display device, and Fig. 4 is a diagram of the display device of the present invention. A circuit diagram of a liquid crystal display device according to an embodiment, and FIG. 5 is a driving voltage waveform diagram of the above device. 11...Liquid crystal drive circuit, 12-14...Resistance for power supply voltage division, 1#-1#...N-channel m1MO8 transistor, 20-21...P-channel type MO8)
Ransistor, 22-24...resistance, 2C...power supply,
21...Power supply voltage detection circuit. Applicant's agent Patent attorney Takehiko Suzue 104- 1st Wi Figure 2 53 52 51 jl! 3W! i

Claims (1)

【特許請求の範囲】[Claims] 電源と、演算回路と、この演算回路の演算結果を表示す
る演算結果表□示手段と、前記電源の電圧が前記演算回
路の動作電圧範囲内の任意の電圧よりも高いか低いかを
検出する電源電圧検出回路と、前記電源電圧が前記任意
の電圧よりも高い場合には前記演算結−表示手段を駆動
し、藺配電源電圧が前記任意の電圧よりも低い場合動手
段とを具備し九ことを特徴とする電源回路装置。
A power source, an arithmetic circuit, an arithmetic result display means for displaying the arithmetic results of the arithmetic circuit, and detecting whether the voltage of the power source is higher or lower than any voltage within the operating voltage range of the arithmetic circuit. comprising: a power supply voltage detection circuit; and means for driving the arithmetic result display means when the power supply voltage is higher than the arbitrary voltage, and operating means when the distribution power supply voltage is lower than the arbitrary voltage. A power supply circuit device characterized by:
JP10154281A 1981-06-30 1981-06-30 DENGENKAIROSOCHI Expired - Lifetime JPH0228153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10154281A JPH0228153B2 (en) 1981-06-30 1981-06-30 DENGENKAIROSOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10154281A JPH0228153B2 (en) 1981-06-30 1981-06-30 DENGENKAIROSOCHI

Publications (2)

Publication Number Publication Date
JPS582886A true JPS582886A (en) 1983-01-08
JPH0228153B2 JPH0228153B2 (en) 1990-06-21

Family

ID=14303317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10154281A Expired - Lifetime JPH0228153B2 (en) 1981-06-30 1981-06-30 DENGENKAIROSOCHI

Country Status (1)

Country Link
JP (1) JPH0228153B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111672U (en) * 1980-12-27 1982-07-10
JPS6173195A (en) * 1984-09-19 1986-04-15 松下電器産業株式会社 Display unit
JPH0262587A (en) * 1988-08-29 1990-03-02 Matsushita Electric Ind Co Ltd Power unit for liquid crystal driving

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111672U (en) * 1980-12-27 1982-07-10
JPS6116224Y2 (en) * 1980-12-27 1986-05-19
JPS6173195A (en) * 1984-09-19 1986-04-15 松下電器産業株式会社 Display unit
JPH0262587A (en) * 1988-08-29 1990-03-02 Matsushita Electric Ind Co Ltd Power unit for liquid crystal driving

Also Published As

Publication number Publication date
JPH0228153B2 (en) 1990-06-21

Similar Documents

Publication Publication Date Title
KR100405026B1 (en) Liquid Crystal Display
TW510108B (en) Power saving driving method of mobile telephone
TWI267809B (en) Display device
CN101290751B (en) Display device
US9318067B2 (en) Shift register unit and gate driving circuit
US10217396B2 (en) Display driver integrated circuit and display system including the same
CN101853705B (en) Shift register circuit
TWI338877B (en) A shift register circuit and a pull high element thereof
JP3512763B2 (en) Single-ended high voltage level shifter used for gate driver of thin film transistor liquid crystal display
CN106228942A (en) Gate driver circuit for liquid crystal display
WO2024045983A1 (en) Gate driving circuit and driving method thereof, and display apparatus
US10475390B2 (en) Scanning driving circuit and display apparatus
JPS582886A (en) Power source circuit unit
US8164550B2 (en) Liquid crystal display device
JP3799869B2 (en) Semiconductor device equipped with power supply circuit, and liquid crystal device and electronic device using the same
US10423286B1 (en) Circuit for fingerprint sensing and electronic device comprising the circuit
JPH02210492A (en) Liquid crystal display driving device
JP3596958B2 (en) Display device and display device driving method
CN114221649A (en) Control circuit for realizing three logic combinations by single input end
JPS62125713A (en) Semiconductor integrated circuit
GB2095453A (en) Electrochromic display device
CN111462706B (en) GOA circuit, display device and electronic equipment
JPS6117010B2 (en)
JPS6275828A (en) Key circuit
Hattori High-voltage driver LSI for passive matrix driven electronic paper with 160 tri-level voltage outputs