JPS5828288A - Production of alcohol from low concentration sugar liquid - Google Patents
Production of alcohol from low concentration sugar liquidInfo
- Publication number
- JPS5828288A JPS5828288A JP56123134A JP12313481A JPS5828288A JP S5828288 A JPS5828288 A JP S5828288A JP 56123134 A JP56123134 A JP 56123134A JP 12313481 A JP12313481 A JP 12313481A JP S5828288 A JPS5828288 A JP S5828288A
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- sugar
- low
- tank
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、グルコースなどの楯を低濃度で含有する液に
おいて糖を酵母等の微生物作用°により効率良くアルコ
ールに変換する低濃度糖液からのアルコール生産方法に
関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing alcohol from a low concentration sugar solution, which efficiently converts sugar into alcohol by the action of microorganisms such as yeast in a solution containing a shield such as glucose at a low concentration. be.
エチルアルコールは、内燃機関の燃料として注目されて
いる。特に毎年再生産される資源であるバイオマスから
の生産が有望視されている。これハ、バイオマスに含有
される糖を利用するものである。例えば、さとうきびの
さとう汁あるいは澱粉やセルロースなどの多糖類を加水
分解して得られる糖液である。アルコール生産は、高濃
度糖液を原料とした酒類製造や発酵アルコール製造等で
技術的に確立されている。しかし、低濃度糖液、例えば
セルロースのセルラーゼ(セルロース加水分解酵素)に
よる糖化液(糖濃度3〜6重量%)などを原料とした場
合、蒸発法などにより10〜20重量%程度に濃縮しな
ければならない。そしてこの濃縮操作によるエネルギー
が大きいため、低濃度糖液を原料としてエタノールを生
産する場合、エネルギー効率が非常に悪い。ところで、
低濃度糖液の発生量は、多くなる方向にある。例えば、
高濃度糖液を原料とするアルコール発酵の廃液、マた、
セルロース系物質を原料としたセルロースの糖化液など
がそれである。特に後者は、将来食糧問題等から°穀、
物を原料とするアルコール生産が難しくなるため、需要
が増加すると推則されている。したがって、低濃度糖液
から効率良くアルコールを生産する技術が必斐である。Ethyl alcohol is attracting attention as a fuel for internal combustion engines. Production from biomass, a resource that is regenerated every year, is particularly promising. This uses sugar contained in biomass. Examples include sugar cane juice or a sugar solution obtained by hydrolyzing polysaccharides such as starch and cellulose. Alcohol production has been technically established in the production of alcoholic beverages and fermented alcohol production using highly concentrated sugar solutions as raw materials. However, if a low-concentration sugar solution is used as a raw material, such as a saccharified solution (sugar concentration 3-6% by weight) using cellulose cellulase (cellulose hydrolase), it must be concentrated to about 10-20% by weight by evaporation or other methods. Must be. Since this concentration operation requires a large amount of energy, the energy efficiency is extremely low when producing ethanol using a low-concentration sugar solution as a raw material. by the way,
The amount of low-concentration sugar solution generated is on the rise. for example,
Alcoholic fermentation waste liquid made from highly concentrated sugar solution, mata,
Examples include cellulose saccharification liquid made from cellulose-based materials. In particular, the latter is likely to be affected by food problems in the future.
It is predicted that demand will increase as it becomes difficult to produce alcohol using raw materials. Therefore, a technology for efficiently producing alcohol from low-concentration sugar solutions is essential.
本発明の目的は、低濃度糖液がらの効率的なアルコール
生産方法を提供しようとするものである。An object of the present invention is to provide an efficient method for producing alcohol from low-concentration sugar liquid.
本発明について概説すれば以下の通りである。An overview of the present invention is as follows.
本発明は、グルコースを吸着した活性炭と酵母とを嫌気
的に接触させたところ、エタノールの生産がみられたこ
と、及び、前記反応後、好気的に活性炭と酵母を接触さ
せたところ、活性炭がほぼ再生されたことの二点から提
案するものである。The present invention is based on the fact that when activated carbon adsorbed glucose was brought into contact with yeast anaerobically, ethanol production was observed, and after the reaction, when activated carbon and yeast were brought into contact aerobically, activated carbon This proposal is based on two points: that it has been almost completely regenerated.
その方法は、以下のような操作を有機的に組合せること
により、低濃度糖液から効率良くエタノールを生産する
ものである。This method efficiently produces ethanol from a low concentration sugar solution by organically combining the following operations.
本発明の特徴は、低濃度糖液(10%以下)と活性炭と
を接触し、糖を活性炭に吸着せしめる工程と糖を吸着し
た活性炭とアルコール発酵能を有する酵母あるいは細菌
と嫌気条件下で混合接触させる工程とよりなる低濃度糖
液がらのアルコール生産方法にある。The features of the present invention include the process of contacting a low-concentration sugar solution (10% or less) with activated carbon and adsorbing the sugar onto the activated carbon, and mixing the activated carbon adsorbed with sugar with yeast or bacteria capable of fermenting alcohol under anaerobic conditions. A method for producing alcohol from low-concentration sugar liquid, which comprises a contacting step.
以下、本発明の詳細を図面によって説明する。Hereinafter, details of the present invention will be explained with reference to the drawings.
第1図は粒状活性炭を用いた場合の一実施例フローであ
る。なお、活性炭は粒状と粉末で方式が異なるが、基本
的には同じである。フローは、三つの接触槽が交互に吸
着9発酵、再生を繰り返えすものであるが、この図は、
接触槽6が吸着、接触槽17が発酵、及び接触槽27が
再生を行っている状態を示したものである。FIG. 1 is a flowchart of an example in which granular activated carbon is used. Note that activated carbon has different methods depending on whether it is granular or powdered, but they are basically the same. The flow is that three contact tanks alternately repeat adsorption, fermentation, and regeneration, but this diagram shows
This figure shows a state in which the contact tank 6 is performing adsorption, the contact tank 17 is performing fermentation, and the contact tank 27 is performing regeneration.
接触槽6,17.27に充てんしている活性炭の粒径は
0.1〜5簡程度のものが良く、特に0.5〜2gのも
のは、単位容積当りの充てん量が多くかつ、酵母あるい
は細菌と懸濁した場合、静置状態で両者が分離できるの
で良い。しかし、活性炭の材質の違いにより比重等が異
なるので特に粒径は限定しない。また各種とも槽内にド
ラフトチュー−プを設け、流動化を容易にしているが、
接触効率が高い構造であれば良く、特に限定はしない。The particle size of the activated carbon filled in the contact tank 6, 17.27 is preferably about 0.1 to 5 g, and in particular, 0.5 to 2 g is preferable since it has a large amount per unit volume and is suitable for yeast. Alternatively, if it is suspended with bacteria, the two can be separated in a stationary state, which is good. However, since specific gravity etc. differ depending on the material of the activated carbon, the particle size is not particularly limited. In addition, a draft tube is installed in each type of tank to facilitate fluidization.
There is no particular limitation as long as the structure has a high contact efficiency.
低濃度糖液(10%以下程度)の原料1は、接触槽6に
供給され、接触槽6内を上昇して活性炭と接触する。な
お、低濃度糖液としてはセルロースの酵素糖化液、アル
コール発酵廃液、希薄な楯密液などがあるが、糖濃度が
10%以下のものを対象とする。このとき、原料バルブ
2、排出バルブ7、排気バルブ9、排出切り替えバルブ
11は開いており、循環バルブ3、通気バルブ5、返送
バルブ8、プロスバルブ10は閉じている。また循環ポ
ンプ4は停止中である。したがって活性炭と接触し糖分
を活性炭に吸着された原料は排出バルブ7、排出切り替
えバルブ11が設けられている管路より接触槽27に流
入せしめ、原料1と活性炭とは分離する。一定量原料1
を通液した後、原料バルブ1、排出切り替えバルブ11
を閉じ、返送バルブ8を開き、混合槽34から返送ポン
プ35により酵母あるいは細菌の懸濁液が供給される。Raw material 1 with a low concentration sugar solution (approximately 10% or less) is supplied to a contact tank 6, rises in the contact tank 6, and comes into contact with activated carbon. Examples of low-concentration sugar solutions include cellulose enzymatic saccharification solutions, alcoholic fermentation waste solutions, and dilute shield solutions, but those with a sugar concentration of 10% or less are targeted. At this time, the raw material valve 2, the discharge valve 7, the exhaust valve 9, and the discharge switching valve 11 are open, and the circulation valve 3, the ventilation valve 5, the return valve 8, and the prosthetic valve 10 are closed. Further, the circulation pump 4 is stopped. Therefore, the raw material that has come into contact with the activated carbon and has had sugar adsorbed by the activated carbon is allowed to flow into the contact tank 27 through a conduit provided with the discharge valve 7 and the discharge switching valve 11, and the raw material 1 and the activated carbon are separated. Fixed amount of raw material 1
After passing the liquid through, the raw material valve 1 and the discharge switching valve 11
is closed, the return valve 8 is opened, and a suspension of yeast or bacteria is supplied from the mixing tank 34 by the return pump 35.
該懸濁液の容量は、活性炭の充てん容量の2倍以下の方
が発酵が早く好ましい。使用する酵母アルイは細菌とし
ては、Saccharomycescerevisia
e 、 Saccharomyces carisb
erge。It is preferable that the volume of the suspension is at most twice the filled volume of the activated carbon because fermentation will be faster. The yeast Alui used is Saccharomyces cerevisiae as a bacterium.
e, Saccharomyces carisb
erge.
n5is、 BaciJlus sterotherm
ophillus等のエタノール生産菌であれば良く特
に限定しない。またその菌体濃度は、50〜100 g
/を程度が良い。混合槽34は、遠心分離機22で分離
された酵母あるいは細菌と炭素源を含まない培地36を
混合するものである。該使用培地36は、使用する菌に
より異なる。例えばSaccharomycescer
evisiaeの場合は以下の通りであるが、窒素源等
の試薬は種々あるので特に限定しない。n5is, BaciJlus sterotherm
There is no particular limitation as long as it is an ethanol-producing bacterium such as S. ophillus. In addition, the bacterial cell concentration is 50 to 100 g
/ is in good condition. The mixing tank 34 is for mixing yeast or bacteria separated by the centrifuge 22 with a medium 36 that does not contain a carbon source. The medium 36 used varies depending on the bacteria used. For example, Saccharomycescer
The case of E. evisiae is as follows; however, there are various reagents such as a nitrogen source, so there is no particular limitation.
培地組成:酵母エキス6g/l、尿素4 g / tz
リン酸−カリウム1.0 g / lz リン酸二ソ
ーダ1、0 g / As硫酸マグネシウム0.5 g
/ t%塩化カル’7ウム0.16 g/l、 I)
H4,0酵母あるいは細菌の懸濁液の供給を完了すると
返送パルプ8を閉じ、かつ循環パルプ3を開くとともに
循環ポンプ4を始動する。この状態が接触槽17である
。原料゛パルプ12、通気パルプ15、排出バルブ18
、返送パルプ19を閉じ、循環パルプ13、排気パルプ
20を開き、循環ポンプ14′が稼動中である。#i環
ポンプ14は、接触槽17の上部液を接触槽下部に圧入
し、活性炭を流動化し混合する。接触槽17内は、発酵
に適したpH1一温度、例えば、5accha rom
yces ogrevi s i ae であれば、p
H4,0、温度30Cにコントロールされている。一定
時間経過後、循環ポンプ14を停止し、循環パルプ13
を閉じ、静置する。静置後、排出バルブ18を開き、活
性炭層上部の液を抜き出し、遠心分離機22に送る。こ
の遠心分離機22で酵母あるいは細菌のスラリー液とエ
タノールを含有する発酵液に分け、スラリー液はポンプ
j3を駆動して混合槽34にエタノールを含有する発酵
液は管37より抽出する。液の抜き取り完了後、排出パ
ルプ18を閉じ、通気パルプ15を開き、コンプレッサ
ー16より空気を圧入する。Medium composition: yeast extract 6g/l, urea 4g/tz
Potassium phosphate 1.0 g / lz Disodium phosphate 1.0 g / As magnesium sulfate 0.5 g
/ t% Cal'7ium chloride 0.16 g/l, I)
When the supply of the H4,0 yeast or bacteria suspension is completed, the return pulp 8 is closed, the circulation pulp 3 is opened, and the circulation pump 4 is started. This state is the contact tank 17. Raw materials: pulp 12, ventilation pulp 15, discharge valve 18
, the return pulp 19 is closed, the circulation pulp 13 and the exhaust pulp 20 are opened, and the circulation pump 14' is in operation. The #i ring pump 14 presses the upper liquid of the contact tank 17 into the lower part of the contact tank to fluidize and mix the activated carbon. The inside of the contact tank 17 has a pH of 1 and a temperature suitable for fermentation, for example, 5accha rom.
If yces ogrevis i ae, then p
The temperature is controlled at H4.0 and 30C. After a certain period of time has passed, the circulation pump 14 is stopped and the circulation pulp 13
Close and let stand. After standing still, the discharge valve 18 is opened, and the liquid above the activated carbon layer is drawn out and sent to the centrifuge 22. The centrifugal separator 22 separates the yeast or bacteria slurry into a fermentation liquid containing ethanol, and the slurry liquid is transferred to a mixing tank 34 by driving a pump j3, and the fermentation liquid containing ethanol is extracted from a tube 37. After the liquid has been drained, the discharge pulp 18 is closed, the ventilation pulp 15 is opened, and air is forced in from the compressor 16.
この状態が接触槽27である。原料パルプ23、循環バ
ルブ24、排出バルブ28、返送パルプ29、プロスパ
ルプ31、排出切り替えパルプ32を閉じ、通気パルプ
26は開く。槽内のpH及び温度を生育に適した値にコ
ントロールした状態で一定時間空気を通気し、残留酵母
あるいは細菌と活性炭とを混合する。そして、通気パル
プ26を閉じ、排出バルブ28、排出切り替えパルプ3
2、原料パルプ23を開き、原料1を通液する。この状
態が接触槽6である。This state is the contact tank 27. The raw material pulp 23, circulation valve 24, discharge valve 28, return pulp 29, prospulp 31, and discharge switching pulp 32 are closed, and the ventilation pulp 26 is opened. While controlling the pH and temperature in the tank to values suitable for growth, air is aerated for a certain period of time, and the residual yeast or bacteria and activated carbon are mixed. Then, the ventilation pulp 26 is closed, the discharge valve 28 is opened, and the discharge switching pulp 3 is closed.
2. Open the raw material pulp 23 and pass the raw material 1 through it. This state is the contact tank 6.
以上のように各接触槽が、吸着1発酵、及び再生を繰り
返えすことにより、低濃度糖液のエタノール発酵を行わ
せるものである。なお、21が排出切り替えパルプ、2
5が循環ポンプ、30が排気パルプである。As described above, each contact tank performs ethanol fermentation of a low concentration sugar solution by repeating adsorption, fermentation, and regeneration. In addition, 21 is discharge switching pulp, 2
5 is a circulation pump, and 30 is an exhaust pulp.
実施例1
粒状活性炭を用いた場合についてグルコースの吸着、活
性炭と酵母の嫌気条件下での接触による発酵、及び好気
条件下での活性炭と酵母との接触による再生を行った。Example 1 Using granular activated carbon, adsorption of glucose, fermentation by contacting activated carbon and yeast under anaerobic conditions, and regeneration by contacting activated carbon and yeast under aerobic conditions were performed.
接触槽は、内径10crn、、高さ100cr11のも
ので、内径4m、高さ40crnの内円管を槽底から3
Crnの位置に中心が槽と一致するように設置した。ま
た槽内には1〜21WIの粒径の活性炭を4 K、充て
んした。The contact tank has an inner diameter of 10 crn and a height of 100 crn, and an inner circular pipe with an inner diameter of 4 m and a height of 40 crn is connected from the bottom of the tank by 3 m.
It was installed at the position of Crn so that the center coincided with the tank. The tank was filled with activated carbon having a particle size of 1 to 21 WI at 4K.
1%のグルコース水溶液を5t/hで槽底から通液した
。その結果、第2図に示す通液量と排出液中のグルコー
ス濃度との関係が得−られ、通液量15を以上で破過し
た。A 1% glucose aqueous solution was passed through the tank bottom at 5 t/h. As a result, the relationship between the amount of liquid passed and the glucose concentration in the discharged liquid as shown in FIG. 2 was obtained, and the amount of liquid passed exceeded 15.
次いで、Saccharomyces cereVis
iae及び前述組成の培地の混合液を4を投入した。こ
のとき、菌体濃度は60 g/lとした。そして、壇上
部より液を抜き取り、ポンプにより槽底部より圧入し、
活性炭をゆるやかに流動させた。なお、槽内温度及びI
)Hは、それぞれ30C,4,0にコントロールした。Then, Saccharomyces cereVis
iae and a mixed solution of the medium having the above-mentioned composition were added. At this time, the bacterial cell concentration was 60 g/l. Then, the liquid is extracted from the top of the platform and pumped into the tank from the bottom.
Activated carbon was allowed to flow slowly. In addition, the temperature inside the tank and I
)H was controlled at 30C, 4, and 0, respectively.
発酵の結果を第3図に示す。3時間で液内エタノール濃
度は10 g/lに達した。The results of fermentation are shown in Figure 3. The ethanol concentration in the liquid reached 10 g/l in 3 hours.
次に、30分静置後、排出口より発酵プロスを引き抜き
、槽内のpH,温蔗を維持しなから槽底部からの通気を
3時間行った。通気後、丹び1%のグルコース溶液を通
液したところ、第2図とほぼ同様の結果が得られた。Next, after standing still for 30 minutes, the fermentation prosthesis was pulled out from the outlet, and while maintaining the pH and temperature inside the tank, ventilation was performed from the bottom of the tank for 3 hours. After aeration, a 1% glucose solution was passed through the chamber, and almost the same results as in FIG. 2 were obtained.
実施例2
0.2,0.5,1,5,20,30,40g/lのグ
ルコース水溶液について、実施例1の装置を用いて同一
の慄作を行った。ただし、吸着工程では、各水溶液の通
液速度は、5g/を以下では10t/h、20g/を以
上では、1t/hとした。Example 2 The same experiment was carried out using the apparatus of Example 1 for aqueous glucose solutions of 0.2, 0.5, 1, 5, 20, 30, and 40 g/l. However, in the adsorption step, the flow rate of each aqueous solution was 10 t/h for 5 g/ or less, and 1 t/h for 20 g/ or more.
その結果、いずれも発酵操作により、約10 g/lの
エタノール溶液が得られた。なお、処理量はグルコース
濃度が高くなるほど少なくなった。As a result, an ethanol solution of approximately 10 g/l was obtained through the fermentation operation in each case. Note that the amount processed decreased as the glucose concentration increased.
以上より本発明は、広範囲の低濃度糖液に適用できるこ
とがわかる。From the above, it can be seen that the present invention can be applied to a wide range of low concentration sugar solutions.
実施例3
実施例1において充てん量をF3 K9とした場合の生
成エタノール濃度を調べた。Example 3 The concentration of ethanol produced in Example 1 was investigated when the filling amount was changed to F3 K9.
グルコース濃度は、10g/lとした。また、発酵操作
における液の循環は、抜き取り口にネットを設は液だけ
を循環した。Glucose concentration was 10 g/l. In addition, to circulate the liquid during the fermentation operation, a net was installed at the extraction port to circulate only the liquid.
その結果、生成エタノールの濃度H12tg/lと実施
例1の約2倍の値となった。As a result, the concentration of the produced ethanol was H12 tg/l, which was approximately twice that of Example 1.
実施例4
第1図に示すように三層切り替えによる連続操作を行っ
た。Example 4 As shown in FIG. 1, a continuous operation was performed by switching the three layers.
各種とも実施例1で用いた種形状で、1〜2咽の粒径の
活性炭を4に9充てんした。バルブ、ポンプ遠心分離機
の操作は、プログラムタイマーで制御した。各側の切り
替え時間は、3.5時間とし、吸着9発酵、再生の条件
は、実施例1と同様とした。Each type had the seed shape used in Example 1, and was filled with 4 to 9 pieces of activated carbon having a particle size of 1 to 2 mm. The operation of the valves and pump centrifuge was controlled by a program timer. The switching time on each side was 3.5 hours, and the conditions for adsorption, fermentation, and regeneration were the same as in Example 1.
その結果、6〜1o g/lのエタノール濃度のプロス
が、毎時平均1を得られた。As a result, an average of 1 Pros with an ethanol concentration of 6 to 1 og/l was obtained per hour.
次に粉末活性炭を用いた場合の一実施例を第4図のフロ
ーで説明する。Next, an example in which powdered activated carbon is used will be described with reference to the flowchart of FIG. 4.
粒状活性炭を用いた場合との違いは、活性炭と酵母ある
いは細菌が分離されることなく混合状態でフローを流れ
ることである。The difference from using granular activated carbon is that the activated carbon and yeast or bacteria flow through the flow in a mixed state without being separated.
原料1及び活性炭と酵母あるいは細菌の懸濁液が接触槽
39に供給され混合攪拌される。次いで接触槽39の排
出液から遠心分離機4oで活性炭と酵母あるいは細菌が
分離され、これらはバッファタンク42に貯留され、残
りは分離液として管路41より排出される。活性炭と酵
母あるいは細菌のスラリーは、スラリーポンプ43によ
り発酵槽44に供給される。このとき、C源を除く培地
が、培地′f4J!!!槽45よシ供給される。なお、
発酵槽44の酵母あるいは細菌の菌体myは、50〜1
00 g/を程度が良い。発酵槽44内のpH9温度は
、酵母あるいは細菌に適した値でコン)。The raw material 1 and a suspension of activated carbon and yeast or bacteria are supplied to a contact tank 39 and mixed and stirred. Next, activated carbon and yeast or bacteria are separated from the discharged liquid of the contact tank 39 by a centrifuge 4o, and these are stored in a buffer tank 42, and the remainder is discharged from a pipe 41 as a separated liquid. A slurry of activated carbon and yeast or bacteria is supplied to a fermenter 44 by a slurry pump 43. At this time, the medium excluding the C source is the medium 'f4J! ! ! It is supplied from tank 45. In addition,
The yeast or bacterial cells my in the fermenter 44 are 50 to 1
00g/ is in good condition. The pH 9 temperature in the fermenter 44 is a value suitable for yeast or bacteria.
−ルされる。一定時間滞留した活性炭及び酵母あるいは
細菌は、発酵槽44より発酵ブロスと共に排出される。- be sent. The activated carbon and yeast or bacteria that have remained for a certain period of time are discharged from the fermenter 44 together with the fermentation broth.
そして、遠心分離46により発酵液47と活性炭と酵母
あるいは細菌が分離される。Then, the fermentation liquid 47, activated carbon, and yeast or bacteria are separated by centrifugation 46.
活性炭と酵母あるいは細菌のスラリーは、バッファタン
ク48に貯留され、次いでスラリーポンプ49により再
生槽50に送られる。再生槽50は、酵母あるいは細菌
の生育に適した温度、pHに維持され、槽下部より空気
51を圧入し通気攪拌を行っている。活性炭と割溝ある
いは細菌は一定時間滞留した後、スラリーポンプ52に
より接触槽39に送られる。A slurry of activated carbon and yeast or bacteria is stored in a buffer tank 48 and then sent to a regeneration tank 50 by a slurry pump 49. The regeneration tank 50 is maintained at a temperature and pH suitable for the growth of yeast or bacteria, and air 51 is pressurized from the bottom of the tank for aeration and agitation. After the activated carbon and the bacteria remain for a certain period of time, they are sent to the contact tank 39 by the slurry pump 52.
上
以、のように粉末活性炭と酵母あるいは細菌のスラリー
が、連続的に吸着2発酵、再生の工程を流れることによ
り、低濃度糖液のエタノール発酵を行わせるものである
。As described above, a slurry of powdered activated carbon and yeast or bacteria is continuously passed through the adsorption, fermentation, and regeneration steps to perform ethanol fermentation of a low-concentration sugar solution.
実施例5
第4図に示す装置を用い粉末活性炭を用いた場合の低濃
度糖液でのエタノール発酵を行った。Example 5 Using the apparatus shown in FIG. 4, ethanol fermentation with a low concentration sugar solution was carried out using powdered activated carbon.
接触槽、発酵槽及び再生槽の容積は、それぞれ4t、
101,4tとし、仕込み率を0.6とした。The volumes of the contact tank, fermentation tank, and regeneration tank are each 4 tons,
The weight was 101.4 tons, and the charging rate was 0.6.
操作は以下のとおりである。The operation is as follows.
10 g/lのグルコース溶液及び活性炭と酵母の懸濁
液をそれぞれ、4t/h及び1t7hで接触槽に連続的
に供給し、これらの混合液を5t/hで排出した。なお
、入口の活性炭および酵母の濃度は、それぞれ約IK9
/を及び0.1に9/lであった。なお、接触槽の温度
は、20±3Cであった。接触槽からの排出液より遠心
分離機により活性炭及び酵母のスラリーを回収し、発酵
槽に0.5z7hで供給した。このとき同時に培地を1
t7hで供給した。そして、1.5t/hで槽内液を排
出した。発酵条件は、実施例”1と同様とした。次いで
、排出液から遠心分離により活性炭と酵母のスラリー及
び発酵液を分離した。その結果、18〜22 g/lの
エタノール礫度の発酵液が得られた。A 10 g/l glucose solution and a suspension of activated carbon and yeast were continuously supplied to the contact tank at 4 t/h and 1 t7 h, respectively, and the mixed liquid was discharged at 5 t/h. The concentrations of activated carbon and yeast at the inlet are approximately IK9, respectively.
/ and 0.1 to 9/l. Note that the temperature of the contact tank was 20±3C. A slurry of activated carbon and yeast was recovered from the discharged liquid from the contact tank using a centrifugal separator, and was supplied to the fermentation tank at a rate of 0.5x7h. At this time, add 1 medium at the same time.
It was supplied at t7h. Then, the liquid in the tank was discharged at a rate of 1.5 t/h. The fermentation conditions were the same as in Example 1. Next, the activated carbon and yeast slurry and fermentation liquid were separated from the discharged liquid by centrifugation. As a result, a fermentation liquid with an ethanol grit of 18 to 22 g/l was obtained. Obtained.
なお、培地の供給量を0.5t/hとした場合、発酵液
のエタノール濃度は、30〜43 g/’tとなった。In addition, when the supply amount of the medium was 0.5 t/h, the ethanol concentration of the fermentation liquid was 30 to 43 g/'t.
次に活性炭及び酵母のスラリーにそれぞれの濃度がIK
9/を及び0.IKy/lになるように培地を加え、懸
濁液とした。さらに再生槽に送り、通気攪拌を行なった
。そして、活性炭及び酵母の懸濁液を接触槽に供給し再
利用した。Next, add the activated carbon and yeast slurry to each concentration at IK.
9/ and 0. A medium was added to give a concentration of IKy/l to form a suspension. Furthermore, it was sent to a regeneration tank and aerated and stirred. Then, the activated carbon and yeast suspension were supplied to the contact tank and reused.
本発明によれば低濃度糖液を濃縮することなく、エタノ
ール発酵の原料として利用できるため、効率的かつ経済
的である。また、本発明は、アセトン・ブタノール菌を
用いるブタノール発酵のみならず、有機酸やアミノ酸発
酵にも適用でき汎用性が高い。According to the present invention, a low concentration sugar solution can be used as a raw material for ethanol fermentation without concentrating it, which is efficient and economical. Furthermore, the present invention is highly versatile and can be applied not only to butanol fermentation using acetone-butanol bacteria, but also to organic acid and amino acid fermentations.
第1図は、粒状活性炭を用いた場合の本発明の一実施例
を示すフロー図、第2図は本発明一実施例による粒状活
性炭の破過曲線図、第3図は、グルコース吸着活性炭と
酵母の接触とによる発酵結果を示す線図、第4図は、粉
末活性炭を用いた場合の本発明の一実施例を示すフロー
図である。
1・・・原料、4・・・循環ポンプ、6・・・接触槽、
16・・・コンプレッサー、17・・・接触槽、22・
・・遠心分離機、27・・・接触槽、39・・・接触槽
、40・・・遠心分離機、44・・・発酵槽、47・・
・発酵槽、50・・・再生槽。
第2 図
)
θ 5 10 ん° Z通i(
量 rツノ
第3 目
ρ /23
I季 βη (h〕Fig. 1 is a flow diagram showing an embodiment of the present invention when granular activated carbon is used, Fig. 2 is a breakthrough curve diagram of granular activated carbon according to an embodiment of the present invention, and Fig. 3 is a flow diagram showing an embodiment of the present invention using granular activated carbon. FIG. 4 is a diagram showing the results of fermentation due to contact with yeast, and is a flow chart showing an embodiment of the present invention when powdered activated carbon is used. 1... Raw material, 4... Circulation pump, 6... Contact tank,
16...Compressor, 17...Contact tank, 22.
...Centrifugal separator, 27...Contact tank, 39...Contact tank, 40...Centrifugal separator, 44...Fermentation tank, 47...
・Fermentation tank, 50... Regeneration tank. Fig. 2) θ 5 10 ° Z through i (
Quantity r horn 3rd eye ρ /23 I season βη (h)
Claims (1)
に糖分を吸着せしめ、しかる後この糖分を吸着した活性
炭と低濃度糖液とを分離し、かつこの活性炭に微生物懸
濁液を嫌気条件下で混合し、しかして活性炭を有するこ
の微生物懸濁液を発酵せしめてアルコールとしてなるこ
とを特徴とする低濃度糖液からのアルコール生産方法。 2、特許請求の範囲第1項記載において、発酵後活性炭
をアルコールから分離し、この分離した活性炭を微生物
懸濁液と好気条件下で接触させると共に接触後活性炭を
分離し、その後この活性炭を低濃度糖液との接触に再使
用してなることを特徴とする低濃度糖液からのアルコー
ル生産方法。 3、粉末活性炭と微生物の懸濁液に原料となる低濃度糖
液を混合するとともに粉末活性炭に糖分を吸着せしめ、
しかる後この糖分を吸着した活性炭と微生物のスラリー
ヲ低濃度糖液から分離し、かつこの粉末活性炭と微生物
のスラリーに愁属液を供給するとともに嫌気条件下で混
合し、しかして粉末活性炭と微生物を有するこの懸濁液
を発酵せしめてアルコールとしてなることを特徴とする
低濃度糖液からのアルコール生産方法。 4、特許請求の範囲第3項記載において、発酵後粉末活
性炭と微生物の懸濁液をアルコールから分離し、この分
離した粉末活性炭と微生物の懸濁液を好気条件下で混合
せしめ、その後この懸濁液を低濃度糖液との混合に再使
用してなることを特徴とする低濃度糖液からのアルコー
ル生産方性。[Claims] 1. Bringing activated carbon into contact with a low-concentration sugar solution as a raw material to cause the activated carbon to adsorb sugar, and then separating the activated carbon that has adsorbed sugar from the low-concentration sugar solution; 1. A method for producing alcohol from a low concentration sugar solution, characterized in that a microbial suspension is mixed under anaerobic conditions and this microbial suspension with activated carbon is fermented to produce alcohol. 2. In claim 1, the activated carbon is separated from the alcohol after fermentation, the separated activated carbon is brought into contact with a microbial suspension under aerobic conditions, the activated carbon is separated after the contact, and then the activated carbon is A method for producing alcohol from a low-concentration sugar solution, which is characterized in that it is reused in contact with a low-concentration sugar solution. 3. Mixing powdered activated carbon and a suspension of microorganisms with a low-concentration sugar solution as a raw material, and allowing the powdered activated carbon to adsorb sugar,
Thereafter, the slurry of activated carbon and microorganisms that has absorbed sugar is separated from the low-concentration sugar solution, and the slurry of powdered activated carbon and microorganisms is supplied with a liquid and mixed under anaerobic conditions. A method for producing alcohol from a low-concentration sugar solution, which comprises fermenting this suspension containing alcohol to produce alcohol. 4. In claim 3, after fermentation, the powdered activated carbon and the microorganism suspension are separated from the alcohol, the separated powdered activated carbon and the microorganism suspension are mixed under aerobic conditions, and then the A method for producing alcohol from a low concentration sugar solution, which is characterized in that the suspension is reused for mixing with a low concentration sugar solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56123134A JPS5854795B2 (en) | 1981-08-07 | 1981-08-07 | Alcohol production method from low concentration sugar solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56123134A JPS5854795B2 (en) | 1981-08-07 | 1981-08-07 | Alcohol production method from low concentration sugar solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5828288A true JPS5828288A (en) | 1983-02-19 |
JPS5854795B2 JPS5854795B2 (en) | 1983-12-06 |
Family
ID=14853019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56123134A Expired JPS5854795B2 (en) | 1981-08-07 | 1981-08-07 | Alcohol production method from low concentration sugar solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5854795B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6016591A (en) * | 1983-07-07 | 1985-01-28 | Tax Adm Agency | Immobilization of yeast |
JPS6055398U (en) * | 1983-09-26 | 1985-04-18 | 日東電工株式会社 | Culture device |
JPS61141817A (en) * | 1984-12-17 | 1986-06-28 | 井関農機株式会社 | Handling depth regulator in combine |
JPH07322884A (en) * | 1994-05-30 | 1995-12-12 | Agency Of Ind Science & Technol | Production of ethanol by fermentation method |
JP2017047400A (en) * | 2015-09-04 | 2017-03-09 | 浅野テクノロジー株式会社 | Active carbon-containing granular gel carrier, and production method thereof |
-
1981
- 1981-08-07 JP JP56123134A patent/JPS5854795B2/en not_active Expired
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6016591A (en) * | 1983-07-07 | 1985-01-28 | Tax Adm Agency | Immobilization of yeast |
JPS6230757B2 (en) * | 1983-07-07 | 1987-07-03 | Kokuzeicho Chokan | |
JPS6055398U (en) * | 1983-09-26 | 1985-04-18 | 日東電工株式会社 | Culture device |
JPH0117200Y2 (en) * | 1983-09-26 | 1989-05-18 | ||
JPS61141817A (en) * | 1984-12-17 | 1986-06-28 | 井関農機株式会社 | Handling depth regulator in combine |
JPH07322884A (en) * | 1994-05-30 | 1995-12-12 | Agency Of Ind Science & Technol | Production of ethanol by fermentation method |
JP2017047400A (en) * | 2015-09-04 | 2017-03-09 | 浅野テクノロジー株式会社 | Active carbon-containing granular gel carrier, and production method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS5854795B2 (en) | 1983-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112077127B (en) | Large kitchen waste phase-change water-making degradation treatment system and treatment method thereof | |
Krouwel et al. | Continuous isopropanol-butanol-ethanol fermentation by immobilized Clostridium beijerinckii cells in a packed bed fermenter | |
CN112028414B (en) | Biomass hydrothermal energy production process and device | |
Boura et al. | A critical review for advances on industrialization of immobilized cell bioreactors: Economic evaluation on cellulose hydrolysis for PHB production | |
CN111334407A (en) | Process technology and process equipment for preparing yeast culture by deep fermentation of yeast | |
CN208717336U (en) | Installation for fermenting | |
Jain et al. | Preparation and characterization of immobilized growing cells of Zymomonas mobilis for ethanol production | |
JPS5828288A (en) | Production of alcohol from low concentration sugar liquid | |
Silva et al. | Cell immobilization and xylitol production using sugarcane bagasse as raw material | |
CN112077126A (en) | Household kitchen waste phase-change water production degradation treatment system and treatment method thereof | |
KR100318755B1 (en) | Process for producing ethanol with high concentration from wood hydrolysate using low-temperature sterilization | |
CN103146571B (en) | Column type immobilization reactor for producing rhamnose gum through fermentation and process thereof | |
CN107739836B (en) | Device and method for continuous bioleaching of red mud in non-contact manner | |
SU1181555A3 (en) | Method of producing ethanol ethanol | |
Rolz | Ethanol from sugar crops | |
CN1035681C (en) | Process for treating waste liquor of distiller's grain of alcohol | |
CN101177695B (en) | High-concentration alcoholic fermentation method | |
CN104312899B (en) | A kind of aerobic-anaerobic intermittent aerating reactor for preparing nanometer selenium and its method for preparing nanometer selenium | |
CN210261773U (en) | Fermentation reactor for producing citric acid by immobilized aspergillus niger | |
Parekh et al. | Performance of a novel continuous dynamic immobilized cell bioreactor in ethanolic fermentation | |
CN110373364A (en) | A method of bacillus coagulans are produced based on distillers ' grains | |
WO2017175833A1 (en) | Device for producing ethanol from biomass resource and method for manufacturing ethanol from biomass resource | |
CN108707547A (en) | A kind of pump type and piston type conveying type installation for fermenting | |
Zohri et al. | Continuous Ethanol Production from Molasses via Immobilized Saccharomyces cerevisiae on Different Carriers on Pilot Scale | |
CN118440793A (en) | Method for preparing white spirit by carrying out flat ground accumulation fermentation on waste lees |