JPS5828235B2 - How can I make a difference? - Google Patents

How can I make a difference?

Info

Publication number
JPS5828235B2
JPS5828235B2 JP49108968A JP10896874A JPS5828235B2 JP S5828235 B2 JPS5828235 B2 JP S5828235B2 JP 49108968 A JP49108968 A JP 49108968A JP 10896874 A JP10896874 A JP 10896874A JP S5828235 B2 JPS5828235 B2 JP S5828235B2
Authority
JP
Japan
Prior art keywords
foam
layer
insulation
mesh
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49108968A
Other languages
Japanese (ja)
Other versions
JPS51105657A (en
Inventor
喜蔵 井本
弘 駒田
寛治 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP49108968A priority Critical patent/JPS5828235B2/en
Priority to GB37204/75A priority patent/GB1516150A/en
Priority to NO753156A priority patent/NO141483C/en
Priority to ES441089A priority patent/ES441089A1/en
Priority to SE7510534A priority patent/SE411484B/en
Priority to FR7528827A priority patent/FR2285569A1/en
Priority to FI752621A priority patent/FI752621A/fi
Priority to DK421175A priority patent/DK421175A/en
Priority to DE19752541964 priority patent/DE2541964A1/en
Priority to BE160192A priority patent/BE833607A/en
Priority to IT27423/75A priority patent/IT1042699B/en
Priority to PL1975183452A priority patent/PL105975B1/en
Priority to NL7511139A priority patent/NL7511139A/en
Publication of JPS51105657A publication Critical patent/JPS51105657A/ja
Publication of JPS5828235B2 publication Critical patent/JPS5828235B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/04Vessels not under pressure with provision for thermal insulation by insulating layers
    • F17C3/06Vessels not under pressure with provision for thermal insulation by insulating layers on the inner surface, i.e. in contact with the stored fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/001Thermal insulation specially adapted for cryogenic vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/04Vessels not under pressure with provision for thermal insulation by insulating layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/08Reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/38Meshes, lattices or nets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0678Concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Laminated Bodies (AREA)

Abstract

1516150 Insulated gas storage containers NIHON SOFLAN CHEMICAL & ENG CO Ltd and SUMITOMO HEAVY INDUSTRIES Ltd 10 Sept 1975 [20 Sept 1974] 37204/75 Heading F4P [Also in Division B5] A thermally insulated container for liquefied gases comprises a rigid shell lined with a thermal insulation structure comprising at least one layer of a rigid polyurethane foam sprayed in situ over a surface of the shell and a reinforcement therefor, the rigid polyurethane foam having a coefficient of safety according to the formula in which (#) means a direction perpendicular to the foam rise, of not less than 1À5, and the reinforcement comprises a fibrous mesh material having a low elongation in 2-dimensional directions which is applied at least on that surface of the insulation furthest from the shed, which constitutes the cold face of the insulation, for fixedly reinforcing the cold face and which mesh material has a sufficiently high strength against tension and shook at the liquefied gas temperature and a high coefficient of safety. The polyurethane may be produced from a polyol having an OH value of not more than 450 and a functional group content of 3 to 5, and a polymeric aromatic polyisocyanate. The fibrous mesh material may be of linen, rayon, nylon, polyester, glass or asbestos fibres. Bonding between the skin of the sprayed foam and the mesh may be effected using as adhesive rubber, chloroprene, SBR, polyurethane, epoxy, polyester, urea or phenol resin. The outer shell may be of metal or concrete and may be the outer wall of a marine tanker or under-ground tank. A primer, e.g. chloroprene, may be applied to the inner surface of the shell before spraying on the polyurethane foam preferably as a plurality of layers. A lining layer membrane may be applied to the resin forced foam structure. Balsa panels may also be employed in the insulation layer.

Description

【発明の詳細な説明】 本発明は液化天然ガスその他の低温容器の防熱層、特に
内側防熱層を形成するための新規な構造に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel structure for forming a heat barrier layer, particularly an inner heat barrier layer, in a low temperature container for liquefied natural gas or other materials.

一般に低温容器の防熱構造は色々な形式が実施され或い
は提案されているが、ここに云う内側防熱とは、例えば
勤勉において船殻の内面に防熱層が取付けられ、その内
部の空間に低温容器が独立型又はメンブレン形式で収納
されている構造に代表されるように、防熱層が常温側で
固定され低温側表面は殆んど拘束を受けない状態で新田
されるものを指す。
In general, various types of heat insulation structures for cryogenic containers have been implemented or proposed, and the term "inner heat insulation" here refers to, for example, a structure in which a heat insulation layer is attached to the inner surface of a ship's hull, and the cryogenic container is placed in the internal space. This refers to a structure in which the heat insulating layer is fixed on the room temperature side and the surface on the low temperature side is exposed to new conditions with almost no restraint, as typified by a structure that is housed in a stand-alone type or a membrane type.

この意味で防熱層が低温容器を兼ね、直接積載貨物液に
触れる内部防熱方式もこの範囲に含まれる。
In this sense, internal heat insulation systems in which the heat insulation layer also serves as a low-temperature container and are in direct contact with the loaded cargo liquid are also included in this scope.

本発明の目的は耐低温性の優れた材料を用い、内側防熱
層が熱応力又は外部からの機械的衝撃及び繰返し加重に
よって破損されるのを防止し、信頼性が高く、且つ比較
的構造が簡単で安価な内側防熱層を提供するものである
The purpose of the present invention is to use a material with excellent low temperature resistance, to prevent the inner heat-insulating layer from being damaged by thermal stress or external mechanical shock and repeated loading, to have high reliability, and to have a relatively simple structure. This provides a simple and inexpensive inner heat barrier layer.

更に本発明の他の目的は耐油性且液密性の材料及び構造
を採用し、効果的な内部防熱用又は2次防壁兼用の防熱
層を提供するものである。
Still another object of the present invention is to provide a heat barrier layer that employs oil-resistant and liquid-tight materials and structure and is effective for internal heat protection or as a secondary barrier.

本発明は前記防熱層を吹付法の硬質ウレタンフオームで
形成すること、その硬質ウレタンフオームの材質として
後に定義する安全係数が1.5以上の性能を有するもの
であること、及びゴム系或いはプラスチック系等の接着
剤を用いて、ガラス繊維、天然繊維、合成繊維等より選
ばれた網状質基材C以下メツシュと云う)を接着させる
ことによってウレタン7オームの内側表面が補強された
構造より成シ、かくして硬質ウレタンフオームの優れた
断熱性能と吹付現場発泡の長所を十分に生かし、低温更
には超低温領域でもクラックなどを生じない極めて安全
性の高い防熱層を形成せしめることを特長とするもので
ある。
The present invention provides that the heat insulating layer is formed of a sprayed hard urethane foam, that the material of the hard urethane foam has a safety factor of 1.5 or more, which will be defined later, and that it is made of a rubber-based or plastic-based material. The inner surface of 7-ohm urethane is reinforced by bonding a mesh base material C (hereinafter referred to as mesh) selected from glass fibers, natural fibers, synthetic fibers, etc. using an adhesive such as In this way, it takes full advantage of the excellent heat insulating performance of rigid urethane foam and the advantages of spray foaming, and forms an extremely safe heat insulating layer that does not cause cracks even at low temperatures or even ultra-low temperatures. .

一般に硬質ポリウレタンフォームは石油系炭化水素に殆
んど侵されずクラックや不完全な槽目のない限りこれら
の液体を通過せしめないことはよく知られている。
It is well known that in general, rigid polyurethane foams are hardly attacked by petroleum-based hydrocarbons and do not allow these liquids to pass through them unless there are cracks or incomplete openings.

この性質を利用してポリウレタンフォーム自体或いはこ
れと補強材料を併用した或いは時には二次防壁を兼ねた
低温防熱法はすでに色々提案されている。
Utilizing this property, various low-temperature heat insulation methods have already been proposed in which polyurethane foam itself or polyurethane foam is used in combination with a reinforcing material, or in some cases also serves as a secondary barrier.

例えば特開昭48−54509号公報、特開昭48−8
6153号公報等において、金網を初め各種メツシュ材
料をポリウレタンフォームと併用する事が提案されてい
るが、実際に効果的な性能を得るためには硬質ポリウレ
タン」フオームの性質、特に温度による性質の変化、各
種施工法、メツシュの性質、取付法等の間には複雑な関
係があう、それ等を考慮しないと屡々重大な問題を生じ
るにもかかわらず前記各文献にはこれ等の事については
例等説明されていない。
For example, JP-A-48-54509, JP-A-48-8
In Publication No. 6153, etc., it has been proposed to use various mesh materials including wire mesh together with polyurethane foam, but in order to actually obtain effective performance, it is necessary to consider the properties of the rigid polyurethane foam, especially the changes in properties due to temperature. Although there are complex relationships between various construction methods, mesh properties, installation methods, etc., and serious problems often occur if these are not taken into consideration, the above-mentioned documents do not contain any examples regarding these matters. etc. are not explained.

。又、特開昭49−47926号公報によれば、
超低温容器防熱層として3次元の複雑な繊維補強海綿状
プラスチック(ウレタンフオーム)と透過性ライナーの
併用が提案されており、むしろ繊維補強のない海綿状プ
ラスチックとガラスメッシュニ積層ライナーの併用のみ
では超低温容器防熱層として不適当であると述べている
. Also, according to Japanese Patent Application Laid-Open No. 49-47926,
It has been proposed to use a three-dimensional complex fiber-reinforced spongy plastic (urethane foam) in combination with a permeable liner as a heat-insulating layer for ultra-low temperature containers. It is stated that it is unsuitable as a heat-insulating layer for containers.

一80℃を下回る低温に対しプラスチックフオームによ
る防熱に際してはプラスチックのぜい化点にも関連して
困難な問題が多く、とりわけ常温二側が固定されている
内側防熱構造では防熱層の低温側は大きい熱応力が発生
し静的状態は勿論、更に外部からの機械的な衝撃及び繰
シ返し荷重により尚一層クラック等の損傷を招くこの解
決は容易ではなかった。
There are many difficult problems related to the embrittlement point of plastic when using plastic foam for heat insulation at low temperatures below -80℃, especially in the case of an inner heat insulation structure where the two sides are fixed at room temperature, the low temperature side of the heat insulation layer is large. It was not easy to solve this problem, as thermal stress is generated, which not only occurs in a static state, but also causes further damage such as cracks due to external mechanical shock and repeated loads.

j一方、本発明者等
も従前より各種の防熱構造について研究を重ねて卒たが
今回吹付発泡法に於ける硬質ウレタンフオームの性質と
メツシュによる補強能力の関係を詳細に検討した結果、
内側防熱に於いてこれらの問題点を解決するためには材
質j的には低温でもこの応力に耐えるもの又工法的には
材質のバラツキの少いもの更に構造上は補強を行うこと
の3つの要件を適切に組合せ且つ、ある※※いは選ぶこ
とが最も有効であることを見出し本発明に至ったもので
ある。
On the other hand, the present inventors have been conducting research on various types of heat-insulating structures, and as a result of a detailed study of the relationship between the properties of rigid urethane foam in the spray foaming method and the reinforcing ability of mesh,
In order to solve these problems in internal heat insulation, we need three things: a material that can withstand this stress even at low temperatures, a construction method that has little variation in material, and structural reinforcement. The present invention was achieved by discovering that it is most effective to appropriately combine and select certain requirements.

以下、更に本発明の内容を詳細に説明する。Hereinafter, the contents of the present invention will be explained in further detail.

先づ本発明の1つの要件である吹付発泡法は、比較的発
泡速度の速い材料を使用して対象面に直接吹付ける事に
よって硬質ウレタンフオームの防熱層を得る方法である
First, the spray foaming method, which is one of the requirements of the present invention, is a method of obtaining a heat-insulating layer of hard urethane foam by directly spraying a material with a relatively high foaming speed onto the target surface.

一回の吹付けによって得られる厚みは比較的薄く通常1
0〜25mであって、対象面に対しほぼ垂直に自由発泡
の形で立上るものである。
The thickness obtained by one spraying is relatively thin and usually 1
It is 0 to 25 m and stands up almost perpendicularly to the target surface in the form of free foam.

従って特に注入発泡法に比較して発泡成型時の残留応力
が少い。
Therefore, the residual stress during foam molding is particularly small compared to the injection foaming method.

又広い面積を実質上継目なく施工出来るために広さ方向
の材質がほぼ均一である。
Moreover, since it can be constructed virtually seamlessly over a wide area, the material quality in the width direction is almost uniform.

この2つの性質は使用時強い熱応力を受ける低温防熱で
は特に有益である。
These two properties are particularly beneficial in low temperature insulation, which is subject to strong thermal stress during use.

吹付発泡法自体は公知の技術であるのでここでは詳細な
説明は省略する。
Since the blow foaming method itself is a well-known technique, detailed explanation will be omitted here.

次に他の要件であるフオーム材質について述べる。Next, we will discuss the other requirement, which is the foam material.

ウレタンフオームはその原料配合如何によってその性質
は軟質から硬質1で大巾に変化させることが出来る。
The properties of urethane foam can vary widely, from soft to hard, depending on the composition of its raw materials.

ここにウレタンフオームと称スるものはポリイソシアネ
ート系フオーム即ちインシアヌレートフオーム カーポ
ジイミドフオーム等も含むものである。
The term urethane foam herein includes polyisocyanate foams, ie, incyanurate foams, carposiimide foams, and the like.

この中にあって、どのような物性を有する材料が液化天
然ガスのような超低温の防熱材料として適しているかは
殆んど解明されていない。
Among these materials, it is largely unknown which materials have physical properties that are suitable as heat insulating materials for ultra-low temperatures such as liquefied natural gas.

しかし種々の配合別7オームによる低温防熱実験を行う
とクラックの発生量には大きな差異があるので、ウレタ
ンフオーム自身の性質が第−義的に重要であることは明
らかである。
However, when conducting low-temperature heat protection experiments using various combinations of 7 ohms, there were large differences in the amount of cracks generated, so it is clear that the properties of the urethane foam itself are of primary importance.

フオームの耐低温性を代表する物性として常識的にはフ
オーム自身の抗張力TS、引張シ伸び率EB、あるいは
その積TSXEB及びこれ等の温度依存性等が一応前え
られるが、しかしこれ等の値は実際の実験結果と必ずし
も一致しない。
Common sense suggests that the tensile strength TS of the foam itself, the tensile elongation EB, or their product TSXEB, and the temperature dependence of these are the physical properties that represent the low temperature resistance of the foam. does not necessarily match the actual experimental results.

ここに発明者らは試行錯誤を繰返した後、低温に於ける
フオームの有効性を表わす重要な性質として次の係数が
有用である事を見出した。
After repeated trial and error, the inventors have found that the following coefficient is useful as an important property representing the effectiveness of the foam at low temperatures.

但しくIは発泡方向に垂直な力を加えた場合を示す。However, I indicates the case where a force perpendicular to the foaming direction is applied.

ここに垂直方向をとりあげた理由は、クラックが殆んど
すべて防熱面に垂直方向に発生するから発泡に垂直な方
向(対象面に平行方向)に於ける熱応力とフオームの抗
張力との比が重要であることが判明したためである。
The reason why we chose the vertical direction here is that almost all cracks occur perpendicular to the insulation surface, so the ratio of the thermal stress in the direction perpendicular to the foaming direction (parallel to the target surface) and the tensile strength of the foam is This is because it turned out to be important.

これを安全係数と名付けることにする。We will call this the safety factor.

熱応力は常温で両端固定したフオーム試片を低温雰囲気
におくとき、その収縮せんとする力の大きさを測定する
ことによって得られる。
Thermal stress can be obtained by measuring the magnitude of the force that causes contraction of a foam specimen fixed at both ends at room temperature when placed in a low-temperature atmosphere.

又低温抗張力は改めてその捷1の装置で常法の引張試験
によシ求めることが出来る。
Also, the low temperature tensile strength can be determined again by a conventional tensile test using the machine 1.

第1図はこの安全係数を求める装置の例を示す。FIG. 1 shows an example of a device for determining this safety factor.

図に示す如く、硬質ポリウレタンフォームの吹付層から
採取した10(巾)XIO(厚み) X 100(長さ
、但し上方向) mytt、試片Aを断熱容器R中に納
め且上下のクロスヘッド間にとりつけて長さ方向を拘束
しておく。
As shown in the figure, a sample A of 10 (width) x 10 (thickness) x 100 (length, upward direction) sampled from a sprayed layer of rigid polyurethane foam was placed in a heat-insulating container R and placed between the upper and lower crossheads. Attach it to restrain it in the length direction.

Dは荷重検定器(ロードセル)、E、E’は試片固定治
具である。
D is a load certifier (load cell), and E and E' are specimen fixing jigs.

別に準備し※ン ※ た装置から液体窒素と適当量の空気を混ぜて一定温度に
した冷気を導入して容器R内の温度を常温から一192
℃に冷却する。
The temperature inside the container R was raised from room temperature to -192° by introducing cold air that had been made by mixing liquid nitrogen and an appropriate amount of air to a constant temperature from a separately prepared device.
Cool to ℃.

試片Aに発生した熱応力は荷重検定器りで検出される。The thermal stress generated in specimen A is detected by a load verification device.

容器内温度が一192℃になって15分后位で熱応力は
略一定となる。
The thermal stress becomes approximately constant 15 minutes after the temperature inside the container reaches 1192°C.

次いで、固定治具Eをゆるめ試片Aを一旦自由状態にし
てから固定治具E、E’を締め直し、下部クロスヘッド
Cを下降させなから試片に荷重をかけ、−192℃にお
ける抗張力を測定する。
Next, loosen the fixing jig E to make the specimen A free, then retighten the fixing jigs E and E', apply a load to the specimen without lowering the lower crosshead C, and measure the tensile strength at -192°C. Measure.

かくして安全係数は次の様に計算される。The safety factor is thus calculated as follows.

ことに−192℃という温度を用いた理由は、LNG(
−162℃)も含む対象に利用することを目的として液
体窒素(−196℃)を用いて比較的容易に到達しうる
温度を示すものである。
The reason for using a temperature of -192℃ is that LNG (
This indicates a temperature that can be relatively easily reached using liquid nitrogen (-196°C) for the purpose of using it for objects including -162°C.

従ってそれ程厳密である必要はない。Therefore, it does not need to be so strict.

耐低温性の悪いフオームは多くの場合、−192℃迄冷
却しただけでフオームにクラックが入り切断するに至る
In many cases, foams with poor low temperature resistance crack and break even when cooled to -192°C.

この場合の安全係数は1以下である。The safety factor in this case is 1 or less.

安全係数と耐低温性の関係について実施例に示すような
低温の、特に実際には予想される衝撃も含めた試験を繰
返した結果、上記の小試片から得られた数値にはある程
度の余裕を加える必要があシ、はぼその値が1.5以上
のものは有用であり、好渣しくば2.0以上であること
が判明した。
Regarding the relationship between the safety factor and low temperature resistance, as a result of repeated tests at low temperatures, especially including shocks that are expected in reality, as shown in the examples, there is a certain degree of margin in the values obtained from the small specimens mentioned above. It was found that a value of 1.5 or more is useful, and preferably a value of 2.0 or more.

一方、吹付フオーム各層の表面には内部の芯部より密度
の高い表皮が生成する。
On the other hand, a skin with a higher density than the inner core is formed on the surface of each layer of the sprayed foam.

この表皮層の比重は芯部の2〜10倍にもなり、その厚
みは施工条件にもよるが10〜25關の芯部に対し0.
3++oa以下、普通は0.1 mm位であり、且この
表皮は当然であるが、芯部より硬く引張り伸び率も小さ
い。
The specific gravity of this skin layer is 2 to 10 times that of the core, and its thickness is 0.2 to 10 times that of the core, which is 10 to 25 times thicker, depending on the construction conditions.
It is less than 3++ oa, usually about 0.1 mm, and this skin is naturally harder than the core and has a lower tensile elongation.

そして吹付層は実際には数層重ねられるから、こうした
表皮と芯部を綜合したフオームの性質が重要であり、上
記の安全係数の測定に際してもこの点考慮する必要があ
る。
Since several sprayed layers are actually stacked, the properties of the foam that integrates the skin and core are important, and this must be taken into account when measuring the safety factor mentioned above.

第1図試片A中の波型の線は表皮の存在を示すものであ
る。
The wavy line in specimen A in FIG. 1 indicates the presence of epidermis.

内側防熱においてはフオーム自身に適当な圧縮強度、多
くの場合は3〜5kg/cni位を有することが要求さ
れ、この目的のため通常40kg/m3程度ないしそれ
以上の密度が必要である。
For internal heat insulation, the foam itself is required to have a suitable compressive strength, in most cases about 3 to 5 kg/cni, and for this purpose, a density of about 40 kg/m@3 or more is usually required.

この程度のウレタンフオームを作るのは一般には容易で
あるが、その多くのものは熱応力が大きく、望ましい安
全係数を得ることは困難である。
Although it is generally easy to make urethane foams of this quality, many of them have large thermal stress, making it difficult to obtain a desired safety factor.

本発明に用いられる材料は硬質7オームとしては比較的
引張り伸び率が大きく、例えば一般的なフオームでは発
泡方向に垂直な常温での引張り伸び率が3〜7係に対し
上記低温用フオームは少くとも8係、多くのものは10
%以上であり、密度に比し、低い弾性係数の7オームが
上記目的に適していると云うことが出来る。
The material used in the present invention has a relatively high tensile elongation rate for a hard 7 ohm.For example, the tensile elongation rate of a general foam at room temperature perpendicular to the foaming direction is 3 to 7, whereas the above-mentioned low temperature foam has a low tensile elongation rate. Many are 8, and most are 10.
% or more, and it can be said that 7 ohm, which has a low elastic modulus compared to the density, is suitable for the above purpose.

好ましいフオームを得るための原液の成分の配合には特
別な考慮が必要である。
Special consideration must be given to the formulation of the components of the concentrate to obtain the desired form.

一般的に硬質ポリウレタンフォームはOH価C■KOル
ク)300〜80003.5官能以上の多官能性ポリオ
ール及び芳香族ポリイソシアネートを主成分として、こ
れに必要に応じて整泡剤、触媒、ハロゲン化炭化水素或
いは水等の発泡剤、難燃剤、可塑剤等を用いてセミプレ
ポリマー法又はワンショット法で作られる。
In general, rigid polyurethane foam is mainly composed of a polyfunctional polyol with an OH value (C■KO Luk) of 300 to 80003.5 or higher and aromatic polyisocyanate, and optionally foam stabilizers, catalysts, and halogenated polyols. It is made by a semi-prepolymer method or a one-shot method using a blowing agent such as hydrocarbon or water, a flame retardant, a plasticizer, etc.

一方低温用のフオームは450以下の低OH価で、且4
程度の比較的低官能性のポリオールと、ポリメリックイ
ンシアネートを使用するのが好曾しい。
On the other hand, the foam for low temperature has a low OH value of 450 or less, and
Preferably, polyols of relatively low functionality and polymeric incyanates are used.

次表に安全係数の大きい低温用のフオームの物性を一般
のフオームのそれと対比して示す。
The following table shows the physical properties of low-temperature foams with large safety factors in comparison with those of general foams.

常温における 3〜7 8〜20引張シ伸び
率(1) 一192℃における 4.5〜15 3.5〜13
抗張力■、に蔽=(Jj 常温→−192℃ 5〜15 1.0〜8.5
の熱応力(Y)鵜乙d山 ■ 安全係数 −1,0以下 1.5〜3.5(1) (註)(1);発泡方向に垂直な荷重 ω)二発泡方向に平行な荷重 前記の如〈発明者らは樹脂組成を改良することによって
主として弾性係数を下げる方向で安全係数の大きいフオ
ームを得た。
3-7 8-20 Tensile elongation at room temperature (1) - 4.5-15 3.5-13 at 192°C
Tensile strength ■, resistance = (Jj room temperature → -192℃ 5~15 1.0~8.5
Thermal stress (Y) Uotdyama ■ Safety factor -1.0 or less 1.5 to 3.5 (1) (Note) (1); Load perpendicular to the foaming direction ω) 2 Load parallel to the foaming direction As mentioned above, the inventors have obtained a foam with a large safety factor mainly in the direction of lowering the elastic modulus by improving the resin composition.

一方熱応力は弾性係数と線膨張係数の積に関係している
から、後者の値を低減させる方法、例えばガラス長繊維
を埋込む方法、粉末に近い短繊維を樹脂にプレミックス
する方法などにより、かなシ安全係数の高いフオームを
作ることは可能であるが、非常に繁雑な操作が必要とな
り実用化には問題が多い。
On the other hand, thermal stress is related to the product of elastic modulus and linear expansion coefficient, so there are ways to reduce the latter value, such as embedding long glass fibers or premixing short fibers similar to powder into resin. Although it is possible to create a form with a high kana safety factor, it requires very complicated operations and there are many problems in practical use.

更にもう一つの他の要件はメツシュによる表面の補強で
ある。
Yet another requirement is surface reinforcement with mesh.

この材料は麻等の天然繊維、レーヨン、ナイロン、ポリ
エステル等の合成繊維、ガラス、アスベスト等の無機繊
維の中から選ぶことが出来る。
This material can be selected from natural fibers such as hemp, synthetic fibers such as rayon, nylon, and polyester, and inorganic fibers such as glass and asbestos.

基材の選定には次の点を考慮に入れる必要がある。The following points should be taken into consideration when selecting the base material:

先づ材料自体、低温でも引張、衝撃等の強度が充分であ
る必要がある。
First, the material itself must have sufficient tensile and impact strength even at low temperatures.

内側防熱ではフオームについても述べこのと同様、広さ
方向は拘束された寸1冷却されるから補強材は更に強度
が高くかつ安全係数の高いものでiければならない。
In the case of inner heat insulation, the foam is also mentioned, and similarly, the width direction is restricted by 1. Since the foam is cooled, the reinforcing material must have even higher strength and a higher safety factor.

取付に当っては接着剤で含浸されるから、この複合化さ
れた形でテストする必要がある。
Since it is impregnated with adhesive during installation, it is necessary to test this composite form.

次に吹き付は発泡されたフオームの表面は必ずしも平滑
でないから、所謂腰の柔いし上によくなじむものが好ま
しい。
Next, when spraying, since the surface of the foamed foam is not necessarily smooth, it is preferable to use something that is soft and can fit well on the surface.

この意味で通常の金属網にみられるような単線で構成さ
れたメツシュは不適当である。
In this sense, a mesh constructed of single wires, such as those found in ordinary metal mesh, is inappropriate.

当然ながら入手し易い材料であることも重要な要件であ
る。
Naturally, it is also an important requirement that the material be easily available.

網の目の大きさは過大のときは補強が不充分となり、過
少のときはし1になじみにくい、従って2〜8間目のガ
ラス繊維メツシュが好適である。
If the size of the mesh is too large, the reinforcement will be insufficient, and if it is too small, it will be difficult to fit into the mesh 1. Therefore, a glass fiber mesh with mesh size between 2 and 8 is preferable.

例えば日東紡績3株)製ガラスクロスWC−250゜約
3u目、糸(S trand )密度7本/ 25 m
m、正方形模様平織クロスがある。
For example, glass cloth WC-250, manufactured by Nitto Boseki Co., Ltd. (3rd stock), about 3u, thread density 7 strands/25 m
m, square pattern plain weave cloth is available.

1本の糸は数百本の素繊維(fiber )を撚り合わ
せたもので、みかけの直径は約0.35mmである。
One thread is made up of several hundred fibers twisted together, and has an apparent diameter of about 0.35 mm.

吹付されたフオームの表皮とメツシュの接着にはクロロ
プレン、S B R。
Chloroprene and SBR are used to bond the sprayed foam skin to the mesh.

ハイパロンX等のゴム系、ポリウレタン、エポキシ、ポ
リエステル、尿素、フェノール等のプラスチック系の溶
剤型又は場合によってはエマルジョン型などの接着剤を
選ぶことが出来る。
A rubber-based adhesive such as Hypalon X, a plastic-based adhesive such as polyurethane, epoxy, polyester, urea, or phenol, solvent-based adhesive, or emulsion-based adhesive in some cases can be selected.

内側防熱では積載貨物例えば液化プロパンや液化天然ガ
スに直接触れる構造であったり(内部防熱)、又触れる
機会のあることを想定する必要があるので(2次防壁)
、材質は当然これらによって変質されないものでなけれ
ばならない。
For internal heat insulation, it is necessary to assume that the structure is such that it will come into direct contact with the loaded cargo, such as liquefied propane or liquefied natural gas (internal heat insulation), or that there will be a chance of contact with it (secondary barrier).
Naturally, the material must not be altered by these substances.

1つの好適例は溶剤型クロロプレンゴムである。One suitable example is solvent-borne chloroprene rubber.

接着方法は、先づ接着剤を薄くフオーム表面に塗布し、
半乾きの状態のときにメツシュを貼着し、仮どめする。
The adhesive method is to first apply a thin layer of adhesive to the foam surface,
Attach the mesh when it is half dry and temporarily secure it.

機械的に例えばステープルを使用するなどの補助手段も
有効である。
Mechanical aids, such as the use of staples, are also effective.

本構造の内部防熱層は液密も兼ねているのが特長である
が、液密の性能そのものは連続して成型された吹付フオ
ーム層自体にあり、メツシュを使用する目的はあく1で
フオームのクラックを防止するための表皮の補強にあっ
て、接着剤の塗膜との共存で収容する液体の液密性被膜
(所謂メンブレン)を形成することは目的ではない。
The internal heat-insulating layer of this structure is characterized by being liquid-tight, but the liquid-tight performance itself lies in the sprayed foam layer itself, which is continuously molded, and the purpose of using mesh is simply to protect the foam. In reinforcing the skin to prevent cracks, the purpose is not to form a liquid-tight coating (so-called membrane) for containing liquid in coexistence with the adhesive coating.

むしろこのような手段でほぼ液密のメンブレンを形成し
た場合、何らかの経路で液化ガスがフオームと被膜との
間に侵入する可能性があり、昇温によって液化ガスは急
激にガス化し、その結果生ずる背圧によって補強層の大
きい破損が起こる危険性がある。
Rather, if a nearly liquid-tight membrane is formed by such a method, there is a possibility that liquefied gas will enter between the foam and the coating through some route, and as the temperature rises, the liquefied gas will rapidly gasify, resulting in There is a risk of major damage to the reinforcing layer due to back pressure.

この現象をさけるため接着剤は低温において強靭な塗膜
を形成しないような材料にしてガスを容易に逃がすべき
である。
To avoid this phenomenon, the adhesive should be made of a material that does not form a tough film at low temperatures and allows gas to escape easily.

実際例えば液化天然ガスの如き超低温(約−162℃)
で強靭な塗膜を形成する材料を探す方がむしろ困難で上
記の条件を満たす材料の選択はそれ程困難ではない。
In fact, for example, ultra-low temperature (approximately -162℃) such as liquefied natural gas
It is rather difficult to find a material that forms a strong coating film, but it is not so difficult to select a material that satisfies the above conditions.

一般に多くの接着剤はガラス繊維と共存すると著るしく
耐低温性能が向上する。
In general, the low temperature resistance of many adhesives is significantly improved when they coexist with glass fiber.

例えばクロロプレンゴム又はウレタン接着剤を用いた上
記補強面を液体窒素で冷却テストを行った結果、糸とフ
オームの接着は良好な結果を示し、その間の薄い接着剤
のみの層は多くの小クラックが認められ、補強目的のみ
で被膜は作らない効果を確認することが出来た。
For example, a cooling test with liquid nitrogen on the above-mentioned reinforced surface using chloroprene rubber or urethane adhesive showed good adhesion between the thread and foam, and the thin adhesive layer between them showed many small cracks. It was possible to confirm the effect of not creating a film for reinforcement purposes only.

既述の網目の大きさの最少限を2mmとした1つの理由
は以上の工作不能の限界に由来するものである。
One of the reasons why the minimum mesh size is set to 2 mm is due to the above-mentioned limit of machinability.

接着に先立ちフオーム表面を平滑に切削することは特に
Lllの激しい部分についてのみ行えば充分である。
It is sufficient to smoothen the foam surface prior to adhesion, especially in areas where Lll is severe.

本発明の断熱構造を適用するに好ましい1例はバルサ材
を併用する方形独立タンク型LNG船の2次防壁、所謂
コンテ方式である。
A preferable example to which the heat insulation structure of the present invention is applied is a so-called conte type secondary barrier of a rectangular independent tank type LNG ship that also uses balsa wood.

本発明の具体的な構造の例を第2図、第3図及び第4図
に示す。
Examples of specific structures of the present invention are shown in FIGS. 2, 3, and 4.

図において1は金属、コンクリート製などのタンク外壁
で、船舶における船殻又は2重設構造の地上又は地下タ
ンクにおける外殻に相当するものである。
In the figure, reference numeral 1 denotes a tank outer wall made of metal, concrete, etc., which corresponds to the hull of a ship or the outer shell of a double-structure above-ground or underground tank.

従ってこの壁の外面C図においては下方)は常温の空気
、海水あるいは土に接している。
Therefore, the outer surface of this wall (downward in Figure C) is in contact with room temperature air, seawater, or soil.

外壁の内面はポリウレタン吹付に先立ち接着を良好にす
るためプライマー処理を行うことが望ましい。
It is desirable to prime the inner surface of the outer wall to improve adhesion prior to spraying polyurethane.

クロロプレンゴムの塗装が1つの好適例である。A chloroprene rubber coating is one suitable example.

2,4,5.6及び7は吹付によって積層された安全係
数1.5以上の硬質ポリウレタンフォームの断熱層であ
る。
2, 4, 5.6 and 7 are heat insulating layers of rigid polyurethane foam laminated by spraying and having a safety factor of 1.5 or more.

1層の厚みは平均20mttgとして5層、計100關
の場合を示す。
The average thickness of one layer is 20 mttg, and the case is 5 layers, totaling 100 layers.

経験的に1層の吹付厚みは10〜25順位がよく必要厚
みは層の数によって増減できる。
Experience has shown that the spraying thickness of one layer is in the order of 10 to 25, and the required thickness can be increased or decreased depending on the number of layers.

第1層20表面には比較的硬い表皮層3が存在する。A relatively hard skin layer 3 exists on the surface of the first layer 20.

以下他の層も同様である。10は説明を容易にするため
縮尺は誇張されているが2〜8關目の補強用メツシュの
各糸を示すもので、最内層7の表皮層8に対し接着剤9
により固着されている。
The same applies to other layers below. 10 is an exaggerated scale for ease of explanation, but it shows each thread of the reinforcing mesh of the 2nd to 8th mesh, and the adhesive 9 is attached to the skin layer 8 of the innermost layer 7.
It is fixed by.

11に示す空間部は低温域を示すもので空間を隔てて独
立式の低温タンクが収納されている場合、はぼ防熱層に
接してメンブレンタン効ヨ設置される場合、或いは直接
貯蔵される低温物質が接する場合などがある。
The space shown in 11 indicates the low-temperature region, and when an independent low-temperature tank is housed across the space, when a membrane tank is installed in contact with a heat-insulating layer, or when a low-temperature tank is directly stored. There are cases where substances come into contact.

以上の説明は本発明の1実施例を示すものであるが、こ
の概念を変えることなく、各種の変更を行うことが出来
るのはいう1でもない。
Although the above description shows one embodiment of the present invention, various changes can be made without changing the concept.

例えば内面を美しく仕上げるため補強層内面を更に硬質
ポリウレタンフォームの薄い吹き付は層で覆うこと、或
いは特にメンブレンタンク収納の場合、平坦な仕上面を
うるため、はぼ防熱性能と関係のない材料で仕上塗りを
行うことなどである。
For example, to give the inner surface a beautiful finish, the inner surface of the reinforcing layer may be covered with a thin sprayed layer of hard polyurethane foam, or, especially in the case of membrane tank storage, to obtain a flat finished surface, the inner surface of the reinforcing layer may be covered with a material unrelated to heat insulation performance. This includes applying a finishing coat.

一方最内層の表面のみでなく、内側から2,3番目の吹
付層の表面にも同様の補強層を設けることは安全性をよ
り向上する手段として考えられる。
On the other hand, providing a similar reinforcing layer not only on the surface of the innermost layer but also on the surfaces of the second and third sprayed layers from the inside can be considered as a means to further improve safety.

しかしながら本発明はフオームの材質を充分検討してほ
ぼその必要を認めないことを特長としているので経済性
の意味から必要最少限の単純な構造にすることが賢明で
ある。
However, the present invention is characterized in that the material of the foam is thoroughly considered and there is almost no need for it, so it is wise to keep the structure as simple as possible from the viewpoint of economy.

次に各種の実験を行い、本発明の効果を確認したので以
下にその具体的な実施例を掲げる。
Next, various experiments were conducted to confirm the effects of the present invention, and specific examples thereof are listed below.

実施例 1200X1200X5mm(厚さ)の鋼板の4周に1
0mm(厚)X100mm(高さ)の合板製の枠を固定
して準備した多数の皿状の容器の内部に硬質ウレタンフ
オームを1層当り15關厚、計5層75間の厚さに吹付
けた試片を作成した。
Example 1 1 for every 4 circumferences of a steel plate of 200 x 1200 x 5 mm (thickness)
Hard urethane foam was sprayed on the inside of a number of dish-shaped containers prepared by fixing plywood frames of 0 mm (thickness) x 100 mm (height) to a thickness of 15 mm per layer, a total of 5 layers of 75 mm. A specimen was prepared with the attached.

実験は比較のため各種の材料、構造及び冷却温度を組合
せ、各10個9種類、計90個行った。
For comparison purposes, a total of 90 experiments were conducted, combining various materials, structures, and cooling temperatures, with 10 of each type and 9 types.

使用補強材は既述の3關目ガラス繊維メツシユでその周
辺は枠に接着固定した。
The reinforcing material used was the glass fiber mesh for the third eyelet mentioned above, and the area around it was glued and fixed to the frame.

冷却試験はa−eに対しては供試片の上部25關の空間
に液体窒素(−196℃)を直接投入しa′〜d′に対
してはドライアイス(約−70℃)を充填し、少く共2
時間保持した。
In the cooling test, liquid nitrogen (-196°C) was directly injected into the upper 25-degree space of the specimen for a-e, and dry ice (approximately -70°C) was filled for a'-d'. Yes, at least 2
Holds time.

更に衝撃試験は液体窒素の存在する状態の11又はドラ
イアイスを除去直後先端に巾7mmの楔のついた8(φ
)×約1800mm(長)の鋼棒(重量600@)を1
mの高さから防熱層表面に落下させた。
Furthermore, the impact test was carried out using 11 in the presence of liquid nitrogen or 8 (φ
) x approx. 1800mm (length) steel rod (weight 600@) 1
It was dropped onto the surface of the heat barrier layer from a height of m.

ちなみにメツシュのある場合、楔はその巾のメツシュを
切断しその貫入深さは約20mmであった。
By the way, when there was a mesh, the wedge cut through the mesh of that width, and the penetration depth was about 20 mm.

次表にその結果を示す。The results are shown in the table below.

(註)※1 ※2 日本ソフラン製、硬質ウレタンフオーム 〃最上層〃はこの試片の位置の上下関係で示したもので
本文中の最内層に相当する。
(Note) *1 *2 Made by Nippon Soflan, hard urethane foam. The top layer is shown in the vertical relationship of this specimen and corresponds to the innermost layer in the text.

(d)及び(e)については衝撃試験後も鋼板裏面にコ
ールドスポットは発生せず、又昇温後の着色試験でも液
シールが完全であることを確認した。
Regarding (d) and (e), no cold spots were generated on the back surface of the steel plate even after the impact test, and it was confirmed that the liquid seal was perfect even in the coloring test after increasing the temperature.

又前記(d)の構造を用いて、3.5X3.5mの模型
にて低温で船舶における20年分の動的繰返し荷重をか
けて試験したところ十分に耐えた。
Furthermore, when the structure of (d) was tested using a 3.5 x 3.5 m model at low temperatures and subjected to 20 years of dynamic load on a ship, it was able to withstand sufficiently.

上表の結果から安全係数2の材料でも裸のフオームでは
一196℃の液体窒素の存在下では(C)の如く完全で
はないが、これに表面のみメツシュ補強を行えば(ωの
如く静的耐性はもとより苛酷な衝撃試験にも耐えること
、及び同様な補強を行っても(b)の如くフオーム材質
が適さないときは目的を達しないこと、又更に衝撃試験
を満足させるためには、ドライアイス程度の温度でも低
温用フオームとメツシュの組合せが必要であることなど
の関係が明らかである。
From the results in the above table, even with a material with a safety factor of 2, the bare foam is not perfect in the presence of liquid nitrogen at -196°C, as shown in (C), but if only the surface is mesh-reinforced (as shown in ω), the static In addition to durability, it must also withstand severe impact tests, and even if similar reinforcement is applied, the purpose will not be achieved if the foam material is not suitable as shown in (b).In order to satisfy the impact test, dry The relationship is clear, such as the need for a combination of low-temperature foam and mesh even at temperatures comparable to ice cream.

注入発泡したフオームは吹付発泡したフオームに比べ同
一材質でも低温でより割れ易く、又多数個所に継ぎ目を
作らざるを得ないから本発明対象のように液密を目的と
する場合には全く不適当である。
Injection-foamed foams are more likely to break at low temperatures than spray-foamed foams even if they are made of the same material, and seams must be made at multiple locations, so they are completely unsuitable when the purpose of liquid-tightness is the object of the present invention. It is.

以上詳述の如く本発明は硬質ウレタンフオームの材質、
工法、及び機械的な補強方法の巧みな組合せにより極め
て単純で比較的安価な構造を提供するものであり、LP
G、LNG等の低温液化ガスの運搬用又は貯蔵用タンク
の内側防熱層に用いて極めて有用である。
As detailed above, the present invention is made of hard urethane foam material,
It provides an extremely simple and relatively inexpensive structure through a clever combination of construction methods and mechanical reinforcement methods, and LP
It is extremely useful for use as an inner heat-insulating layer of tanks for transporting or storing low-temperature liquefied gases such as G, LNG, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における安全係数を求めるための装置の
1例を示す暗示説明図、第2図は本発明による防熱層の
構造の1例を示す部分断面図である。 第3図は第2図の部分拡大図、第4図は第2図の他の例
を示す部分拡大図、第5図は本発明の断熱構造体を2次
防壁と使用したときの部分断面図、第6図は本発明の断
熱構造体をメンブレン式タンクに接触して使用したとき
の部分断面図、第7図は本発明の断熱構造体を内部防熱
として使用したときの部分断面図、第8図は第5図の変
形であって一部バルサ材を併用したときの部分断面図を
示す。 1・・・・・・タンク外壁、2,4.5,6.7・・・
・・・硬質ポリウレタンフォー゛ム吹付層、9・・・・
・・接着剤、10・・・・・・補強用網状質基材、11
・・・・・・低温域、21・・・・・・独立方式低温容
器、22・・・・・・メンブレン方式低温容器、23・
・・・・・空間、24・・・・・・バルサ材。
FIG. 1 is an implicit explanatory diagram showing an example of a device for determining a safety factor according to the present invention, and FIG. 2 is a partial sectional view showing an example of the structure of a heat-insulating layer according to the present invention. Fig. 3 is a partially enlarged view of Fig. 2, Fig. 4 is a partially enlarged view showing another example of Fig. 2, and Fig. 5 is a partial cross section when the heat insulating structure of the present invention is used as a secondary barrier. Figure 6 is a partial cross-sectional view when the heat-insulating structure of the present invention is used in contact with a membrane tank, and Figure 7 is a partial cross-sectional view when the heat-insulating structure of the present invention is used as internal heat insulation. FIG. 8 is a modification of FIG. 5, and shows a partial sectional view when balsa wood is used in combination. 1... Tank outer wall, 2, 4.5, 6.7...
...Hard polyurethane foam spray layer, 9...
... Adhesive, 10 ... Reticulated base material for reinforcement, 11
・・・・・・Low temperature range, 21・・・・Independent type low temperature container, 22・・・・Membrane type low temperature container, 23・
...Space, 24...Balsa wood.

Claims (1)

【特許請求の範囲】 1 硬質ポリウレタン吹付層によシ形成された防熱層を
有する内側防熱式低温害悪に於て、該硬質ウレタンフオ
ーム層が、 によって定義される安全係数1.5以上の性質を有し、
かつ該ウレタンフオーム層の内側最内表面は繊維系網状
質基材の層着によって補強されていることを特徴とする
低温容器の防熱構造体。
[Scope of Claims] 1. In an inner heat-insulating type having a heat-insulating layer formed by a sprayed hard polyurethane layer, the hard urethane foam layer has a safety factor of 1.5 or more defined by: have,
A heat-insulating structure for a low-temperature container, characterized in that the innermost surface of the urethane foam layer is reinforced by a layer of a fibrous network base material.
JP49108968A 1974-09-20 1974-09-20 How can I make a difference? Expired JPS5828235B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP49108968A JPS5828235B2 (en) 1974-09-20 1974-09-20 How can I make a difference?
GB37204/75A GB1516150A (en) 1974-09-20 1975-09-10 Thermally insulated containers for liquefied gas
NO753156A NO141483C (en) 1974-09-20 1975-09-16 INTERNAL THERMAL INSULATION STRUCTURE FOR LOW TEMPERATURE CONTAINERS.
ES441089A ES441089A1 (en) 1974-09-20 1975-09-19 Thermally insulated containers for liquefied gas
SE7510534A SE411484B (en) 1974-09-20 1975-09-19 THERMAL INSULATION CONSTRUCTION FOR LAYER TEMPERATURE CONTAINER
FR7528827A FR2285569A1 (en) 1974-09-20 1975-09-19 THERMAL INSULATION TRIM FOR LOW TEMPERATURE TANKS CONTAINING LIQUEFIED OR SIMILAR GASES
FI752621A FI752621A (en) 1974-09-20 1975-09-19
DK421175A DK421175A (en) 1974-09-20 1975-09-19 INSULATION MATERIAL
DE19752541964 DE2541964A1 (en) 1974-09-20 1975-09-19 THERMAL INSULATING ARRANGEMENT FOR CONTAINERS EXPOSED TO LOW TEMPERATURES
BE160192A BE833607A (en) 1974-09-20 1975-09-19 THERMAL INSULATION TRIM FOR LOW TEMPERATURE TANKS CONTAINING LIQUEFIED OR SIMILAR GASES
IT27423/75A IT1042699B (en) 1974-09-20 1975-09-19 THERMALLY INSULATING STRUCTURE FOR CRYOGENIC CONTAINERS
PL1975183452A PL105975B1 (en) 1974-09-20 1975-09-20 METHOD OF PRODUCING THERMAL INSULATION
NL7511139A NL7511139A (en) 1974-09-20 1975-09-22 THERMAL INSULATION FOR COLD LIQUIDS HOLDERS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49108968A JPS5828235B2 (en) 1974-09-20 1974-09-20 How can I make a difference?

Publications (2)

Publication Number Publication Date
JPS51105657A JPS51105657A (en) 1976-09-18
JPS5828235B2 true JPS5828235B2 (en) 1983-06-14

Family

ID=14498213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49108968A Expired JPS5828235B2 (en) 1974-09-20 1974-09-20 How can I make a difference?

Country Status (13)

Country Link
JP (1) JPS5828235B2 (en)
BE (1) BE833607A (en)
DE (1) DE2541964A1 (en)
DK (1) DK421175A (en)
ES (1) ES441089A1 (en)
FI (1) FI752621A (en)
FR (1) FR2285569A1 (en)
GB (1) GB1516150A (en)
IT (1) IT1042699B (en)
NL (1) NL7511139A (en)
NO (1) NO141483C (en)
PL (1) PL105975B1 (en)
SE (1) SE411484B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093227A1 (en) * 2010-01-28 2011-08-04 大阪瓦斯株式会社 Low-temperature tank

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2052388A (en) * 1979-06-02 1981-01-28 Nissan Motor Noise reducing cover for an internal combustion engine
CA1139687A (en) * 1980-04-21 1983-01-18 Michael H. Collins Heat-insulated container for liquefied gases
CA1141930A (en) 1980-04-25 1983-03-01 Terence Cotgreave Heat-insulated container provided with a locating and/or supporting device
DE8228886U1 (en) * 1982-10-14 1983-01-20 Ruoff-Schäfer, Rudolf, 7000 Stuttgart PIPE OR PANEL SHAPED INSULATION MATERIAL
GB2164293A (en) * 1984-08-31 1986-03-19 Motoplat Import resistant fuel tanks
FR2604157B1 (en) * 1986-09-18 1989-09-01 Air Liquide ISOTHERMAL STRUCTURE
DE3743629A1 (en) * 1987-12-22 1989-07-06 Siemens Ag ALUMINUM ELECTROLYTE CAPACITOR
GB2275684A (en) * 1993-01-07 1994-09-07 Ici Plc Semi-rigid foam
US5636607A (en) * 1996-06-28 1997-06-10 Basf Corporation Plastic valve cover with integral noise shield
FR2827940B1 (en) * 2001-07-27 2003-10-31 Cryospace L Air Liquide Aerosp PROCESS FOR THERMAL INSULATION OF A METAL STRUCTURE OF WHICH BOTH SIDES ARE SUBJECT TO CRYOGENIC TEMPERATURES
FR2938267B1 (en) * 2008-11-07 2012-11-02 Bostik Sa USE OF A POLYURETHANE ADHESIVE COMPOSITION FOR CRYOGENIC APPLICATIONS
GB2555773B (en) * 2016-08-09 2019-06-12 Mgi Thermo Pte Ltd LNG Tank insulation system comprising polyurethane foam and impervious coating
JP6993080B2 (en) * 2016-10-05 2022-01-13 旭化成建材株式会社 Composite insulation
TWI761402B (en) * 2017-12-06 2022-04-21 日商大阪瓦斯電力工程股份有限公司 LNG charging equipment
CN112986316A (en) * 2021-03-24 2021-06-18 北京环冷科技有限公司 Experimental device for be used for carrying out ultra-low temperature cold insulation effect test to cold insulation material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093227A1 (en) * 2010-01-28 2011-08-04 大阪瓦斯株式会社 Low-temperature tank
JP5896749B2 (en) * 2010-01-28 2016-03-30 大阪瓦斯株式会社 Low temperature tank

Also Published As

Publication number Publication date
JPS51105657A (en) 1976-09-18
NO141483B (en) 1979-12-10
NL7511139A (en) 1976-03-23
IT1042699B (en) 1980-01-30
FR2285569A1 (en) 1976-04-16
NO141483C (en) 1980-03-19
ES441089A1 (en) 1977-03-16
DK421175A (en) 1976-03-21
GB1516150A (en) 1978-06-28
NO753156L (en) 1976-03-23
SE411484B (en) 1979-12-27
DE2541964A1 (en) 1976-04-01
BE833607A (en) 1976-01-16
SE7510534L (en) 1976-03-22
FI752621A (en) 1976-03-21
FR2285569B1 (en) 1979-06-22
PL105975B1 (en) 1979-11-30

Similar Documents

Publication Publication Date Title
JPS5828235B2 (en) How can I make a difference?
US3101861A (en) Vessel for transporting low temperature liquids
US4155482A (en) Insulated cryogenic liquid container
JP5312344B2 (en) Use of composites as barriers at cryogenic temperatures
US3031856A (en) Vessel for transporting low temperature liquids
US3929247A (en) Cryogenic tank
WO2006130019A1 (en) Process and system for thermal insulation of cryogenic containers and tanks
US3682346A (en) Liquid cryogen storage tank for shore, ship or barge
US4101045A (en) Cryogenic container
KR20210146953A (en) Polyurethane/polyisocyanurate foam block of insulation of container and manufacturing process thereof
US3870588A (en) Method of constructing a heat insulating wall of foamed sulfur
US3339515A (en) Atmospheric pressure storage and transportation of volatile liquids
EP3497362B1 (en) Insulation system
EP3475604B1 (en) Wall structure of heat insulating box
CN113614137B (en) Polyurethane/polyisocyanurate foam blocks of the insulating body of a tank and method for the production thereof
Karbhari et al. Correlation of laboratory and field studies of ageing and degradation of composite systems in civil infrastructure
KR101924168B1 (en) Insulation and structural components for ultra-low temperature tank, and manufacture method of the same
AU2019231331A1 (en) Containment system for storing and transporting bulk liquid
RU2799199C2 (en) Block of polyurethane/polyisocyanurate foam of the heat-insulating tank body and method for its preparation
RU2800285C2 (en) Block of polyurethane/polyisocyanurate foam of the heat-insulating tank case and method for its preparation
RU2796735C2 (en) Method for manufacturing a block from polyurethane/polyisocyanurate foam plate for thermal insulation of a tank
ES2937402T3 (en) Procedure for preparing a polyurethane/polyisocyanurate foam block from a tank insulation thermal mass
JP4637901B2 (en) Composite element manufacturing method and composite element
KR20220151182A (en) Assembly of at least two foam blocks of the thermal insulation slab of the tank
Shimoda et al. Study of CFRP application to the cryogenic propellant tank of reusable launch vehicle