JPS5827960A - Spring steel with superior yielding resistance - Google Patents

Spring steel with superior yielding resistance

Info

Publication number
JPS5827960A
JPS5827960A JP12628581A JP12628581A JPS5827960A JP S5827960 A JPS5827960 A JP S5827960A JP 12628581 A JP12628581 A JP 12628581A JP 12628581 A JP12628581 A JP 12628581A JP S5827960 A JPS5827960 A JP S5827960A
Authority
JP
Japan
Prior art keywords
steel
springs
copper
resistance
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12628581A
Other languages
Japanese (ja)
Other versions
JPS6237110B2 (en
Inventor
Toshiro Yamamoto
俊郎 山本
Ryohei Kobayashi
良平 小林
Mamoru Kurimoto
栗本 衛
Toshio Kosone
小曽根 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Chuo Spring Co Ltd
Aichi Steel Corp
Original Assignee
Chuo Hatsujo KK
Chuo Spring Co Ltd
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK, Chuo Spring Co Ltd, Aichi Steel Corp filed Critical Chuo Hatsujo KK
Priority to JP12628581A priority Critical patent/JPS5827960A/en
Publication of JPS5827960A publication Critical patent/JPS5827960A/en
Publication of JPS6237110B2 publication Critical patent/JPS6237110B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Springs (AREA)

Abstract

PURPOSE:To obtain a spring steel with superior yielding resistance and hardenability by adding a specified percentage each of C, Si, Mn, V, Nb, Mo, etc. to Fe. CONSTITUTION:A steel consisting of, by weight, 0.50-0.80% C, 1.50-2.50% Si, 0.50-1.50% Mn, 1 or >=2 kinds of elements selected from 0.05-0.50% V, 0.05- 0.50% Nb and 0.05-0.50% Mo, 1 or >=2 kinds among 0.20-2.00% Cu, 0.05- 1.00% Co and 0.01-2.00% Be, and the balance essentially Fe is prepared. To the steel may be added 1 or >=2 kinds among 0.03-0.10% Al, 0.02-0.10% Ti and 0.02-0.10Zr, 1 or >=2 kinds among 0.0005-0.0100% B, 0.20-1.00% Cr, 0.20- 2.00%Ni and <=0.30% rare earth element, or 0.05-1.00% W and/or 0.05-0.50% Ta.

Description

【発明の詳細な説明】 本発明は、酎へtコり性のすぐれたばね用銅に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to copper for springs with excellent stiffness.

従来、自動車等の懸架装置に用いられるばね用これに対
して、懸架装置全般にわたって各種の手段が試みられて
いるが、その中でもばねの設31応力を上昇させる手段
が効果的とされている。このように高応力設計にともな
い、従来の」1記ばね用銅を素材としばねを製作した場
合、へたりが増大するという問題が発生した。特に乗用
車に用いた場合へtこりの増大はバンバ高さの低下につ
ながり安全」二大きな問題となつtコ。そこで、各種の
研究がなされた結果、ばね用鋼中のSt 含有量を増加
させると耐へたり性が向上するということを見い出し近
時、S U 、1’ 6よりもさらにS1含有量が多く
1.T I S G 4.801に規定されるばね用鋼
中では最も高81のS rJ P 7が乗用車懸架ばね
用銅として広く使用されるに至っている。
Conventionally, various methods have been tried for springs used in suspension systems for automobiles and other suspension systems in general, but among these, a method for increasing the stress in the spring is considered to be effective. Along with this high stress design, when springs were manufactured using the conventional copper material for springs described in item 1, a problem occurred in that the set-off increased. Particularly when used in passenger cars, an increase in stiffness leads to a decrease in bumper height, which poses a major safety problem. As a result of various studies, it was discovered that increasing the St content in spring steel improves the resistance to sagging. 1. Among the spring steels specified in TIS G 4.801, S rJ P 7, which has the highest steel of 81, has come to be widely used as a copper for passenger car suspension springs.

しかるに、懸架ばねの軽量化に対する要求は厳しいもの
があり、S U P 7よりもさらに耐へたり性のすぐ
れたばね用銅の開発が強く望まれていた。
However, there are strict requirements for reducing the weight of suspension springs, and there has been a strong desire to develop copper for springs that is even more resistant to fatigue than SUP7.

本発明はこのような背景の下に、本発明者等が研究を重
ねた結果、高81ばね用銅に適量の■。
Against this background, the present invention was developed as a result of repeated research by the present inventors, and was developed by adding an appropriate amount of ■ to copper for high 81 springs.

Nb 、 A4.’oを1種ないし2種以」−添加し、
さらにCo 、On 、BOを1種ないし2種以」−添
加したうえに、さらに使用日的に応じて、A、g 、 
Ti  。
Nb, A4. Adding one or more types of 'o',
Furthermore, in addition to adding one or more types of Co, On, and BO, depending on the date of use, A, g,
Ti.

Zrのうち1種ないし2種以上、B、 Cr 、Ni。One or more of Zr, B, Cr, and Ni.

希土類元素のうち1種ないし2種以上、W、Taのうち
1種ないし2種を添加することにより、STJ P 7
よりも耐へたり性及び焼入性がすぐれ、かつ、ばね用銅
として必要な耐疲労性、靭性についてもS TJ P7
と同等の性能を有するばね用銅を開発したものである。
By adding one or more rare earth elements and one or two of W and Ta, STJ P 7
It has better fatigue resistance and hardenability than S TJ P7, and also has the fatigue resistance and toughness required for spring copper.
We have developed copper for springs that has performance equivalent to that of springs.

V、N’b 、Mo及びW、’Taは鋼中におイテそれ
ぞれ炭化物を形成し、これら合金炭化物は焼入れ時の加
熱に際して、オーステナイト中に溶解する。これを急冷
して焼入れするとこれら元素を過飽和に固溶したマルテ
ンサイトが得られる。これを焼もどしするとその過程で
微細な合金炭化物が再析出を始め、これが鋼中において
転位の動きを阻止し、二次硬化を生じ、V、Nb 、M
oを添加已また、焼入れ時の加熱においてオーステナイ
I・中に溶解されない合金炭化物は、オーステナイト結
晶粒を薇細化するとともにその粗大化を防止し得る。ま
た、このような微細な結晶粒は転位の移動量を少なくす
ることにより耐へたり性を向上させる。
V, N'b, Mo, W, and Ta each form a carbide in the steel, and these alloy carbides dissolve in the austenite during heating during quenching. When this is rapidly cooled and quenched, martensite containing these elements in a supersaturated solid solution is obtained. When this is tempered, fine alloy carbides begin to re-precipitate during the process, which blocks the movement of dislocations in the steel and causes secondary hardening, resulting in V, Nb, M
Additionally, alloy carbides that are not dissolved in austenite I during heating during quenching can refine the austenite crystal grains and prevent them from becoming coarser. Moreover, such fine crystal grains improve the resistance to settling by reducing the amount of movement of dislocations.

また、Co 、Co 、Bcは鋼中においてSt と同
様に置換型に固溶して、鋼に固溶強化を付与し、鋼の耐
へたり性を向上させる。
Further, Co 2 , Co 2 , and Bc form a solid solution in the steel in a substitutional manner similar to St 2 , impart solid solution strengthening to the steel, and improve the sag resistance of the steel.

一方、AI 、Ti 、Zrは、多くの場合、鋼中にお
いてNと結合して窒化物を形成し、オーステナイト結晶
粒を微細化するとともにその粗大化を防止する効果を有
し、転位の移動量を少なくすることにより鋼の耐へたり
性向上に寄与する。
On the other hand, AI, Ti, and Zr often combine with N in steel to form nitrides, which has the effect of refining austenite grains and preventing their coarsening, thereby reducing the amount of dislocation movement. By reducing this, it contributes to improving the fatigue resistance of the steel.

また、11. Or 、 Ni 、及び希土類元素はそ
れぞれ鋼の焼入性を高める元素で、特に高い焼入性を必
要とする大物、厚物のばねに対しても前記添加元素によ
る耐へたり性向上を可能にするもので硬さ範囲を狙う場
合、従来鋼に比較して焼もどし温度範囲をより広い範囲
とすることが可能であり、狙いの硬さが安定して得られ
ることになる。このことをさらに明らかにするため、後
述の0.22%の■、0.18%のTa、1.38%の
C11を含有しりA 15fi、  0.21 *(7
)V、  0.1.2*(7)N’) 、  0゜20
%のTa 、さらに1.30%のellを含有したA 
16鋼とS TJ P ’7であるBI鋼とを300〜
650℃の間で焼もどしを行ない、その硬さを測定した
結果を第1図に示した。第1図から明らかなように、析
出強化元素であるV、NbとTa、 CIIを適宜に含
有させたA15+ A16鋼の本発明鋼では、硬さに対
応する焼もどし温度範囲は従来鋼に比べ広いことが認め
られると同時に、二次硬化の生起を示す硬さの上昇が焼
もどし温度550℃のところに見ることができる。
Also, 11. Or, Ni, and rare earth elements are elements that improve the hardenability of steel, and the additive elements can improve the fatigue resistance even for large and thick springs that require particularly high hardenability. When aiming for a hardness range in a steel, it is possible to set the tempering temperature range to a wider range than with conventional steel, and the desired hardness can be stably obtained. In order to clarify this further, we used Shiri A 15fi, 0.21 * (7
)V, 0.1.2*(7)N'), 0°20
% Ta and further contained 1.30% ELL.
16 steel and S TJ P '7 BI steel from 300~
Figure 1 shows the results of tempering at 650°C and measuring the hardness. As is clear from Fig. 1, the tempering temperature range corresponding to the hardness of the A15+A16 steel of the present invention, which contains precipitation-strengthening elements V, Nb, Ta, and CII appropriately, is lower than that of conventional steel. At the same time, an increase in hardness indicating the occurrence of secondary hardening can be seen at a tempering temperature of 550°C.

つぎに結晶粒の微細化効果については、021%ノv、
  1..31%ノcIl 、  O,0y−8%(D
Al 全含有するA7鋼、0.19%のV、0.12%
のNb、]。
Next, regarding the grain refinement effect, 021% Nov,
1. .. 31% NocIl, O,0y-8% (D
A7 steel with total Al content, 0.19% V, 0.12%
Nb, ].

\ のTi  を含有するA9鋼、020%のV、0.14
%のNb、0.68%の00,0.05%のTi を含
有するA10@と従来鋼の8UP7であるB1鋼の各オ
ーステナイト化温度におけるオーステナイト結晶粒の大
きさを酸化法によって測定した結果を第2図に示した。
A9 steel containing \ Ti, 0.20% V, 0.14
Results of measuring the austenite grain size at each austenitizing temperature of A10 @ containing % Nb, 0.68% 00, and 0.05% Ti and B1 steel, which is the conventional steel 8UP7, by an oxidation method. is shown in Figure 2.

第2図をみると、AIあるいはTiの添加によ(7) す、オーステティl−結晶粒度は従来鋼に比べ、粒度番
号にして約3程度細かくなっていることが認められる。
Looking at FIG. 2, it can be seen that due to the addition of AI or Ti (7), the austeti l-crystal grain size is about 3 finer in terms of grain size number than that of conventional steel.

また、第3図は、025%のV、1.30%のCu。Moreover, FIG. 3 shows 0.25% V and 1.30% Cu.

o、ooao%のBを含有したAll鋼、0.23%の
v、o、io%のNb 、  1.27%のCu、 、
 Q、 Q Q21%のBを含有したA、12鋼、02
7%の■。
All steel containing o, ooao% B, 0.23% v, o,io% Nb, 1.27% Cu,
Q, Q A, 12 steel, 02 containing 21% B
■7%.

1.34%ノC11、0,62%(7) Or を含有
したA1B鋼、  0.21.%(7)V、  0.1
5%(7)NIJ 、  1.29%本発明鋼の化学組
成はco、5o〜0.80%、 Stl、50〜2.5
0%、 Mn 0.50〜1.50%を含有し、これに
■005〜0.50%、 NlI  Q、Q 5〜05
0%、MOo、05〜0.50%のうち1種ないし2種
以上を含有し、さらにC110,20〜3.00%。
A1B steel containing 1.34% C11, 0.62% (7) Or, 0.21. %(7)V, 0.1
5% (7) NIJ, 1.29% The chemical composition of the invention steel is co, 5o ~ 0.80%, Stl, 50 ~ 2.5
0%, Mn 0.50-1.50%, and ■005-0.50%, NlI Q, Q 5-05
0%, MOo, 05 to 0.50%, and further contains C110, 20 to 3.00%.

COO,05〜1.00%、 Be−Q、91〜2.0
0%のうち1種ないし2種以上を含有し、さらに使用口
(8) 的に応じてA40.O会〜0.10%、Ti 0002
〜010%、 Zr  0802〜0.10%のうち1
種ないし2種以上を、あるいはBO,0O05〜0.0
100%、 Or 0.20〜1.00%、 Ni  
O,20〜2.00%、希土類元素030%以下のうち
1種ないし2種以上を、あるいはWO105〜1.00
%、 Ta0.05〜0.50%のうち1種ないし2種
を含有し、残り実質的にpeよりなるものである。
COO, 05~1.00%, Be-Q, 91~2.0
0%, and further contains A40.0% depending on the usage. O-kai~0.10%, Ti 0002
~010%, Zr 0802 ~ 1 out of 0.10%
Seeds or two or more seeds, or BO, 0O05 to 0.0
100%, Or 0.20-1.00%, Ni
O, 20~2.00%, one or more of rare earth elements 030% or less, or WO105~1.00
%, Ta or 0.05 to 0.50%, and the remainder substantially consists of pe.

−とじて十分な強度が得られないためであり、0,80
%を越えて含有させると過共析鋼となり靭性の低下が著
しくなるためである。
- This is because sufficient strength cannot be obtained by closing, and 0.80
This is because if the content exceeds %, the steel will become hypereutectoid and the toughness will be significantly lowered.

Si量を1.50〜250%としたのは、1.50%以
下ではSi の有するフェライト中に固溶することによ
り素地の強度を上げ、耐へたり性を改善するという効果
が十分に得られないためであり、2.50%を越えて含
有させても耐へたり性向上の効果が飽和し、かつ、熱処
理により遊離炭素を生、しる恐れがあるためである。
The reason why the amount of Si is set to 1.50 to 250% is because if it is less than 1.50%, the effect of increasing the strength of the base material and improving the resistance to settling by forming a solid solution in the ferrite possessed by Si is sufficient. This is because, even if the content exceeds 2.50%, the effect of improving the settling resistance will be saturated, and there is a risk that free carbon will be produced by heat treatment.

M n量を050〜150%としたのは、0.50%以
下ではばね用銅としての強度が不足し、さらに焼入性の
点でも不十分であるためであり、1.50%を越えて含
有させると靭性を阻害するためである。
The reason why the Mn amount is set to 050 to 150% is because if it is less than 0.50%, the strength as copper for springs is insufficient and also the hardenability is insufficient. This is because if it is contained, the toughness will be impaired.

V、 Nll 、 Moはいずれも本発明鋼においては
耐へたり性を改善する元素である。
V, Nll, and Mo are all elements that improve the sag resistance in the steel of the present invention.

あり、0.50%を越えて含有させてもその効果が飽和
し、か゛つ、オーステナイト中に溶解されない合金炭化
物量が増加し、大きな塊となることにより非金属介在物
的な作用により鋼の疲労強度を低下させる恐れがあるた
めである。
However, even if the content exceeds 0.50%, the effect will be saturated, and the amount of alloy carbides that will not be dissolved in the austenite will increase, forming large lumps that will cause the steel to deteriorate due to the action of non-metallic inclusions. This is because there is a risk of reducing fatigue strength.

これらのV、Nl)、Moはそれぞれを単独で添加する
ほかに、2種ないし3種を複合添加することにより、V
 、 Nl)、 M、oを単独で添加した場合ニ比へ、
より低い温度でオーステナイト中への溶解を開始させ、
また焼もどし過程において微細な合金炭化物の析出は、
二次硬化をより促進させることにより耐へt:り性をさ
らに向−Iニさせるもの−Cある。
These V, Nl), and Mo can be added individually or by adding two or three types in combination.
, Nl), M, and o are added alone to the ratio of
Start dissolving into austenite at a lower temperature,
In addition, precipitation of fine alloy carbides during the tempering process
There is a substance-C which further improves the wear resistance by further accelerating secondary curing.

また、Cu、Go、Beはそれぞれ鋼中において置換型
に固溶して鋼を強化し、耐へたり性を改善する元素であ
る。el+の含有量を0.20〜300%としたのは、
0.20%以下では固溶強化とし0.05%以下では効
果が不十分であり、1.00%を越えると靭性を劣化す
る恐れがあるためである。
In addition, Cu, Go, and Be are elements that form a solid solution in the steel in a substitutional manner to strengthen the steel and improve its resistance to settling. The content of el+ was set to 0.20 to 300% because
This is because if the content is less than 0.20%, the effect is solid solution strengthening; if it is less than 0.05%, the effect is insufficient, and if it exceeds 1.00%, the toughness may deteriorate.

同様にBeの含有量を0.01〜200%としたのは、
Beは固溶強化能が大きい元素だが、0.01%以下で
は上記の効果が得られないためてあり、2.00%を越
えて含有させてもSlの場合と同様効果が飽和するため
である。
Similarly, when the Be content was set to 0.01 to 200%,
Although Be is an element with a large solid solution strengthening ability, the above effect cannot be obtained if it is less than 0.01%, and even if it is contained in excess of 2.00%, the effect is saturated as in the case of Sl. be.

また、結晶粒を薇細化して耐へたり性を向−1−させる
kl、’I″l、Zrの含有量を、Aβについて(11
) は0.03−0.1.0%、Ti とZrについては0
02〜0.10%としたのは、それぞれそれ以Fではそ
れら窒化物の分布状態が疎らとなり結晶粒の微細化に寄
りしないからであり、0.10%を越えて含有しても−
1−記の効果が飽和し、かつ、熱間圧延性を阻害し、非
金属介在物として鋼の靭性を劣化させる恐れがあるため
である。
In addition, the contents of kl, 'I''l, and Zr, which refine the crystal grains and improve the resistance to settling, were determined for Aβ (11
) is 0.03-0.1.0%, and 0 for Ti and Zr.
The reason why F is set at 0.02 to 0.10% is because the distribution of these nitrides becomes sparse and the crystal grains do not become finer if the F content exceeds 0.10%.
This is because the effect described in item 1-1 is saturated and there is a risk that the hot rolling properties may be inhibited and the toughness of the steel may be deteriorated as non-metallic inclusions.

また、B、Or 、Ni 、及び希土類元素は焼入、性
を高め、焼入れに際して、大物、厚物のばねを有量を0
.0005〜0.01.00%としたのは、0゜000
5%以下では焼入性の向」二が期待できないためであり
、0.01.00%を越えて含有させても効果が飽和す
るためである。Crの含有量を0.20〜1.00%と
したのは、0.20%以下では焼入性向上の効果が十分
でないためであり、1.00%を越えtコ場合には、焼
入性向−にの効果がほぼ飽和し、かつ、本発明鋼のよう
にSt を多く含有する( 12 ) ・鋼では、焼もどし組織を不均一にする恐れがあるため
である。
In addition, B, Or, Ni, and rare earth elements improve hardening and hardening properties, and during hardening, large and thick springs can be removed.
.. 0005 to 0.01.00% is 0°000
This is because if the content is less than 5%, no improvement in hardenability can be expected, and if the content exceeds 0.01.00%, the effect will be saturated. The reason why the Cr content is set to 0.20 to 1.00% is because the effect of improving hardenability is not sufficient if it is less than 0.20%, and if it exceeds 1.00%, This is because the effect on the propensity is almost saturated, and in (12) steel containing a large amount of St like the steel of the present invention, the tempered structure may become non-uniform.

また、Niの含有量を0.20〜2.00%としたのは
、0.20%以下では十分な焼入性向1−効果が得られ
ないためであり、200%を越えて含有させても効果が
飽和し、かつ、大量の残留オースナイ!・を形成する恐
れがあるためである。同様に希土類元素量を030%以
下としたのは、それ以上含有させると、結晶粒が粗大化
する恐れがあるためである。
In addition, the reason why the Ni content is set to 0.20 to 2.00% is because if it is less than 0.20%, sufficient quenching property 1 effect cannot be obtained, so if it is contained more than 200%, The effect is saturated, and there is a large amount of residual Ausnai! This is because there is a risk of forming. Similarly, the reason why the amount of rare earth elements is set to 0.30% or less is that if it is contained more than that, the crystal grains may become coarse.

ことにより鋼に析出強化を付与する元素で、Wの含有量
を005〜1.00%としたのは、0.05%以下では
析出量が不足するためであり、1..00%を越えて含
有させても効果が飽和するためである。
The reason why the content of W, which is an element that imparts precipitation strengthening to steel, is set at 0.05% to 1.00% is that if it is less than 0.05%, the amount of precipitation is insufficient.1. .. This is because the effect is saturated even if the content exceeds 00%.

またTaの含有量を0゜05〜0.50%としたのは、
005%以下では、Wの場合と同様に析出量が不足する
ためであり、050%を越えて含有させても効果が飽和
し、かつ、未溶解炭化物が非金属介在物として作用して
鋼の靭性を劣化させる恐れがあるためである。
In addition, the Ta content was set to 0°05 to 0.50% because
If the content is less than 0.005%, the amount of precipitation will be insufficient as in the case of W, and even if the content exceeds 0.50%, the effect will be saturated, and the undissolved carbides will act as nonmetallic inclusions, causing the steel to deteriorate. This is because there is a risk of deteriorating toughness.

そしてこの場合もWとTaを単独で添加するほかに、2
種を複合添加することにより、既に添加されているV、
Nh 、Moと相乗効果を発揮して、より低いオーステ
ナイト化温度で合金炭化物の溶解を開始させ2次硬化を
さらに促進させるものである。
In this case as well, in addition to adding W and Ta alone, 2
By adding seeds in combination, the already added V,
It exhibits a synergistic effect with Nh and Mo to start dissolving alloy carbides at a lower austenitizing temperature and further promote secondary hardening.

つぎに本発明鋼の特徴を従来鋼と比べ実施例で吹峯4I 第1表においてA1−A16鋼は本発明鋼で、Bl鋼は
従来鋼でS I丁P7である。これらはすべて鋳造後、
圧延比50以上で熱間圧延を施して供試材とした。
Next, the characteristics of the steel of the present invention will be compared with the conventional steel. In Table 1, A1-A16 steel is the steel of the present invention, and Bl steel is the conventional steel, SI-P7. All of these are cast after casting.
A test material was prepared by hot rolling at a rolling ratio of 50 or more.

そして前記供試鋼を素材として第2表に示す諸元を有す
るコイルばねを成形し、最終硬さがI:I n、c45
〜55となるように焼入・焼もどし処理を行った後、素
線の剪断応力τ−11−5k’j/ynlr となるよ
うにセッチングを加えてへたり試験片を作製し)96時
間経過(以下、これを長期荷重という)した後のコイル
ばねのへたり爪を測定した。
Then, a coil spring having the specifications shown in Table 2 was formed using the above-mentioned test steel as a raw material, and the final hardness was I:I n, c45.
After quenching and tempering so that the wire had a shear stress of ~55, setting was applied so that the shear stress of the strand was τ-11-5k'j/ynlr to prepare a fatigue test piece.) After 96 hours. (Hereinafter, this is referred to as long-term loading) The coil spring's fatigue claw was measured.

第     2     表 しかし焼入性を考慮したA11〜A 1.4鋼について
は、表3に示した径φ3 Q mmの1・−ンヨン・バ
ーに成形して試験片とし、τ−1101KII’/−で
セッチンクした後、τ−100kqr/mrJ  の応
力を何加し、96時間放置した後のへたり量を求めた。
Table 2 However, for A11 to A1.4 steels in consideration of hardenability, test pieces were formed into 1-yon bars with a diameter of φ3 Q mm shown in Table 3, and τ-1101KII'/- After setting, a stress of τ-100 kqr/mrJ was applied, and the amount of settling after being left for 96 hours was determined.

第     3     表 そして、」−記試験片の硬さに対するへたり爪を第4〜
7図に示した。
Table 3: Table 3.
It is shown in Figure 7.

第4〜7図から明らかなように本発明鋼であるA1−A
16鋼はいずれも従来鋼であるB1鋼に比べ優れ牟だ耐
へたり性を有していることが認められる。
As is clear from Figs. 4 to 7, A1-A, which is the steel of the present invention,
It is recognized that all of the No. 16 steels have superior fatigue resistance compared to the conventional steel, B1 steel.

なお、へたり量は前記長期荷重を加える前にコイルばね
を一定の高さまで圧縮するに要した荷重P1  と、前
記長期荷重を加えた後に同一の高さまで圧縮するに要し
た荷重P2とを測定し、その差△J) (−p 、  
l) 2)  より次式を用いて算出したもので、剪断
ひずみの単位を有し、残留剪断ひずみと称する値をもっ
て評価した。
The amount of setback is determined by measuring the load P1 required to compress the coil spring to a certain height before applying the long-term load, and the load P2 required to compress the coil spring to the same height after applying the long-term load. and the difference △J) (-p,
l) 2) It was calculated using the following formula, and has the unit of shear strain, and was evaluated using a value called residual shear strain.

18I) γ1(・−互・K]△I゛ G;横断性率(k釘/mA)  D ; ml イル中
心径(ynm)(l;素線径(zyy) K;ワールの修正係数(コイルばねの形状により定まる
定数) tた、AIl〜A 1.4鋼について実施した1・−ジ
ョンバーからのへたり量はねじり角度の減少量△θ(r
a、rl)からYr−△θ・(J/21に従って残留断
歪量に変えて求めた。
18I) γ1 (・-mutual・K] △I゛G; transversality rate (k nails/mA) D; ml coil center diameter (ynm) (l; strand diameter (zyy) K; whirl correction coefficient (coil (a constant determined by the shape of the spring) t, AIl ~ A The amount of settling from the 1-version bar conducted on 1.4 steel is the amount of decrease in the torsion angle △θ (r
a, rl) to the amount of residual shear strain according to Yr-Δθ·(J/21).

(l;線径(悶) l;有効長さくmm) また、本発明鋼と従来鋼について、A1−A10鋼、A
15〜A i 6鋼、Bl鋼では前記のコイルばねを用
いて、またfz〜A 1−4鋼については前記の1・−
ジョン・バーを用いて、1o−110に’:jf/mA
の条件で疲労試験を実施したところ、いずれも20万回
繰り返しても析損することはなかった。
(l; wire diameter (agony) l; effective length mm) In addition, regarding the present invention steel and conventional steel, A1-A10 steel, A
For 15~A i 6 steel and BL steel, use the above-mentioned coil spring, and for fz~A 1-4 steel, use the above 1・-
Using John Barr, 1o-110':jf/mA
When a fatigue test was conducted under the following conditions, no precipitation occurred even after repeated 200,000 times.

上述の如く、本発明鋼は従来の高81ばね用銅に適量の
V、Nb 、Moを[11独あるいは複合して添加し、
さらに適量のCu 、 C(+ 、 Bcを単独あるい
は複合して添加したうえに、使用目的に応じて適量のA
 I + T ir Z rを単独あるいは複合して添
加し、あるいは適量のB、 Or 、Ni、希土類〕べ
元素を単独あるいは複合して添加し、あるいは適ご−1
1 ツ′量のW r Taを単独、あるいは複合添加するこ
とばね用銅として必要な耐疲労性、靭性についても従来
鋼と比べそん色のないもので、特に乗用車懸架ばね用銅
として極めて高い実用性を有するものである。
As mentioned above, the steel of the present invention is made by adding appropriate amounts of V, Nb, and Mo to the conventional copper for high 81 springs.
Furthermore, in addition to adding appropriate amounts of Cu, C(+, and Bc, either singly or in combination, an appropriate amount of A is added depending on the purpose of use.
Adding I + TirZr alone or in combination, or adding an appropriate amount of B, Or, Ni, rare earth elements, singly or in combination, or adding an appropriate amount of B, Or, Ni, rare earth element, or
The fatigue resistance and toughness necessary for copper for springs are comparable to those of conventional steels by adding 100% of WrTa either alone or in combination, making it extremely practical as copper for suspension springs for passenger cars in particular. It is something that has a nature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明鋼と従来鋼について焼入れ後、300
〜650℃の間で焼もどしを行ない、その硬さを示した
線図で、第2図は、本発明鋼と従来鋼について各オース
テ温度1−化温度におけるオーステナイI・結晶粒度を
酸化法によって求めた結果を示す線図、第3図は、本発
明鋼と従来鋼について焼入れ性を比較した線図、第4〜
7図は本発明鋼と従来鋼について、焼入れ、焼もどし後
の硬さをT’IR,045〜55にした時のコイルばね
試験片のへたり量を示した線図である。 36 第3 焼入r  81 端からの距離(1X6イ/今)
Figure 1 shows the steel of the present invention and the conventional steel after being quenched at 300°C.
Fig. 2 is a diagram showing the hardness of steel tempered at temperatures between ~650℃ and 650℃. Figure 3 is a diagram showing the obtained results, and Figure 4 is a diagram comparing the hardenability of the invention steel and conventional steel.
FIG. 7 is a diagram showing the amount of sag of coil spring test pieces when the hardness after quenching and tempering is T'IR, 045 to 55 for the steel of the present invention and the conventional steel. 36 3rd quenching r 81 Distance from end (1X6i/now)

Claims (1)

【特許請求の範囲】 1 重量比にして00.50〜080%、 8+  1
.。 50〜250%、 M、n  O,50〜1.50%と
、■005〜050%、 Nll Q、Q 5〜050
%1M0005〜050%のうち1種ないし2種以」二
を含有し、さらにCoQ、20〜3.00%、CoQ。 05〜1.00%、BeO,01〜2.00%のうち1
種ないし2種以」−を含有し、残り実質的にp (!よ
りなる耐へたり性に優れたばね用銅。 2 重量比にして(30,50〜0.80%、Stl。 50〜2.50%、 Mn  0.50〜1.50%と
、■0.05〜050%、 Nil Q、Q 5〜0.
50%、 M(10,05〜050%のうち1種ないし
2種以」−を含有し、さらにCuO,20〜3.00%
、00005〜1.00%、  Be  o、o 1〜
2.00%のうち1 種j、! イシ2$l以J: ト
、A、(10,03〜0.1 o%。 Ti  0.02〜0.10%、 Zr O,02〜o
、t o%のうち1種ないし2種以上を含有し、残り実
質的にFeよりなることを特徴とする耐へたり性の優れ
たばね用銅。 3 重量比にしてC0,50〜080%、Stl。 50〜2.50%、 Mn  Q、 5 Q〜1.50
%と、■0.05〜0.50%、 Nll Q、Q 5
〜0.50%、M。 0.05〜0.50%のうち1種ないし2種以上を含有
し、さらにCl10.20〜3.00%、CoQ。 05〜1.00%、 Be  O,01〜2.00%の
うち1種ないし2種以」−と、Bo、0005〜0.0
100%、 Or 0.20〜1.00%、Ni0.2
0〜2.00%、希土類元素0.30%以下のうち1種
ないし2種以」二を含有し、残り実質的にFeよりなる
ことを特徴とする耐へたり性の優れたばね用銅。 4 重量比にしてG O,50〜0.80%、S+’l
。 50〜2.50%、  Mn  O,50〜1.50%
と、■005〜0.50%、 Nil Q、Q 5〜0
,50%、M。 005〜0.50%のうち1種ないし2種以上を含有し
、さらにCiu□、20〜3.00%、CoQ。 05〜1.00%、 Be O,01〜2.00%のう
ち1種ないし2種以」−と、Wo、05〜1.00%。 Ta0.05〜050%のうち1種ないし2種を含有し
、残り実質的にFOよりなることを特徴とする耐へたり
性の優れたばね用銅。
[Claims] 1 00.50 to 080% by weight, 8+1
.. . 50-250%, M, n O, 50-1.50%, ■005-050%, Nll Q, Q 5-050
%1M0005 to 050%, and further contains CoQ, 20 to 3.00%, and CoQ. 05-1.00%, BeO, 1 out of 01-2.00%
Copper for springs with excellent fatigue resistance, containing one or more species, and the remainder substantially consisting of p(!). .50%, Mn 0.50-1.50%, ■ 0.05-050%, Nil Q, Q 5-0.
50%, M (one or more of 10.05 to 050%), further CuO, 20 to 3.00%
, 00005~1.00%, Be o, o 1~
1 out of 2.00% species j,! Ishi 2$l or more
, t0%, and the remainder substantially consists of Fe. 3 C0.50-080% by weight, Stl. 50-2.50%, Mn Q, 5 Q-1.50
% and ■0.05~0.50%, Nll Q, Q 5
~0.50%, M. Contains one or more of 0.05 to 0.50%, and further contains 10.20 to 3.00% of Cl and CoQ. 05 to 1.00%, Be O, one or two or more of 01 to 2.00%, and Bo, 0005 to 0.0
100%, Or 0.20-1.00%, Ni0.2
Copper for springs having excellent resistance to setting, characterized in that it contains one or more of the following: 0 to 2.00%, 0.30% or less of rare earth elements, and the remainder substantially consisting of Fe. 4 G O, 50-0.80% by weight, S+'l
. 50-2.50%, MnO, 50-1.50%
and ■005~0.50%, Nil Q, Q 5~0
,50%,M. 005 to 0.50%, and further contains Ciu□, 20 to 3.00%, and CoQ. 05 to 1.00%, Be O, one or two or more of 01 to 2.00%, and Wo, 05 to 1.00%. Copper for springs having excellent fatigue resistance, characterized in that it contains one or two of 0.05 to 0.50% of Ta, and the remainder substantially consists of FO.
JP12628581A 1981-08-11 1981-08-11 Spring steel with superior yielding resistance Granted JPS5827960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12628581A JPS5827960A (en) 1981-08-11 1981-08-11 Spring steel with superior yielding resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12628581A JPS5827960A (en) 1981-08-11 1981-08-11 Spring steel with superior yielding resistance

Publications (2)

Publication Number Publication Date
JPS5827960A true JPS5827960A (en) 1983-02-18
JPS6237110B2 JPS6237110B2 (en) 1987-08-11

Family

ID=14931425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12628581A Granted JPS5827960A (en) 1981-08-11 1981-08-11 Spring steel with superior yielding resistance

Country Status (1)

Country Link
JP (1) JPS5827960A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089553A (en) * 1983-10-19 1985-05-20 Daido Steel Co Ltd High-strength spring steel and manufacture of high- strength sprint using said steel
JPH06172847A (en) * 1986-10-24 1994-06-21 Daido Steel Co Ltd Production of high strength spring steel
CN106048451A (en) * 2016-07-06 2016-10-26 安徽红桥金属制造有限公司 Wear-resistant alloy spring steel and thermal treatment process thereof
CN109913767A (en) * 2019-03-19 2019-06-21 马鞍山钢铁股份有限公司 A kind of anti-corrosion spring steel and its production method of tensile strength >=2100MPa

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045021U (en) * 1990-04-24 1992-01-17

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089553A (en) * 1983-10-19 1985-05-20 Daido Steel Co Ltd High-strength spring steel and manufacture of high- strength sprint using said steel
JPH06172847A (en) * 1986-10-24 1994-06-21 Daido Steel Co Ltd Production of high strength spring steel
CN106048451A (en) * 2016-07-06 2016-10-26 安徽红桥金属制造有限公司 Wear-resistant alloy spring steel and thermal treatment process thereof
CN109913767A (en) * 2019-03-19 2019-06-21 马鞍山钢铁股份有限公司 A kind of anti-corrosion spring steel and its production method of tensile strength >=2100MPa

Also Published As

Publication number Publication date
JPS6237110B2 (en) 1987-08-11

Similar Documents

Publication Publication Date Title
JP4966316B2 (en) Steel wire rod excellent in cold workability and hardenability, and manufacturing method thereof
JPS5827956A (en) Spring steel with superior wear resistance
US4544406A (en) Spring steel having a good sag-resistance and a good hardenability
EP2746420B1 (en) Spring steel and spring
US4574016A (en) Method of treating steel for a vehicle suspension spring having a good sag-resistance
EP3395984A1 (en) Steel sheet having excellent pwht resistance for low-temperature pressure vessel and method for manufacturing same
KR102222614B1 (en) Cold-rolled steel sheet having high resistance for hydrogen embrittlement and manufacturing method thereof
JP3932995B2 (en) Induction tempering steel and method for producing the same
JPS5941502B2 (en) Spring steel with excellent fatigue resistance
EP4060072A1 (en) Wire rod and component, for cold forging, each having excellent delayed fracture resistance characteristics, and manufacturing methods therefor
JPH04157135A (en) Steel for high strength spring
JPS5827958A (en) Spring steel with superior yielding resistance
JPS5827959A (en) Spring steel with superior yielding resistance
JPS5827960A (en) Spring steel with superior yielding resistance
JPS6237109B2 (en)
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
EP4079907A1 (en) Wire rod for high strength cold head quality steel with excellent resistance to hydrogen embrittlement, and manufacturing method thereof
JPS5867847A (en) Spring steel excellent in fatigue resistance
JPS6041686B2 (en) Manufacturing method for spring steel with excellent fatigue resistance
JPH0830246B2 (en) High strength spring steel
JP2505235B2 (en) High strength spring steel
JPS6041699B2 (en) Spring steel with excellent hardenability and fatigue resistance
JPH0576522B2 (en)
EP3594376B1 (en) Austenitic steel alloy for hot forming
JP2861564B2 (en) Age-hardened steel bars excellent in cold forgeability and method for producing the same