JPS5827957A - Spring steel with superior yielding resistance - Google Patents

Spring steel with superior yielding resistance

Info

Publication number
JPS5827957A
JPS5827957A JP12628381A JP12628381A JPS5827957A JP S5827957 A JPS5827957 A JP S5827957A JP 12628381 A JP12628381 A JP 12628381A JP 12628381 A JP12628381 A JP 12628381A JP S5827957 A JPS5827957 A JP S5827957A
Authority
JP
Japan
Prior art keywords
steel
less
hardenability
resistance
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12628381A
Other languages
Japanese (ja)
Other versions
JPS6237109B2 (en
Inventor
Toshiro Yamamoto
俊郎 山本
Ryohei Kobayashi
良平 小林
Mamoru Kurimoto
栗本 衛
Toshio Kosone
小曽根 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Chuo Spring Co Ltd
Aichi Steel Corp
Original Assignee
Chuo Hatsujo KK
Chuo Spring Co Ltd
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK, Chuo Spring Co Ltd, Aichi Steel Corp filed Critical Chuo Hatsujo KK
Priority to JP12628381A priority Critical patent/JPS5827957A/en
Publication of JPS5827957A publication Critical patent/JPS5827957A/en
Publication of JPS6237109B2 publication Critical patent/JPS6237109B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Springs (AREA)

Abstract

PURPOSE:To obtain a spring steel with superior yielding resistance, hardenability and toughness by adding a specified percentage each of C, Si, Mn, V, Nb and Mo to Fe. CONSTITUTION:A steel consisting of, by weight, 0.50-0.80% C, 1.50-2.50% Si, <=0.45% Mn, 1 or >=2 kinds among 0.05-0.50% V, 0.05-0.50% Nb and 0.05- 0.50% Mo, and the balance essentially Fe is prepared. To the steel may be added 1 or >=2 kinds among 0.0005-0.0100% B, 0.20-1.00% Cr, 0.20-2.00% Ni and <=0.30% rare earth element, and/or 1 or 2 kinds among 0.03-0.10% Al, 0.02- 0.10% Ti and 0.02-0.10% Zr. A spring steel superior to SUP7 in yielding resistance, hardenability and toughness and equal to SUP7 in fatigue resistance is obtd.

Description

【発明の詳細な説明】 本発明は、耐へたり性のすぐれたばね用銅に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to copper for springs having excellent resistance to fatigue.

従来、自動車等の懸架装置に用いられるばね用銅として
は5UP6、SU]Fgが主なものであった。近年自動
車の軽量化が要請され、懸架装置自体の軽量化も強く求
められるようになってきた。
Conventionally, 5UP6, SU]Fg has been the main copper for springs used in suspension systems for automobiles and the like. In recent years, there has been a demand for lighter automobiles, and there has also been a strong demand for lighter suspension systems themselves.

これに対して、懸架装置全般にわたって各種の手段が試
みられているが、その中でもばねの設計応力を上昇させ
る手段が効果的とされている。このように高応力設計に
ともない、従来の上記ばね用銅を素材としばねを製作し
た場合、へたりが増大するという問題が発生した。特に
乗用車に用いた場合へたりの増大はバンパ高さの低下に
つながり安全上大きな問題となった。そこで、各種の研
究がなされた結果、ばね用鋼中のS+含有量を増加させ
ると耐へたり性が向」ニするということを見い出し近時
、SUI’6よりもさらにS1含有量が多く1.T I
 S G 4.801に規定されるばね用鋼中では最も
高SiのS TJ P 7が乗用車懸架ばね用銅として
広く使用されるに至っている。
In response to this, various measures have been attempted for suspension systems in general, but among these measures, a measure of increasing the design stress of the spring is considered to be effective. With this high stress design, when a spring is manufactured using the above-mentioned conventional spring material, a problem arises in that the set-off increases. Particularly when used in passenger cars, increased sag leads to a reduction in bumper height, posing a major safety problem. As a result of various studies, it was discovered that increasing the S+ content in spring steel improves the fatigue resistance. .. T I
Among the spring steels specified in SG 4.801, S TJ P 7, which has the highest Si, has come to be widely used as copper for passenger car suspension springs.

しかるに、懸架ばねの軽量化に対する要求は厳(3) しいものがあり、SUT’7よりもさらに而1へたり性
のすぐれたばね用銅の開発が強く望まれていた。
However, there are strict requirements for reducing the weight of suspension springs (3), and there has been a strong desire to develop copper for springs that has even better fatigue properties than SUT'7.

本発明はこのような背景の下に、本発明者等が研究を重
ねた結果、高81ばね用銅に適h1の■。
Against this background, the present invention was developed as a result of repeated research by the present inventors, and was developed as a result of repeated research by the present inventors.

Nl)、MOを1種ないし2挿置−1−添加し、さらに
目的に応じてB、 Cr 、 Ni 、希土類元素のう
ち1種ないし2種以上、あるいはまたkl、T1゜Zr
のうぢ1種ないし2種以上を添加することにより、S 
U B7よりも耐へたり性、焼入性、靭性がすぐれ、か
つ、ばね用銅として必要な耐疲労性についてもS U 
P 7と同等の性能を有するばね用銅を開発したもので
ある。
Nl), MO, and one or more of B, Cr, Ni, and rare earth elements, or also kl, T1゜Zr, depending on the purpose.
By adding one or more types of Noji, S
It has better fatigue resistance, hardenability, and toughness than U B7, and also has the fatigue resistance necessary for spring copper.
We have developed copper for springs that has the same performance as P7.

V、 Nll 、 Moは鋼中において炭化物を形成し
、このバナジウム・カーバイト、ニオブ・カーバイトお
よびモリブテン・カーバイト(以下、合金炭化物という
)は焼入れ時の加熱に際して、オーステナイト中に溶解
する。これを急冷して焼入れするとこれら元素を過飽和
に固溶したマルテンサイトが得られる。これを焼もどし
するとその過程で微細な合金炭化物が再析出を始め、こ
れが鋼中に(41 おいて転位の動きを阻止し、二次硬化を生じ、■。
V, Nll, and Mo form carbides in steel, and vanadium carbide, niobium carbide, and molybdenum carbide (hereinafter referred to as alloy carbides) are dissolved in austenite during heating during quenching. When this is rapidly cooled and quenched, martensite containing these elements in a supersaturated solid solution is obtained. When this is tempered, fine alloy carbides begin to re-precipitate in the process, which blocks the movement of dislocations in the steel (41) and causes secondary hardening.

Nb 、Moを添加しないばね用銅よりも硬さを上昇さ
せ、さらに耐へたり性を向上させる働きをする。また、
焼入れ時の加熱においてオーステナイト中に溶解されな
い合金炭化物は、オーステナイト結晶粒を微細化すると
ともにその粗大化を防止し得る。また、このような微細
な結晶粒は転位の移動量を少なくすることにより耐へた
り性を向上させる。
It works to increase the hardness compared to spring copper without the addition of Nb and Mo, and further improves the resistance to fatigue. Also,
Alloy carbides that are not dissolved in austenite during heating during quenching can refine austenite crystal grains and prevent them from becoming coarser. Moreover, such fine crystal grains improve the resistance to settling by reducing the amount of movement of dislocations.

本発明鋼においてMn量を低くしたのは、焼入れに際し
ての残留オーステナイトの形成を抑えることにより鋼の
靭性を高めるためである。ばねのへたりを少なくするた
めに、最近ばねの硬さを上げる傾向にあるが、ばねの硬
さを上げた場合には、靭性の低下という新たな問題が生
じる。そこで本発明鋼は、M、 n量を低く限定するこ
とによってこの新たに生じた問題の解決を図ったもので
ある。
The reason why the amount of Mn is lowered in the steel of the present invention is to improve the toughness of the steel by suppressing the formation of retained austenite during quenching. Recently, there has been a trend to increase the hardness of springs in order to reduce spring fatigue, but increasing the hardness of springs causes a new problem of reduced toughness. Therefore, the steel of the present invention attempts to solve this new problem by limiting the M and n contents to low values.

このことを明らかにするために後述の0.40%のMn
を含有するAl鋼、同じ<0.38%のMnを含有する
A2鋼と、0.86%のMnを含有する従来鋼で実質的
にS U P 7であるB1鋼について実施した衝撃試
験の結果を第1表に示す。
In order to clarify this, 0.40% Mn
of impact tests carried out on Al steel containing <0.38% Mn, A2 steel containing the same <0.38% Mn, and B1 steel with a conventional steel containing 0.86% Mn with substantially S U P 7. The results are shown in Table 1.

第1表から明らかなように、本発明鋼であるMn量の少
ないAI、A2鋼は、従来鋼のBI鋼に比べて高い靭性
を有していることがわかる。
As is clear from Table 1, it can be seen that the invention steels, AI and A2 steels with a small amount of Mn, have higher toughness than the conventional steel, BI steel.

第     1     表 またB、Cr 、Ni 、希土類元素は、鋼の焼入性を
高める元素で、特に本発明鋼のような低M、 n鋼では
焼入性が不足する場合があるため、これらの元素はそれ
を補う意味で有効に作用するだけでなく、本発明鋼の、
さらに大物、厚物のばねへの適用を可能にするものであ
る。
Table 1 In addition, B, Cr, Ni, and rare earth elements are elements that improve the hardenability of steel.In particular, low M and n steels such as the steel of the present invention may have insufficient hardenability. The elements not only act effectively in the sense of supplementing them, but also the elements of the steel of the present invention.
Furthermore, it can be applied to large and thick springs.

このことを明らかにするため後述の0.19%のV、!
=0.0025%のBを含有するへ3鋼、0.24%の
■と0.11%のN1) 、  0.0022%のBを
含有するA4鋼、0.21%のV、0.51%のNi 
To clarify this fact, the 0.19% V,!
= He3 steel containing 0.0025% B, 0.24% ■ and 0.11% N1), A4 steel containing 0.0022% B, 0.21% V, 0. 51% Ni
.

0.0023%のBを含有するA5鋼、020%のV、
0.13%のNb 、  0.48%のNi、o、oo
27%のBを含有するへ6鋼、022%のV、O,00
25%のB、0.05%の希土類元素を含有するA7鋼
、0.21%(7)V、  0.1.2%ノN1−1 
、 080029%のB、0.05%の希土類元素を含
有するA8鋼と従来鋼のS TJ P 7であるBlf
:IAについて焼を 人件を比較した結果を第1図に示す。第1図から明らか
なように、焼入性向上元素の添加によってどれも従来鋼
以」二の焼入性が得られることがわかる。
A5 steel containing 0.0023% B, 0.020% V,
0.13% Nb, 0.48% Ni, o, oo
He6 steel containing 27% B, 022% V, O,00
A7 steel containing 25% B, 0.05% rare earth elements, 0.21%(7)V, 0.1.2% N1-1
, A8 steel containing 0.080029% B, 0.05% rare earth elements and Blf, which is STJ P 7 of conventional steel.
Figure 1 shows the results of a comparison of personnel for IA. As is clear from FIG. 1, it can be seen that the addition of hardenability-improving elements makes it possible to obtain hardenability that is twice as high as that of conventional steels.

つぎにAI 、Ti 、Zrはどれも鋼中で多くの場合
、Nと結合して窒化物を形成し、熱間圧延段階でオース
テナイト結晶粒を微細化し、オーステナイト化温度に加
熱した時にはオーステナイト結晶粒の粗大化を駆出する
働きを有する。結晶粒が微細化した組織中では転位の移
動量が少ないことから鋼の耐へたり性を向上することが
できる。
Next, AI, Ti, and Zr all often combine with N to form nitrides in steel, which refine the austenite grains during hot rolling, and when heated to the austenitizing temperature, the austenite grains become smaller. It has the function of causing coarsening of the particles. Since the amount of movement of dislocations in a structure with finer grains is smaller, the fatigue resistance of the steel can be improved.

(7) 第2図に、AlとTi を添加した後述のA9〜A12
鋼と従来鋼のB1鋼について850〜1100℃の各オ
ーステナイI・化温度に加熱、保持した時のオーステナ
イト結晶粒の大きさを示すが、結晶粒の微細化元素の添
加による効果が明瞭に認められる。
(7) In Fig. 2, A9 to A12, which will be described later, have Al and Ti added.
The size of austenite crystal grains when heated and held at each austenizing temperature of 850 to 1100°C for B1 steel and conventional steel is clearly seen, and the effect of adding grain refining elements is clearly recognized. It will be done.

本発明鋼の化学組成はC0,50〜0.80%、81L
50〜2.50%、 Mn □、 45%以下を含有し
、さらにV O,05〜050%、 Nl) 0.Q 
5〜050%、MOo、05〜050%のうち1種ない
し2種以」−を含有したもので、使用目的によってはさ
らにB O,0005〜0.01. O0%、Oro、
20〜1゜00%、NiO,20〜2.00%、希土類
元素0.30%以下のうち1種ないし2種以」二を含有
し、あるいはまたA40.03〜010%、Ti0.0
2〜010%、  Zr  0.02〜0.10%のう
ち1種なしし2種以」−を含有し1.残り実質的にFe
よりなるものである。
The chemical composition of the steel of the present invention is C0.50-0.80%, 81L
50-2.50%, Mn□, 45% or less, and further contains VO, 05-050%, Nl) 0. Q
5-050%, MOo, 05-050%. O0%, Oro,
Contains one or more of 20-1.00%, NiO, 20-2.00%, rare earth elements 0.30% or less, or also A40.03-010%, Ti 0.0
Zr 0.02-0.10%, Zr 0.02-0.10%, one or more of the following: 1. The rest is essentially Fe
It is more than that.

以下に本発明鋼の成分限定理由について説明する。The reasons for limiting the composition of the steel of the present invention will be explained below.

C量を050〜080%としたのは、050%(81 以下では焼入れ、焼もどしにより高応力ばね用銅として
十分な強度が得られないためであり、080%を越えて
含有させると過共析鋼となり靭性の低下が著しくなるた
めである。
The reason for setting the C content to 050-080% is that if it is less than 0.050% (81%), sufficient strength as copper for high stress springs cannot be obtained by quenching and tempering, and if it is contained in excess of 0.080%, it will be too strong. This is because the steel becomes an analytical steel and the toughness decreases significantly.

S+ 量を1.50〜250%としたのは、1.50%
以下ではSiの有するフエライ1〜中に固溶することに
より素地の強度を上げ、耐へたり性を改善するという効
果が十分に得られないためであり、2.50%を越えて
含有させても耐へたり性向上の効果が飽和し、かつ、熱
処理により遊離炭素を生じる恐れがあるためである。
The S+ amount was 1.50% to 250%.
This is because the effects of increasing the strength of the base material and improving the resistance to settling cannot be sufficiently obtained by solid-dissolving Si in the Ferrite 1 to 1 containing Si in an amount exceeding 2.50%. This is because the effect of improving the fatigue resistance is saturated and there is a possibility that free carbon may be generated by heat treatment.

Mn量を0,45%以下としたのは、M−n量を0゜4
5%以下に限定することにより残留オーステナイトの形
成を低く抑えることにより、鋼に靭性を付与するためで
ある。
The reason why the Mn amount is 0.45% or less is because the M-n amount is 0°4
By limiting the content to 5% or less, the formation of retained austenite is suppressed to a low level, thereby imparting toughness to the steel.

V、Nb 、Moはいずれも本発明鋼においては耐へた
り性を改善する元素である。
V, Nb, and Mo are all elements that improve the sag resistance in the steel of the present invention.

このような働きを奏するV、Nb 、Moの含有量をそ
れぞれ0.05〜050%としたのは、005%以下で
は上記の効果が十分に得られないためであり、050%
を越えて含有させてもその効果が飽和し、かつ、オース
テナイト中に溶解されない合金炭化物量が増加し、大き
な塊となることにより非金属介在物的な作用により鋼の
疲労強度を低下させる恐れがあるためである。
The reason why the content of V, Nb, and Mo, which have such functions, is set to 0.05 to 0.50% each is because the above effects cannot be obtained sufficiently below 0.05%.
Even if the content exceeds 100%, the effect will be saturated, and the amount of alloy carbides that will not be dissolved in the austenite will increase, forming large lumps, which may reduce the fatigue strength of the steel due to the action of nonmetallic inclusions. This is because there is.

これらのV 、 Nl) 、 Noはそれぞれを単独で
添加するほかに、2種ないし3種を複合添加することに
より、V 、 Nl) 、 M、o を単独で添加した
場合に比べ、より低い温度でオーステナイト中への溶解
を開始させ、また焼もどし過程において微細な合金炭化
物の析出は、二次硬化をより促進させることにより耐へ
たり性をさらに向上させるものである。
In addition to adding each of these V, Nl), and No singly, by adding two or three types in combination, a lower temperature can be achieved compared to when V, Nl), M, and o are added alone. In addition, the precipitation of fine alloy carbides during the tempering process further promotes secondary hardening and further improves the resistance to setting.

また鋼の焼入性を高める元素であるB、 Car 。Also, B and Car are elements that improve the hardenability of steel.

Ni 、希土類元素の量をそれぞれB O,0005〜
o、oioo%、 Or 0.20〜1.00%、Ni
Q、20〜2.00%、希土類元素0.30%以下とし
たのは、Bについては、0.0005%以下では焼入性
向上に十分でないからであり、0.0100%を越えて
含有させても効果が飽和し、かつ、B化合物の形成によ
り熱間脆性を招く恐れがあるためである。
The amounts of Ni and rare earth elements are respectively BO,0005 ~
o, oiooo%, Or 0.20-1.00%, Ni
Q: 20 to 2.00% and rare earth elements 0.30% or less is because B is not sufficient to improve hardenability at 0.0005% or less, and B content exceeding 0.0100% is This is because even if it is allowed to do so, the effect will be saturated and the formation of the B compound may lead to hot embrittlement.

またOrについては、020%以下では焼入性の向上に
効を奏さないためであり、1.00%を越えて含有させ
た場合には、本発明鋼のような高Sl鋼では、組織が不
均一化する恐れがあるためである。
Regarding Or, if it is less than 0.020%, it will not be effective in improving hardenability, and if it is contained in more than 1.00%, the structure will change in high-Sl steel such as the steel of the present invention. This is because there is a risk of non-uniformity.

またNi については、0.20%以下では焼入性の向
上、及び靭性の向上効果が十分に得られないためであり
、200%を越えて含有させると、焼入れに際して残留
オーステナイトが大量に形成される恐れがあるためであ
る。
Regarding Ni, if it is less than 0.20%, the effects of improving hardenability and toughness cannot be sufficiently obtained, and if it is contained in excess of 200%, a large amount of retained austenite will be formed during hardening. This is because there is a risk of

希土類元素量を0.30%以下としたのは、それ以上含
有させると結晶粒が粗大化する恐れがあるためである。
The reason why the amount of rare earth elements is set to 0.30% or less is that if it is contained more than that, the crystal grains may become coarse.

また結晶粒を微細化して耐へたり性を向」ニさせルA 
e+ ” l + Z r ノ含有量をそれぞれA40
03〜0.10%、’f’i0.02〜0.10%、Z
r□、02〜0.10%としたのは、それ以下では窒化
物の分布が疎らで、結晶粒の微細化に寄与しないから(
11) てあり、010%を越えて含有さU−ると、熱間圧延時
(こ割れを発生したり、非金属介在物として鋼の靭性を
劣化させる恐れがあるためである。
In addition, the crystal grains are made finer to improve the resistance to settling.
The content of e + ” l + Z r is A40, respectively.
03~0.10%, 'f'i0.02~0.10%, Z
The reason why r
11) If the content exceeds 0.10%, it may cause cracking during hot rolling or deteriorate the toughness of the steel as non-metallic inclusions.

つぎに本発明鋼の特徴を従来鋼と比・\実施例でもって
明らかにする。
Next, the characteristics of the steel of the present invention will be clarified by comparison with conventional steel and examples.

第2表は、これらの供試鋼の化学成分を示すものである
Table 2 shows the chemical composition of these test steels.

→(下々−゛h 第2表においてA1〜A 1.4鋼は本発明鋼で、BI
鋼は従来鋼で8 ’(J P7である。供試鋼はすべて
鋳造後圧延比50以上で熱間圧延を施し、次に述べるへ
たり試験に供した。
→(Down-゛h In Table 2, A1 to A1.4 steels are the steels of the present invention, and BI
The steel used was conventional steel 8' (JP7). All of the sample steels were hot-rolled at a rolling ratio of 50 or higher after casting, and subjected to the sag test described below.

へたり試験を施行するに当っては、第3表に示す諸元を
有するコイルばねを成形し、最終硬さがHη、045〜
55となるように焼入・焼もどし処理を行った後、素線
の剪断応力τ−115kti/maとなるようにセッチ
ングを加えてへたり試験片を作製した。そしてこの試験
片を20℃の一定温度で、素線の剪断応力τ−t 05
 kq/−となる荷重を加え、96時間経過(以下、こ
れを長期荷重という)した後のコイルばねのへたり量を
測定した。
In carrying out the settling test, a coil spring having the specifications shown in Table 3 was molded, and the final hardness was Hη, 045~
After quenching and tempering so that the wire had a shear stress of τ-115 kti/ma, a set test piece was prepared. Then, this test piece was heated at a constant temperature of 20°C, and the shear stress of the strand τ-t 05
A load of kq/- was applied, and the amount of fatigue of the coil spring was measured after 96 hours (hereinafter referred to as long-term load).

第    3    表 しかし、焼入性向上元素を添加したへ3〜A8鋼につい
ては、第4表に示す諸元を有するl・−ジョン・バーを
作成し、最終硬さがITTt045〜55となるように
焼入・焼もどし処理を行なった後τ−1,1,Okqf
/−の応力でセツチングを施し、その後τ−100kO
r/−の応力を96時間負荷し、その間に発生したへた
り量を測定した。
Table 3 However, for HE3-A8 steels to which hardenability improving elements have been added, l-john bars having the specifications shown in Table 4 were prepared, and the final hardness was adjusted to ITTt045-55. After quenching and tempering, τ-1, 1, Okqf
Setting is performed with a stress of /-, and then τ-100kO
A stress of r/- was applied for 96 hours, and the amount of settling that occurred during that time was measured.

第     4     表 なお、へたり量は前記長期荷重を加える前にコイルばね
を一定の高さまで圧縮するに要した荷重P1と、前記長
期荷重を加えた後に同一の高さまで圧縮するに要した荷
重P2とを測定し、その差△P(−pr)より次式を用
いて算出したもので、2 剪断ひずみの単位を有し、残留纂剪断ひずみと称する値
をもって評価した。
Table 4 Note that the amount of settling is the load P1 required to compress the coil spring to a certain height before applying the long-term load, and the load P2 required to compress the coil spring to the same height after applying the long-term load. It was calculated using the following formula from the difference ΔP (-pr), which has a unit of 2 shear strain, and was evaluated as a value called residual shear strain.

   8D rll−π・I()△P (15) G;横弾性率(kqf / rgrl)  D 、コイ
ル中心径(卿)d;素線径(龍) K;ワールの修iTE 係数(コイルばねの形状ににり
定まる定数) また、1・−ジョン・バーからのへたり量は、ねじり角
度の減少量△0からyn・−△θ・(1/2βに従って
残留剪断歪量に変換して求めた。
8D rll-π・I()△P (15) G: Transverse elastic modulus (kqf/rgrl) D, Coil center diameter (K) d; Wire diameter (D) K: Wahl's modification coefficient (Coil spring's Also, the amount of set-off from the 1-john bar is determined by converting the amount of decrease in torsion angle △0 to the amount of residual shear strain according to yn-△θ-(1/2β) Ta.

d;線径(mm ) l;有効長さくmm) そして、上記試験片の硬さに対するへたり量を第3〜6
図に示した。第3〜6図より明らかなにうに本発明鋼は
いずれも従来鋼であるBl鋼に比べすぐれた耐へたり性
を有していることが認められる。
d; wire diameter (mm); l; effective length, mm).
Shown in the figure. As is clear from FIGS. 3 to 6, it is recognized that all of the steels of the present invention have superior sag resistance compared to Bl steel, which is a conventional steel.

また本発明鋼のA1、A2、A9〜A、 14鋼、及び
BI鋼については前記と同じ諸元を有するコイルばねで
、またA3〜A8鋼については前記のトーション・バー
を用いて10〜110 kgf/vnJの応力を繰り返
し負荷して疲労試験を実施したが、いずれの試料も20
万回繰り返しても折損しなか(16) つた。
Further, for A1, A2, A9 to A, 14 steel, and BI steel of the present invention, a coil spring having the same specifications as above is used, and for A3 to A8 steel, a coil spring of 10 to 110 is used using the above torsion bar. A fatigue test was conducted by repeatedly applying a stress of kgf/vnJ, but all samples
Even after repeating it ten thousand times, it did not break (16).

上述の如く、本発明鋼は高Siばね用銅に、■9Nb 
、Moなどの析出強化元素、B、Or 、Ni。
As mentioned above, the steel of the present invention contains ■9Nb as copper for high Si springs.
, precipitation strengthening elements such as Mo, B, Or, Ni.

希土類元素等の焼入性向上元素、またさらにはAl。Hardenability improving elements such as rare earth elements, and even Al.

T s r Z rのような結晶粒の微細化元素を添加
することにより、従来の高Slばね用銅のすぐれた耐へ
たり性ゝをさらに改善することに成功したもので、かつ
、ばね用銅として必要な耐疲労性についても従来鋼と比
べそん色のないもので、特に乗用車懸架ばね用銅として
極めて高い実用性を有するものである。
By adding crystal grain refining elements such as TsrZr, we have succeeded in further improving the excellent fatigue resistance of conventional high-Sl copper for springs. The fatigue resistance required for copper is also comparable to that of conventional steel, and it has extremely high practicality, especially as copper for suspension springs for passenger cars.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、特に焼入性向上元素を添加した本発明鋼と従
来鋼について焼入性を比較した線図で、第2図は、本発
明鋼と従来鋼を850〜1100℃の各オーステナイト
化温度で加熱保持した時のオーステナイト結晶粒度を示
した線図、第3〜6図は、本発明鋼と従来鋼を焼入れ・
焼もどし処理後、硬さをH孔C45〜55にした時の試
験片のへたり量を示した線図である。 焼もどし硬さくHRC) 第5図
Figure 1 is a diagram comparing the hardenability of the present invention steel and conventional steel to which hardenability improving elements have been added. Figures 3 to 6 are diagrams showing the austenite grain size when heated and held at the quenching temperature.
It is a diagram showing the amount of settling of the test piece when the hardness is set to H hole C45 to C55 after tempering. Tempering hardness HRC) Figure 5

Claims (1)

【特許請求の範囲】 1 重量比にしてCO,50〜080%、si  1゜
50〜250%、 Mrlo、 45%以下と、V O
,O5〜0.50%、 Nll Q、Q 5〜0.50
%、 M、o Q。 05〜0.50%のうち1種ないし2挿置−1−を含有
し、残り実質的にFeからなることを特徴とする耐へた
り性の優れたばね用銅。 2 重量比にして0050〜080%、Si ]50〜
250%、 Mn O,45%以下と、■0.05〜0
50%、 Nb O,05〜0.50%、 Mo Q。 05〜050%のうち1種ないし2挿具−にを含有し、
さらニBO,0005〜0.0100%T 0r020
〜1.00%、Ni0.20〜2.00%、希土類元素
0,30%以下のうち1種ないし2種以3 重量比にし
てCO50〜080%、Si1.50〜2.50%、 
 Mrl  0.45%以Fと、■005〜0.50%
、  Nb  □、Q  5〜050%、MOo、05
〜050%のうち1種ないし2挿置−1−を含有し、さ
らにA40.03〜010%、’l’io、o2〜0゜
10%、Zro、o2〜010%のうち1種ない4 重
量比にして0050〜0.80% S +  1゜50
〜2.50%、 Mn 0.45%以下と、VO,O5
〜0.50%、 NiI Q、Q 5〜0.50%、 
MOQ。 05〜0.50%のうち1種ないし2種以」二を含有し
、さらにno、o o O5〜0.Ot o o%+ 
CrO420〜1.00%、NiQ、20〜2.00%
、希土類元素0.30%以下のうち1種ないし2種以上
とA[0,03〜0.10% 41″1002〜0.1
0%、 Zr 0.02〜0.1−0%のうち1種ない
し2挿具]二を含有し、残り実質的にFeからなること
を特徴とする耐へたり性の優れたばね用銅。
[Claims] 1. CO, 50-080% by weight, si 1°50-250%, Mrlo, 45% or less, and VO
, O5~0.50%, Nll Q, Q 5~0.50
%, M, o Q. Copper for springs with excellent fatigue resistance, characterized in that it contains one or two of the following: 0.05 to 0.50%, and the remainder substantially consists of Fe. 2 0050~080% by weight, Si ]50~
250%, MnO, 45% or less, and ■0.05-0
50%, NbO, 05-0.50%, MoQ. Containing one or two of 05 to 050%,
Sarani BO, 0005~0.0100%T 0r020
-1.00%, Ni 0.20-2.00%, one or two or more of rare earth elements 0.30% or less, CO50-080% by weight, Si 1.50-2.50%,
Mrl 0.45% or more F and ■005~0.50%
, Nb □, Q 5-050%, MOo, 05
Contains one or two insertions -1- from ~050%, and one or more from A40.03~010%, 'l'io, o2~0°10%, Zro, o2~010% -4 Weight ratio: 0050~0.80% S + 1°50
~2.50%, Mn 0.45% or less, VO, O5
~0.50%, NiI Q,Q 5~0.50%,
MOQ. 05 to 0.50%, and further contains no, o o O5 to 0. Ot o o%+
CrO420-1.00%, NiQ, 20-2.00%
, one or more of rare earth elements 0.30% or less and A[0.03~0.10% 41″1002~0.1
0%, Zr 0.02-0.1-0%, one or two inserts] 2, and the remainder substantially consisting of Fe.
JP12628381A 1981-08-11 1981-08-11 Spring steel with superior yielding resistance Granted JPS5827957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12628381A JPS5827957A (en) 1981-08-11 1981-08-11 Spring steel with superior yielding resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12628381A JPS5827957A (en) 1981-08-11 1981-08-11 Spring steel with superior yielding resistance

Publications (2)

Publication Number Publication Date
JPS5827957A true JPS5827957A (en) 1983-02-18
JPS6237109B2 JPS6237109B2 (en) 1987-08-11

Family

ID=14931376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12628381A Granted JPS5827957A (en) 1981-08-11 1981-08-11 Spring steel with superior yielding resistance

Country Status (1)

Country Link
JP (1) JPS5827957A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184259A (en) * 1988-01-18 1989-07-21 Nippon Steel Corp High-strength spring steel
JPH04268041A (en) * 1991-02-22 1992-09-24 Mitsubishi Steel Mfg Co Ltd High strength spring steel
US5183634A (en) * 1991-02-22 1993-02-02 Mitsubishi Steel Mfg. Co., Ltd. High strength spring steel
US5508002A (en) * 1993-11-04 1996-04-16 Kabushiki Kaisha Kobe Seiko Sho Spring steel of high strength and high corrosion resistance
US5575973A (en) * 1993-12-29 1996-11-19 Pohang Iron & Steel Co., Ltd. High strength high toughness spring steel, and manufacturing process therefor
JP2022545984A (en) * 2019-09-10 2022-11-01 中国科学院金属研究所 Rare earth microalloy steel and control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198007A (en) * 1986-02-25 1987-09-01 松下冷機株式会社 Wiring harness
EP0332821B1 (en) * 1988-03-18 1993-07-14 DSG Schrumpfschlauch GmbH Process and device for the manufacture of longitudinally waterproofed multifilament cable bundles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171648A (en) * 1981-04-14 1982-10-22 Kobe Steel Ltd Spring steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171648A (en) * 1981-04-14 1982-10-22 Kobe Steel Ltd Spring steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184259A (en) * 1988-01-18 1989-07-21 Nippon Steel Corp High-strength spring steel
JPH04268041A (en) * 1991-02-22 1992-09-24 Mitsubishi Steel Mfg Co Ltd High strength spring steel
US5183634A (en) * 1991-02-22 1993-02-02 Mitsubishi Steel Mfg. Co., Ltd. High strength spring steel
US5508002A (en) * 1993-11-04 1996-04-16 Kabushiki Kaisha Kobe Seiko Sho Spring steel of high strength and high corrosion resistance
US5575973A (en) * 1993-12-29 1996-11-19 Pohang Iron & Steel Co., Ltd. High strength high toughness spring steel, and manufacturing process therefor
JP2022545984A (en) * 2019-09-10 2022-11-01 中国科学院金属研究所 Rare earth microalloy steel and control method

Also Published As

Publication number Publication date
JPS6237109B2 (en) 1987-08-11

Similar Documents

Publication Publication Date Title
JPS5827956A (en) Spring steel with superior wear resistance
EP3981894A1 (en) Heat treatment method for high-strength steel and product obtained therefrom
KR20080090424A (en) Spring steel, method for producing a spring using said steel and a spring made from such steel
US4544406A (en) Spring steel having a good sag-resistance and a good hardenability
EP2746420B1 (en) Spring steel and spring
CA1263259A (en) High strength bolt and method of manufacturing same
US4448617A (en) Steel for a vehicle suspension spring having good sag-resistance
US5009843A (en) Spring steel having good durability and sag-resistance
JPS5941502B2 (en) Spring steel with excellent fatigue resistance
JPS5827957A (en) Spring steel with superior yielding resistance
US5118469A (en) High strength spring steel
JPS5827959A (en) Spring steel with superior yielding resistance
JPS5827958A (en) Spring steel with superior yielding resistance
JPS5867847A (en) Spring steel excellent in fatigue resistance
JPS6041686B2 (en) Manufacturing method for spring steel with excellent fatigue resistance
US4711675A (en) Process for improving the sag-resistance and hardenability of a spring steel
JPS6237110B2 (en)
JPS6041699B2 (en) Spring steel with excellent hardenability and fatigue resistance
JP3276045B2 (en) Non-magnetic PC steel wire excellent in delayed fracture characteristics and method of manufacturing the same
WO1984001175A1 (en) Abrasion wear resistant steel
JPS6130653A (en) High strength spring steel
CA3014436C (en) Austenitic steel alloy
JPH06128689A (en) Spring steel excellent in permanent set resistance
GB2112810A (en) Steels for vehicle suspension springs
KR20240118837A (en) Austenitic stainless steel and method for manufacturing austenitic stainless steel