JPS5827952A - Composite valve sheet - Google Patents

Composite valve sheet

Info

Publication number
JPS5827952A
JPS5827952A JP12525981A JP12525981A JPS5827952A JP S5827952 A JPS5827952 A JP S5827952A JP 12525981 A JP12525981 A JP 12525981A JP 12525981 A JP12525981 A JP 12525981A JP S5827952 A JPS5827952 A JP S5827952A
Authority
JP
Japan
Prior art keywords
alloy
pores
sintered alloy
sintered
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12525981A
Other languages
Japanese (ja)
Inventor
Tadashi Ebihara
忠 海老原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Piston Ring Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd filed Critical Nippon Piston Ring Co Ltd
Priority to JP12525981A priority Critical patent/JPS5827952A/en
Publication of JPS5827952A publication Critical patent/JPS5827952A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lift Valve (AREA)
  • Gasket Seals (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a composite valve sheet with high fatigue strength and heat conductivity by forming a sliding surface to a valve and a part fitting in a cylinder head from 2 kinds of solid phase sintered iron alloys different from each other in average size and volume percentage of pores after sintering. CONSTITUTION:This composite valve sheet is composed of the 1st sintered alloy 1 having a sliding surface 3 to the valve and the 2nd sintered alloy 2 fitting in a cylinder head 5. The alloy 1 is a solid-phase sintered iron alloy having 11- 19vol% pores after sintering, and the alloy 2 is a solid-phase sintered iron alloy having 4-10vol% pores having 5-30mum average size after sintering. The preferred alloy 2 is formed with powder consisting of 0.2-1.0% Co and the balance essentially Fe as the final components. The composite valve sheet has said characteristics and a moderate coefft. of thermal expansion when applied to an engine which is exposed to high temp. and high load.

Description

【発明の詳細な説明】 本発明は内燃機関で用いられるバルブシー1・、中でも
二種の異なる焼結合金によりなる複合バルブシ−1・に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a valve seat 1 used in an internal combustion engine, particularly a composite valve seat 1 made of two different types of sintered alloys.

内燃機関用のバルブシ−l−は無鉛ガソリン機関用に使
用されて以来最も一般的に用いられているものであるが
1高温・高負荷機関や高速機関では使用され難いもので
あった。
Valve seals for internal combustion engines have been most commonly used since they were first used for unleaded gasoline engines, but they have been difficult to use in high-temperature, high-load engines and high-speed engines.

その理由の一つに焼結合金における空孔の存在が、焼結
合金の強度及び面1熱疲労強度を低下させるものであり
、高温高負荷機関においてバルブシー1・の抜は落ちや
折損を生じ易いことに.l:る。又他の理由として通常
シリンダヘッドに圧入されるバルブシー1・どシリンダ
ヘッド間に熱膨張率の差があり、特に焼結合金では鋳鉄
製シリンダヘッドに組付けた場合に著しく抜は落ち易く
なる理由による。
One of the reasons for this is the presence of pores in the sintered alloy, which reduces the strength and surface 1 thermal fatigue strength of the sintered alloy, causing valve seat 1 to fall off or break in high-temperature, high-load engines. It's easy. l: Ru. Another reason is that there is a difference in coefficient of thermal expansion between the valve seat 1 and the cylinder head, which are normally press-fitted into the cylinder head, and this is why sintered alloys, in particular, tend to come off easily when assembled to a cast iron cylinder head. by.

一方異種利別を組合せた複合バルブシートが多数考案さ
れているものの\例えばm利を鋼としてパルプ当り面を
焼結合金としたもの(特開昭52−147326号)し
か上記の高温高負荷機関には使用され得ないものであっ
た。その理由として、前記l7だ如き焼結合金の熱膨張
率の問題や1強度の問題が存在するためである。従って
焼結合金同志を複合したバルブシー1・、例えば特開昭
49−93 ’109号、特開昭53−79911号、
特開昭49−88112号などは飄バルブ当9面以外に
比較的に低性能の焼結合金を複合することによる原料コ
ストの低減を目的どしたものとしてしか使用され万いも
のである。一方焼結合金には溶浸方法寿どによる封孔処
理を加して熱伝導性及び強度の向上が計られうるが1か
かる封孔処理によっても著しい強度の改善が得られるも
のでhく、熱膨張率についても大きく改善されるもので
はガい。
On the other hand, although many composite valve seats that combine different types of valve seats have been devised, only one in which the valve seat is made of steel and the pulp contact surface is made of sintered alloy (Japanese Patent Application Laid-Open No. 147326/1989) is the only one that can be used for high-temperature, high-load engines. could not be used. The reason for this is that there are problems with the coefficient of thermal expansion and strength of sintered alloys such as I7. Therefore, a valve seat 1 which is a composite of sintered alloys, for example, JP-A-49-93 '109, JP-A-53-79911,
JP-A No. 49-88112 and the like are only used for the purpose of reducing raw material costs by combining a relatively low-performance sintered alloy in addition to the nine valve faces. On the other hand, it is possible to improve the thermal conductivity and strength of the sintered alloy by applying a sealing treatment using an infiltration method, but even such a sealing treatment does not result in a significant improvement in strength. It is unlikely that the coefficient of thermal expansion will be significantly improved.

本発明は、目的とするところの1高温高負荷機関に適用
される、高い疲労強度と熱伝導性、及び適度の熱膨張率
を有するバルブシートを得んとするものであり1以下に
説明する。
The present invention aims to obtain a valve seat having high fatigue strength, thermal conductivity, and an appropriate coefficient of thermal expansion, which is applicable to high-temperature, high-load engines, and is described below. .

1ず本発明の要旨とするところは特許請求の範囲に記載
した如く下記3つの構成による複合バルブシートにある
First, the gist of the present invention resides in a composite valve seat having the following three configurations as described in the claims.

(1)バルブの摺動面を形成する第一焼結合金と主どし
てシリンダヘッドとの嵌合部を形成する第二焼結合金と
によりなる。
(1) It consists of a first sintered metal that forms the sliding surface of the valve and a second sintered metal that mainly forms the fitting part with the cylinder head.

(2)第二焼結合金が平均粒径5〜30μの空孔が体積
%にて4−〜10%の焼結空孔を有する固相鉄系焼結合
金である。
(2) The second sintered alloy is a solid phase iron-based sintered alloy having 4-10% by volume of sintered pores with an average particle size of 5-30 μm.

(3)第一焼結合金が空孔の体積%にて11〜19%の
焼結空孔を有する固相鉄系焼結合金であるかかる複合バ
ルブシートは第1図に示す如く、パルプとの摺動面3を
有する第一焼結合金1と、シリンダへノド5と嵌合する
第二焼結合金2との複合バルブシートであるが1その第
一、第二の焼結合金の目的にそれぞれの!1ヲ徴を持た
せ、特別な焼結合金を配することに1こって複合バルブ
シートとしての効果を得たものが本発明複合バルブシー
トである。
(3) Such a composite valve seat, in which the first sintered alloy is a solid-phase iron-based sintered alloy having sintered pores of 11 to 19% in terms of volume % of pores, is as shown in Fig. 1. This is a composite valve seat consisting of a first sintered alloy 1 having a sliding surface 3 and a second sintered alloy 2 that fits into the cylinder throat 5. each! The composite valve seat of the present invention has the following characteristics and is effective as a composite valve seat by arranging a special sintered alloy.

1ず第二焼結合金については、この部分には特別の面l
摩耗性は必要どしないもののへ後記する如く第一焼結合
金の強度が得られ々い理由により、第二焼結合金には著
しく高い強度及び熱疲労強度飄さらには適度の熱膨張率
が要求される。
1. For the second sintered alloy, there is a special surface l in this part.
Although abrasion resistance is not required, as will be described later, the strength of the first sintered alloy cannot be obtained, so the second sintered alloy is required to have extremely high strength, low thermal fatigue strength, and an appropriate coefficient of thermal expansion. be done.

本発明第二焼結合金はこれらの要求を満たすものであり
、まず焼結合金であることによシ下記の優位性がある。
The second sintered alloy of the present invention satisfies these requirements, and first of all, because it is a sintered alloy, it has the following advantages.

一般に二部材の結合は溶接\ろう付、拡散結合に大別さ
れるが、バルブシートの如き容積の小さいものでは溶接
に伴う熱歪の影響が著しく、物性を損う。又ろう付は高
温高負荷条件にあっては結合強度に充分なものが得られ
々い。
In general, the joining of two parts is broadly classified into welding/brazing and diffusion joining, but in the case of small-volume parts such as valve seats, the effect of thermal distortion caused by welding is significant, impairing physical properties. Furthermore, brazing cannot provide sufficient bonding strength under high temperature and high load conditions.

さらに鋼や鋳鉄と焼結合金との拡散結合は\特殊な材料
でかつ液相焼結によらないと得難いものであって、この
点から焼結合金と焼結合金は\焼結プロセスにおける拡
散の進行をその−2−に部材間の結合に利用することが
可能なために著しく強い結合強度が得られるものである
Furthermore, diffusion bonding between steel or cast iron and sintered alloys is a special material that cannot be obtained without liquid phase sintering. Because it is possible to utilize the progression of the bonding process for bonding between members, extremely strong bonding strength can be obtained.

さらに本発明においてはかかる第二焼結合金の空孔量を
平均径で\5〜30μの空孔が4〜10体積%とした固
相鉄系焼結合金としたことによって次の如き効果を得る
Furthermore, in the present invention, the following effects can be obtained by making the second sintered alloy a solid-phase iron-based sintered alloy in which pores with an average diameter of 5 to 30 μ are 4 to 10% by volume. .

まず、平均粒径で30μ以上の空孔となる場合に、空孔
による切欠き効果が大きく、特に熱疲労に対して空孔か
ら発生ずる微少クラック生長を防止し得す、熱疲労強度
が低下する。一方平均径を5μ以下にしようとした場合
に、鉄系の粉末では粉末の微小化に限界のあって、液相
焼結とする方法によらねば寿らガいが蔦この液相焼結が
発生したものでは著しい寸法変化を伴い製品安定性が悪
いため、平均径は5μ以上としかなし得々い。
First, in the case of pores with an average particle size of 30 μ or more, the notch effect due to the pores is large, which can prevent the growth of minute cracks generated from the pores especially against thermal fatigue, and the thermal fatigue strength decreases. do. On the other hand, when trying to reduce the average diameter to 5μ or less, there is a limit to the miniaturization of iron-based powders, and unless liquid phase sintering is used, liquid phase sintering will not be possible. The average diameter can only be set to 5μ or more because the generated particles undergo significant dimensional changes and have poor product stability.

さらに好ましくは250μ以下の空孔が空孔全体の体積
%で40%以上を占めることが望ましい。これは250
μ以上の粗大空孔が多いと著しく強度が低下する理由に
よる。
More preferably, pores with a diameter of 250 μm or less occupy 40% or more by volume of the entire pores. This is 250
This is because when there are many coarse pores larger than μ, the strength decreases significantly.

一方空孔遇は体積%にて10%を超えた場合に空孔量に
比例して強度及び熱疲労強度が低下し1さらに熱膨張係
数が下がる限界点であるため1空孔量は1096以下で
選択される。又固相焼結によって液相を生じない範囲で
焼結合金を製造しようとした場合に1上記した如く鉄系
粉末の微小化の限界によυ4−%以上の空孔量しか得ら
れない。
On the other hand, if the number of pores exceeds 10% by volume, the strength and thermal fatigue strength will decrease in proportion to the amount of pores.This is the limit point where the coefficient of thermal expansion will further decrease, so the amount of pores should be 1096 or less. is selected. Furthermore, when attempting to produce a sintered alloy by solid-phase sintering without producing a liquid phase, the amount of pores that can be obtained is only υ4% or more due to the limit of miniaturization of iron-based powder as described above.

さらに本発明第二焼結合金は固相焼結されている必要が
あるが\これは液相の発生に伴い焼結合金に著しい寸法
変化が表われるためであり、第二焼結合金にかかる寸法
変化が生じた場合に複合ノ(ルプシートとじての形状が
著しく歪み、製造不可能と外る理由による。
Furthermore, the second sintered alloy of the present invention must be solid-phase sintered. This is because when dimensional changes occur, the shape of the composite sheet becomes severely distorted, making it impossible to manufacture.

かかる第二焼結合金を得るだめには、通常アトマイズ粉
末と称せられる平均粒径iooμ以下の微粉末を用いる
必要があり、100μ以上の粉末を用いた場合に、相太
々空孔ができやすいばかりか為プレス成形性が著しく低
下し1本発明第二焼″結合金の空孔届d得られ々い。
In order to obtain such a second sintered alloy, it is necessary to use a fine powder with an average particle size of less than 100μ, which is usually called an atomized powder, and when a powder with an average particle size of 100μ or more is used, pores are more likely to be formed. Moreover, the press formability deteriorated significantly, and it was difficult to obtain pores in the second sintered alloy of the present invention.

以」二記した如き本発明第二焼結合金はSJこり具体的
には最終成分の重量%で、C002〜1.0%、残部実
質的にFeにより々る粉末が好ましい。
The second sintered alloy of the present invention as described below is preferably a powder containing SJ powder, specifically, C002 to 1.0% by weight of the final component, with the balance substantially consisting of Fe.

かかる添加元素の少ない粉末は1007i以下の粒径に
し易いばかりでなく、プレス成形性に優れるものである
。このC量についてはo、  296未満であるどフェ
ライトが多]に発生し、焼結合金が軟化することによる
強度不足となり、一方1.0%を超えた場合に液相発生
温度が低下して液相が生じ易くガるばかりか、冷却速度
によってはセメンタイトが生じ脆化する危険があるだめ
CO12〜1.0%で選ばれることが望ましい。
Powders containing such a small amount of added elements not only can be easily formed into a particle size of 1007i or less, but also have excellent press moldability. If the amount of C is less than 1.0%, a large amount of ferrite will occur, and the sintered alloy will soften, resulting in insufficient strength.On the other hand, if it exceeds 1.0%, the liquid phase generation temperature will decrease. It is preferable to select a CO of 12 to 1.0% because there is a risk of not only a liquid phase forming easily and causing gagginess but also cementite forming depending on the cooling rate and embrittlement.

さらに第二焼結合金としては1iij熱性向上及び熱伝
導率の向上と基地強度の向」―の目的で、(CrsNi
s Mo、Cu)のうち一種又は二種以上を0.5〜3
.0%添加するととが望ましい。これら(Cr %Ni
XMo、C1])は基地に固溶し而・1熱性等の向」二
に効果があるもののX 3.0%を超えた場合にプレス
成形性が低下すると共に液相発生し易くカリ、一方0.
5%未渦であると添加の効果が寿いために0.5〜3.
0%で選択される。尚かかる合金元素の添加は特に著し
く高温条件どなるEGRディーゼル機関等において効果
を発揮するものの1通常のディーゼル機関及びガソリン
機関等ではプレス成形性の見地からとれら合金元素の添
加は不要である。
Furthermore, as a second sintered alloy, (CrsNi
s Mo, Cu) at 0.5 to 3
.. It is desirable to add 0%. These (Cr %Ni
Although XMo, C1) is a solid solution in the matrix and is effective against thermal properties, etc., when it exceeds 3.0%, press formability decreases and a liquid phase tends to occur, causing potash, on the other hand. 0.
If 5% is not vortexed, the effect of addition will be longer, so 0.5-3.
Selected at 0%. Although the addition of such alloying elements is particularly effective in EGR diesel engines, etc., which are subjected to extremely high temperature conditions, addition of these alloying elements is not necessary in ordinary diesel engines, gasoline engines, etc. from the viewpoint of press formability.

以上本発明の第二焼結合金につき説明しだが、本発明の
第一焼結合金は第二焼結合金と強く結合されているため
、複合バルブシートと17ての強度は第二焼結合金に依
るととが可能であり、第一焼結合金はパルプ摺動面とし
て必要な血・1摩耗性を得ることのみに目的を有する。
The second sintered alloy of the present invention has been explained above, but since the first sintered alloy of the present invention is strongly bonded to the second sintered alloy, the strength of the composite valve seat and the second sintered alloy are lower than those of the second sintered alloy. The purpose of the first sintered alloy is only to obtain the abrasion resistance necessary for the pulp sliding surface.

かかる第一焼結合金としては、空孔量が11〜19%の
固相焼結合金が必要である。
As such a first sintered alloy, a solid phase sintered alloy with a pore content of 11 to 19% is required.

焼結合金における空孔は為酸化膜を形成することによる
耐摩耗性向上の効果が得られるが1これは酸化膜の硬度
が高いことと、摩諒係数が低いこと、及び耐食性に優れ
ることの相乗効果による。
The pores in the sintered alloy improve wear resistance by forming an oxide film.1 This is due to the high hardness of the oxide film, low coefficient of friction, and excellent corrosion resistance. Due to synergy.

そのために空孔量は11体積%未満ではかかる空孔の効
果が得られないものであり1逆に19体積%を超える空
孔が存在するとバルブとのたたかれに対して1強度的に
不足するため一11〜19体積%の空孔量の範囲で選択
されねばなら々い。
Therefore, if the amount of pores is less than 11% by volume, the effect of such pores cannot be obtained.On the other hand, if the amount of pores is more than 19% by volume, the strength will be insufficient against the impact with the valve. In order to achieve this, the pore content must be selected within the range of -11 to 19% by volume.

さらに固相焼結である必要については、液相が発生する
ど第一焼結合金の如き比較的空孔量の多いものでは空孔
量は減少するもの和犬空孔が生じ易く、粗大空孔による
種々の欠陥が発生する理由により、又液相焼結が生ずる
と寸法変化が著しく−なるため固相焼結である必要があ
る。
Furthermore, regarding the necessity of solid-phase sintering, when a liquid phase is generated, in materials with a relatively large amount of pores such as the first sintered alloy, the amount of pores decreases, but Japanese pores are likely to occur, and coarse pores are likely to occur. Solid phase sintering is necessary because various defects occur due to pores, and because dimensional changes become significant when liquid phase sintering occurs.

かかる第一焼結合金は具体的には最終成分の重量%にて
C0,8−2,5%、 (Crs W % Ti、Nb
、C01iAo)のうち一種又は二種以上を台用で5〜
30%含み、残部実質的に17’eに1:り左る焼結合
金であるととが望ましい。Cは炭化物形成と基地組織の
調整のため添加するが、0.8%未満であると炭化物量
に不足し必要な面j摩耗性が得られず、2.5%を超え
た場合に冷却速度によってセメンタイトが生じる他、炭
化物量が過大と々す1著しく脆化するため0.8〜2.
5%で選択される。
Specifically, the first sintered alloy contains C0.8-2.5% by weight of the final components, (Crs W % Ti, Nb
, C01iAo) for table use of 5 to 5
It is preferable that the sintered alloy contains 30% and the balance is substantially equal to 1:17'e. C is added to form carbides and adjust the matrix structure, but if it is less than 0.8%, the amount of carbide will be insufficient and the necessary surface abrasiveness will not be obtained, and if it exceeds 2.5%, the cooling rate will decrease. In addition to the formation of cementite, an excessive amount of carbide also causes significant embrittlement of 0.8 to 2.
Selected at 5%.

一方(Crs W % Tl、NbXC0% MO)は
炭化物又は複合炭化物、あるいはFe  Moの如き硬
質粒子として作用する他1基地中に固溶して面1熱性、
耐食性の効果を向上するものであるが、596未満であ
ると、硬質粒子の量が過少となり、面j摩耗性に劣り3
096を超えた場合に硬質粒子が過多となるばかりか、
基地の脆化が著しく、(CrXMO% Tj−s Nb
X0% MO)はその合川で5〜30%で選択されねば
ならない。
On the other hand, (Crs W % Tl, Nb
Although it improves the effect of corrosion resistance, if it is less than 596, the amount of hard particles is too small, resulting in poor surface abrasion resistance.
If it exceeds 096, not only will there be too many hard particles, but
The embrittlement of the base was remarkable, and (CrXMO% Tj-s Nb
X0% MO) must be selected at 5 to 30% in the river.

さらに耐熱性及び面1食性を要するものにおいては(N
j、Crs Cu)のうち一種又は二種以上を1゜0〜
3.0%添加することも場合によって効果的である。
In addition, for products that require heat resistance and monofacial corrosion resistance (N
J, Crs Cu) at 1°0~
Adding 3.0% is also effective in some cases.

このような第一焼結合金としては例えば特公昭51−1
3093号、特公昭51−44483号、特開昭51−
98610号、特開昭53−81410号、特開昭55
−164057号、等の先行技術によるバルブシートを
調整して用いることができるものであり\さらに熱伝導
性の改善を目的として溶浸処理を施すことも望ましい。
As such a first sintered alloy, for example, Japanese Patent Publication No. 51-1
No. 3093, Japanese Patent Publication No. 1983-44483, Japanese Patent Publication No. 1983-
No. 98610, JP-A-53-81410, JP-A-55
The valve seat according to the prior art such as No. 164057 can be adjusted and used, and it is also desirable to perform an infiltration treatment for the purpose of improving thermal conductivity.

以上記した如く本発明複合バルブシートは空孔量が太く
強度には劣るものの耐摩耗性には優れる第一焼結合金と
、著しく強度及び熱疲労強度及び熱伝導性に優れるため
極めて空孔量を減じた特別な第二焼結合金とを各々固相
焼結して得られることにより、複合バルブシート全体と
しての耐摩耗性及び耐熱疲労性1熱伝導性及び製品製造
安定性に著しく優れるものであり\かつ第一第二の焼結
合金の結合強度においても強力なものである。
As described above, the composite valve seat of the present invention has a first sintered alloy that has a large pore volume and is inferior in strength but has excellent wear resistance, and a first sintered alloy that has a large pore volume and is inferior in strength, but has an extremely high porosity that has excellent strength, thermal fatigue strength, and thermal conductivity. By solid-phase sintering a special secondary sintered alloy with reduced And the bonding strength of the first and second sintered alloys is also strong.

尚本発明を製造するにあたっては、第一り第二の焼結合
金がいずれも固相焼結であるため1第−1第二焼結合金
は、予め各々同一内外径の圧粉体をプレス成形した後に
組伺ける方法もとりうるが本発明においては第一\第二
焼結合金の粉末を二層に充填し一体的にプレス成形する
ことによっても充分に本発明複合バルブシートの第一第
二焼結合金の空孔を得ることが可能である。
In manufacturing the present invention, since both the first and second sintered alloys are solid-phase sintered, the first and second sintered alloys are prepared by pressing compacts having the same inner and outer diameters in advance. Although it is possible to assemble the composite valve seat after molding, in the present invention, filling the powder of the first and second sintered alloys in two layers and integrally press-forming the composite valve seat of the present invention is sufficient. It is possible to obtain pores in a bisintered alloy.

これは第二焼結合金が1合金元素が栖めて少なく、かつ
微細な粉末を用いることによって、同一成形圧力をもっ
てしても第一焼結合金に比して著しく高密度の圧粉体を
得ることが可能なことによる。
This is because the second sintered alloy has less one alloying element and uses fine powder, so even with the same compacting pressure, it can produce a green compact with significantly higher density than the first sintered alloy. Depends on what you can get.

さらに好捷しくは第2図に示す如きプレス成形をするこ
とによって本発明複合パルプシー)・はより容易に為か
つ第二焼結合金の密度を高くなしうる。
More preferably, by press forming as shown in FIG. 2, the composite pulp of the present invention can be more easily produced and the density of the second sintered alloy can be increased.

1ず通常のプレス機械にちって下パンチ6は固定式であ
るので、下パンチ固定として説明すると(もちろんダイ
固定式のものでは相対的運動はダイと下パンチが逆とな
る)ダイア及び下パンチ6で四重れる空間に漸次第一焼
結合金粉末11第二焼結合金粉末2を充填した後、1ず
ダイアを固定17た状態で土パンチ9を下降し1次いで
ダイアを上パンチ9の下降速度のほぼ半分の速度で下降
して1粉末1の圧粉成形を完了した後に\ダイアの下降
速度を」下パンチ9の速度とほぼ同じ速度で下降し、粉
末2の圧粉成形を完了する。かかるプレス成形によれば
、まず上パンチのみの圧粉によって高い密度の圧粉成形
を要する粉末2の上側部分の目的の密度が得られ−次い
でダイが上パンチの半分の速度で降下することにより、
粉末1及び粉末2は上下方向からほぼ同一の力で成形さ
れるため粉末1には均−寿密度の圧粉成形が達成される
。粉末1は1粉末自体が前記した如く高合金であること
による圧粉密度の限界があり、上記の如き均一に圧粉成
形された後に、ダイと」下パンチが同一速度で下降する
ことによL粉末2の下側が強く圧縮成形され、粉末1は
均一であり\かつ著しく高い密度に圧粉成形される。な
お高い圧粉成形を望む場合に、最終的に上パンチのみを
さらに下げて圧粉成形するととも可能である。
First, in a normal press machine, the lower punch 6 is fixed, so if we explain it as a fixed lower punch (of course, in a die fixed type, the relative movement of the die and lower punch is reversed), the die and the lower punch After gradually filling the four-fold space at 6 with the first sintered alloy powder 11 and the second sintered alloy powder 2, the earth punch 9 is lowered with the diamond fixed 17, and the diamond is then lowered into the upper punch 9. After descending at approximately half the speed of the descending speed and completing the compaction of powder 1, the diamond descends at approximately the same speed as the lower punch 9, completing the compaction of powder 2. do. According to such press forming, the desired density of the upper part of the powder 2, which requires high-density compacting, is first obtained by compacting only with the upper punch, and then the die is lowered at half the speed of the upper punch. ,
Since Powder 1 and Powder 2 are compacted with substantially the same force from above and below, compacting of Powder 1 with a uniform density is achieved. Powder 1 has a limit in compaction density due to the fact that the powder itself is a high alloy as described above, and after being compacted uniformly as described above, the die and lower punch descend at the same speed. The underside of the L powder 2 is strongly compacted, and the powder 1 is homogeneous and compacted to a significantly higher density. Furthermore, if a high degree of powder compaction is desired, it is possible to finally lower only the upper punch and perform powder compaction.

尚粉末1と粉末2を逆の順に充填したものでは粉末2上
に一担空間を形成17て後に、ダイと上パンチを同一速
度で下降し、次いでダイを上パンチのほぼ半分の速度で
下降し、」下パンチのみを下降することによって得られ
るものであり)要はダイと」下パンチ、下パンチの相対
的移動が、始めに粉末2側のパンチで圧粉り、次いで上
下両パンチが同一速度で圧粉し、最後に粉末1側のパン
チで圧粉することによって達成されるものである。
In addition, in the case where powder 1 and powder 2 are filled in the reverse order, after forming a space 17 on powder 2, the die and upper punch are lowered at the same speed, and then the die is lowered at approximately half the speed of the upper punch. The key point is that the relative movement of the die, the lower punch, and the lower punch is such that the powder is first compacted by the punch on the powder 2 side, and then both the upper and lower punches are pressed down. This is achieved by compacting the powder at the same speed and finally compacting the powder with a punch on the powder 1 side.

この粉末1\2の配着については翫バルブシート摺動面
を創形したパンチが」−下いずれかによって決定するも
のであるが1これは一般に」−パンチ側に設けた方がプ
レス成形作業性の点で優れるため蔦粉末Iを」二側に充
填することが望ましい。
The distribution of this powder 1\2 is determined by whether the punch that shaped the sliding surface of the valve seat is placed on the punch side. It is desirable to fill the two sides with ivy powder I because it has excellent properties.

尚コアロッド8についてはダイアど同一に動くものであ
る。
The core rod 8 moves in the same way as the diamond.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例断面図。第2図は本発明の製造
方法を示す断面図6 旬月の説明 1:第一焼結合金     2:第二焼結合金6:下バ
ンチ       7:ダイ 9:上パンチ 特許出願人 日本ピストシリング株式会社 3 第]図
FIG. 1 is a sectional view of an embodiment of the present invention. Fig. 2 is a cross-sectional view showing the manufacturing method of the present invention 6 Explanation of Jungetsu 1: First sintered alloy 2: Second sintered alloy 6: Lower bunch 7: Die 9: Upper punch Patent applicant Nippon Pist Schilling Co., Ltd. Company 3 Figure

Claims (2)

【特許請求の範囲】[Claims] (1)二種の異方る焼結合金によりなる複合バルブシー
トにおいて、 バルブ摺動面を形成する第一焼結合金と、主としてシリ
ンダヘッドとの嵌合部を形成する第二焼結合金とにより
なシ、該第二焼結合金がイ均径5〜30μの空孔が容積
%にして4〜10%の焼結空孔を有する固相鉄系焼結合
金であり、かつ前記第一焼結合金が空孔の容積%にして
11〜19%の焼結空孔を有する固相鉄系焼結合金であ
ることを特徴とする複合バルブシート。
(1) In a composite valve seat made of two types of anisotropic sintered alloys, a first sintered alloy forms the valve sliding surface, and a second sintered alloy mainly forms the fitting part with the cylinder head. Furthermore, the second sintered alloy is a solid phase iron-based sintered alloy having sintered pores of 4 to 10% by volume of pores with an average diameter of 5 to 30μ, and A composite valve seat characterized in that the alloy is a solid phase iron-based sintered alloy having sintered pores of 11 to 19% in terms of volume % of pores.
(2)前記第二焼結合金が平均粒径100μ以下の粉末
を圧粉成形されて々ることを特徴とする特許
(2) A patent characterized in that the second sintered alloy is formed by compacting powder with an average particle size of 100 μm or less
JP12525981A 1981-08-12 1981-08-12 Composite valve sheet Pending JPS5827952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12525981A JPS5827952A (en) 1981-08-12 1981-08-12 Composite valve sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12525981A JPS5827952A (en) 1981-08-12 1981-08-12 Composite valve sheet

Publications (1)

Publication Number Publication Date
JPS5827952A true JPS5827952A (en) 1983-02-18

Family

ID=14905659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12525981A Pending JPS5827952A (en) 1981-08-12 1981-08-12 Composite valve sheet

Country Status (1)

Country Link
JP (1) JPS5827952A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110644A (en) * 1984-06-25 1986-01-18 鹿島建設株式会社 Apparatus for connecting pillar and beam of iron skeletal structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110644A (en) * 1984-06-25 1986-01-18 鹿島建設株式会社 Apparatus for connecting pillar and beam of iron skeletal structure

Similar Documents

Publication Publication Date Title
US4671491A (en) Valve-seat insert for internal combustion engines and its production
US4505988A (en) Sintered alloy for valve seat
US4632074A (en) Wear-resistant member for use in internal combustion engine and method for producing the same
US4424953A (en) Dual-layer sintered valve seat ring
JP6297545B2 (en) High heat conduction valve seat ring
US4485147A (en) Process for producing a sintered product of copper-infiltrated iron-base alloy and a two-layer valve seat produced by this process
US2753858A (en) Valve seat insert ring
JP2011157845A (en) Valve seat for internal combustion engine, superior in cooling power
JP2010274315A (en) Valve seat for cast-in insert of light metal alloy
US6348081B1 (en) Granulated powder for high-density sintered body, method for producing high-density sintered body using the same, and high-density sintered body
JP4373287B2 (en) Double-layer iron-based sintered alloy valve seat
JPS5827952A (en) Composite valve sheet
JPH0233848B2 (en) KOONTAIMAMOSEIBARUBUSHIITO
US6712872B2 (en) Powder metallurgy produced valve body and valve fitted with said valve body
CA2371439C (en) H-bn modified p/m stainless steels
JPH0137466B2 (en)
JP4223817B2 (en) Valve seat for light metal alloy casting
JPS5828064A (en) Composite valve sheet and its manufacturing method
JP4240761B2 (en) Al-based oxide-dispersed Fe-based sintered alloy with excellent wear resistance and method for producing the same
JPS631080Y2 (en)
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same
JP2004149819A (en) Ferrous sintered body for valve seat
JP2002115513A (en) Iron group sintered alloy two-layer valve seat and method of its manufacture
JPS649367B2 (en)
JPH06346180A (en) Valve guide member made of fe-base sintered alloy, excellent in wear resistance