JPS582743A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPS582743A
JPS582743A JP56101867A JP10186781A JPS582743A JP S582743 A JPS582743 A JP S582743A JP 56101867 A JP56101867 A JP 56101867A JP 10186781 A JP10186781 A JP 10186781A JP S582743 A JPS582743 A JP S582743A
Authority
JP
Japan
Prior art keywords
coil
magnet
waves
probe
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56101867A
Other languages
Japanese (ja)
Other versions
JPS6319023B2 (en
Inventor
Akiro Sanemori
実森 彰郎
Satoru Inoue
悟 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56101867A priority Critical patent/JPS582743A/en
Publication of JPS582743A publication Critical patent/JPS582743A/en
Publication of JPS6319023B2 publication Critical patent/JPS6319023B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2412Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0421Longitudinal waves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To generate and detect longitudinal waves and transversal waves selectively with one probe, by providing two coils for magnet and changing the direction of a generated magnetic field by the selection of them. CONSTITUTION:The first coil 11 for magnet is wound around a column 10a of an iron core 10 for magnet, and the second coil 12 for magnet is wound around a cylinder 10b of the iron core 10. The first flat coil 13 is arranged near the lower end of a groove 10c between the column 10a and the cylinder 10b of the iron core 10, and the second flat coil 14 is arranged in the lower end face of the column 10a. When the coil 11 is selected, the spiral first flat coil 13 is used as a coil for generating and detecting an eddy current to obtain the probe for generating and detecting ultrasonic waves of logitudinal waves. When the coil 12 is selected, the seocnd flat coil 14 is used to obtain the probe for generating and detecting ultrasonic waves of transversal waves.

Description

【発明の詳細な説明】 この発明は、金属中に超音波を非接触で発生。[Detailed description of the invention] This invention generates ultrasonic waves in metal without contact.

検出する電磁超音波の超音波探触子に関する。This invention relates to an ultrasonic probe for detecting electromagnetic ultrasonic waves.

従来電磁式超音波の探触子として、第1図、第2図に示
すようなものが知られている。このうち第1図社縦波超
音波を発生、検出する探触子の断面図であ〕、第2図は
横波超音波を発生、検出する探触子の断面図である。こ
の第1図、第2図の両図において、lは導電性表面を有
する被検材、2.5絋それぞれ強磁性体で作られたマグ
ネット用鉄心、3.6はそれぞれ鉄心2.5に巻かれた
マグネット用コイル、4,7はそれぞれマグネット用鉄
心2.7の端部に配設された偏平渦巻状コイルである。
2. Description of the Related Art Conventionally, as electromagnetic ultrasonic probes, those shown in FIGS. 1 and 2 are known. Of these, Figure 1 is a sectional view of a probe that generates and detects longitudinal ultrasound waves, and Figure 2 is a sectional view of a probe that generates and detects transverse ultrasound waves. In both Figures 1 and 2, l is the material to be tested that has a conductive surface, 2.5 mm is the magnet core made of ferromagnetic material, and 3.6 is the core 2.5 mm. The wound magnet coils 4 and 7 are flat spiral coils disposed at the ends of the magnet core 2.7, respectively.

マグネットコイル3には引き出し1i31,32が設叶
られておプ、マグネットコイル6には引き出しl!I6
1.62が設けられている。また偏平渦巻状コイル4に
は引き出し@41,42が設けられている。同様にして
、偏平渦巻状コイル7にも引き出し線71.72が巻装
されている。  ′次に、第1図および第2図の電磁超
音波の探触子の動作について説明する。まず第1図の場
合は。
Magnet coil 3 has drawers 1, 31 and 32, and magnet coil 6 has drawer l! I6
1.62 is provided. Further, the flat spiral coil 4 is provided with drawers @41 and 42. Similarly, the flat spiral coil 7 is also wound with lead wires 71 and 72. 'Next, the operation of the electromagnetic ultrasonic probe shown in FIGS. 1 and 2 will be explained. First, in the case of Figure 1.

被検討1中に縦波超音波を発生あるいは、被検材1中の
縦波超音波を検出する探触子で、引き出しl931.3
2から、マグネット用コイル3に電流を流すと、鉄心2
の端部には磁界人が発生する。
A probe that generates longitudinal ultrasound waves in the specimen 1 or detects longitudinal ultrasound waves in the material 1 to be examined.
2, when a current is passed through the magnet coil 3, the iron core 2
A magnetic field is generated at the end.

これを被検材lに対向させると、被検材lの表面には1
表面に平行な磁界を与えることができる。
When this is placed opposite to the material to be inspected, the surface of the material to be inspected is 1.
A magnetic field parallel to the surface can be applied.

仁のとき、鉄心2の端部に設けた偏平渦巻コイル4に引
き出し@41,42を介して、第3図に示したような振
動電流を流すと、被検材lの表面に、渦電流゛Cが発生
する。この渦電流Cと磁界人との相互作用(ローレンツ
力)によ・夛Eのような力が生じる。
When an oscillating current as shown in Fig. 3 is passed through the flat spiral coil 4 provided at the end of the iron core 2 through the leads 41 and 42, an eddy current is generated on the surface of the test material l.゛C occurs. The interaction (Lorentz force) between this eddy current C and the magnetic field generates a force like E.

磁界Aが一定であれば、この方Eは渦電流Cと同じ変化
をし、被検材l中に縦波超音波が発生する。
If the magnetic field A is constant, this field E changes in the same way as the eddy current C, and a longitudinal ultrasonic wave is generated in the specimen l.

被検材l中の縦波超音波の検出は、上記発生と全く逆の
原理で行われる。すなわち、超音波が被検材lの表面近
・傍に達し、Eのように振動すると。
Detection of longitudinal ultrasonic waves in the specimen l is performed on the completely opposite principle to the generation described above. That is, when the ultrasonic wave reaches near the surface of the material to be inspected 1 and vibrates as shown in E.

そこには磁界ムがあるので、表面近傍に渦電流が発生す
る。これは偏平渦巻状コイル4に電圧を誘起させるので
、引き出し[41,42よシこれを検出することができ
る。
Since there is a magnetic field there, eddy currents are generated near the surface. Since this induces a voltage in the flat spiral coil 4, this can be detected by the extractors [41, 42].

他方、第2図の場合は、被検材l中に横波超音波を発生
あるいは被検材l中の横波超音波を検出する探触子て、
引き出し線61.62からマグネット用コイル6に電流
を流すと、鉄心5の端部に磁界Bが発生する。これを被
検材lに対向させると、被検材10表面には1表面と垂
直な方向に磁界を与えることができる。
On the other hand, in the case of Fig. 2, a probe that generates transverse ultrasonic waves in the test material l or detects transverse ultrasonic waves in the test material l,
When a current is passed through the magnet coil 6 from the lead wires 61 and 62, a magnetic field B is generated at the end of the iron core 5. When this is placed opposite the material 1 to be tested, a magnetic field can be applied to the surface of the material 10 to be tested in a direction perpendicular to the surface.

このとき、鉄心5の端部に設けた偏平渦巻コイル7に、
引き出し線71.72を介して、第3図に示したような
振動電流を流すと、被検材lの表面に、渦電流りが発生
する。この渦電流りと前記磁界Bとの相互作用によ、4
7. Fのようなカが生じる。磁界Bが一定であれば、
この方Pは渦電流と同じ変化をし、被検材l中に横波超
音波が発生する。横波超音波の検出もまた。上記発生と
全く逆の原理によって行われる。
At this time, in the flat spiral coil 7 provided at the end of the iron core 5,
When an oscillating current as shown in FIG. 3 is passed through the lead wires 71 and 72, an eddy current is generated on the surface of the test material l. Due to the interaction between this eddy current and the magnetic field B, 4
7. A force like F is generated. If the magnetic field B is constant,
This side P changes in the same way as the eddy current, and a transverse ultrasonic wave is generated in the specimen l. Also detection of transverse ultrasound waves. This occurs based on the exact opposite principle to the above generation.

一般に、電磁式超音波発生、検出においては。Generally, in electromagnetic ultrasonic generation and detection.

被検材lの表面に与える磁界の方向と鉄心端部に1′ 設けたコイルの巻き方によ〕各種のモードの超音波を発
生あるいは検出することができる。
Ultrasonic waves of various modes can be generated or detected depending on the direction of the magnetic field applied to the surface of the material to be tested and the winding of the coil provided at the end of the iron core.

従来の電磁式超音波探触子鉱、以上のように発生させる
超音波が一波か横波かによって被検材lの表面に与える
磁界の方向が異なるために%各々別の鉄心が必要となり
、それぞれ専用の探触子を必要とし、縦波および横波を
用いた検査が必要な場合に、探触子を2個必要とし、ま
た、交換を頻ばんに行わなければならないなどの欠点が
あった。
In conventional electromagnetic ultrasonic probes, the direction of the magnetic field applied to the surface of the test material differs depending on whether the ultrasonic wave generated is a single wave or a transverse wave, so separate iron cores are required for each type. Each requires a dedicated probe, and when inspection using longitudinal waves and transverse waves is required, two probes are required, and there are disadvantages such as the need to replace them frequently. .

この発明紘、上記従来の欠点を除去するため罠なされた
もので、縦波超音波発生、検出用の鉄心と同様の鉄心の
外側に、第2のマグネット用コイルを設け、この第2の
マグネット用コイルの選択によシ、被検材表面に水平あ
るbは垂直の磁界を発生できるようにすることkより、
縦波超音波あるいは横波超音波を発生、検出できる電磁
式の超音波探触子を提供することを目的とする。
This invention was made in order to eliminate the above-mentioned drawbacks of the conventional technology.A second magnet coil is provided on the outside of an iron core similar to the iron core for generating and detecting longitudinal ultrasonic waves, and this second magnet Depending on the selection of the coil, it is necessary to generate a magnetic field that is horizontal or perpendicular to the surface of the material being tested.
The object of the present invention is to provide an electromagnetic ultrasonic probe that can generate and detect longitudinal or transverse ultrasonic waves.

以下、この発明の超音波探触子の一実施例を図について
説明する。第4図はその一実施例を示す断面図であり、
この第4図において、101j:強磁性体でできたマグ
ネット用鉄心、11は第1のマグネット用コイル、12
a第2のマグネット用コイルである。
Hereinafter, one embodiment of the ultrasonic probe of the present invention will be described with reference to the drawings. FIG. 4 is a cross-sectional view showing one embodiment thereof,
In FIG. 4, 101j is a magnet core made of ferromagnetic material, 11 is a first magnet coil, and 12 is a magnet core made of a ferromagnetic material.
a Second magnet coil.

マグネット用鉄心lOは円柱10aとそれを取りまく円
筒10bからなっており、第1のマグネット用コイル1
1はマグネット用鉄心lOの円柱10mを含むように巻
かれ、第2のマグネット用コイル12はマグネット用鉄
心lOの円筒10bを含むように%すなわち、マグネッ
ト用鉄心lOの全体を含むように巻装されている。した
がって。
The magnet core IO consists of a cylinder 10a and a cylinder 10b surrounding it, and includes a first magnet coil 1.
The second magnet coil 12 is wound so as to include the cylinder 10b of the magnet core IO, that is, the entire magnet core IO. has been done. therefore.

第1のマグネット用コイル11と第2のマグネット用コ
イル12と社同心状の配列関係にある。
The first magnet coil 11 and the second magnet coil 12 are arranged concentrically.

マグネット用鉄心lOの円柱101と円筒10b間の溝
10Cの下端近傍には、第1の偏平コイル13が配置さ
れ、円柱10mの下端面には第2の偏平コイル14が配
置されている。
A first flat coil 13 is arranged near the lower end of the groove 10C between the cylinder 101 and the cylinder 10b of the magnet core IO, and a second flat coil 14 is arranged on the lower end surface of the cylinder 10m.

第1のマグネット用コイル1.1には引き出し線11L
が導き出されておシ、第2のマグネット用コイルにも引
き出し線12Lが導き出されている。
The first magnet coil 1.1 has a lead wire 11L.
is led out, and a lead wire 12L is also led out to the second magnet coil.

第1の偏平;イル13、第2の偏平コイ・ル14にもそ
れぞれ引き出し線13L、14Lが導出されている。
Output lines 13L and 14L are also led out from the first flat coil 13 and the second flat coil 14, respectively.

次に1以上のように構成されたこの発明の超音波探触子
の動作について、第5図、第6図の動作説明図を併用し
て述べる。#E4図において、第1゜第2のマグネット
用コイル11.12を選択的に使用すると、マグネット
用鉄心1oの端部には、第5図、第6図に示すような磁
界が発生させることができる。
Next, the operation of the ultrasonic probe of the present invention configured as described above will be described using the operation explanatory diagrams of FIGS. 5 and 6. In Figure #E4, if the first and second magnet coils 11 and 12 are selectively used, a magnetic field as shown in Figures 5 and 6 will be generated at the end of the magnet core 1o. I can do it.

第5図は、第1のマグネット用コイル11を選択した場
合であシ、渦電流を発生めるい拡検出するコイルをして
渦巻状の第1の偏平コイル13を使用することによシ、
第1図に示した従来の一〇の縦波超音波を発生、検出す
る探触子と同一になる。
FIG. 5 shows the case where the first magnet coil 11 is selected, and by using the spiral first flat coil 13 as a coil for generating and expanding eddy current,
This is the same as the conventional probe 10 shown in FIG. 1, which generates and detects longitudinal ultrasonic waves.

また、第6図は、*2のマグネット用コイル12を選択
し九場合であシ、渦電流を発生あるいは検出するコイル
として第2の偏平コイル14を使用することKよシ、第
2図に示した従来のものの横波超音波を発生、検出する
探触子と同一になる。
In addition, Fig. 6 shows the case where *2 magnet coil 12 is selected, and the case where the second flat coil 14 is used as the coil for generating or detecting eddy current is shown in Fig. 2. This is the same as the conventional probe shown above that generates and detects transverse ultrasonic waves.

&シ、上記実施例では、第2の偏平コイル14をマグネ
ット用鉄心10の円柱10aの端面に設けた場合を示し
たが、円筒10bの部の端面に設けてもよく、また、円
柱10aと円筒10bの部との両方にわたって設けても
よい。
In the above embodiment, the second flat coil 14 is provided on the end face of the cylinder 10a of the magnet core 10, but it may also be provided on the end face of the cylinder 10b. It may be provided over both the cylinder 10b and the cylinder 10b.

さらに、マグネット用鉄心10の柱部、筒部は、円柱、
円筒で説明したがこれらは角柱、角筒であってもよい。
Furthermore, the column part and the cylindrical part of the magnet core 10 are cylindrical,
Although cylinders have been described, these may also be prismatic or rectangular cylinders.

以上のように、この発明の超音波探触子によれば、マグ
ネット用コイルを2個設け、その選択によシ発生磁界の
方向をかえられるように構成したので%1個の探触子で
、縦波超音波と横波超音波を選択的に発生、検出できる
という効果がある。
As described above, according to the ultrasonic probe of the present invention, two magnet coils are provided and the direction of the generated magnetic field can be changed by selecting one of them, so that only one probe can be used. , it has the advantage of being able to selectively generate and detect longitudinal and transverse ultrasound waves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の縦波超音波を発生、検出する超音波探
触子の断面図、第2図は、従来の横波超音波を発生、検
出する超音波探触子の断面図、第3図は、第1図訃よび
第2図の超音波探触子に超音波を発生させる丸めに偏平
コイルに流す電流の波形を示す図、第4図は、この発明
の超音波探触子の一実施例の構成を示す断面図、第5図
および第6図は、それぞれこの発明の超音波探触子の動
作を示す図である。 10−−−−rlP4”:) ト用鉄心、10a−円柱
、Job・・・円筒、10cm・・溝、11・・・第1
のマグネット用鉄心k、l:j:・・・第2の!グネッ
ト用コイz、13・・・第1の偏平コイルm14・・・
第2の偏平コイル、ltL〜14 L−・・引龜出し線
。 2t?、図中、同−将号紘同一部分を示す。 代理人  葛 野 信 −
Fig. 1 is a cross-sectional view of a conventional ultrasonic probe that generates and detects longitudinal ultrasonic waves, and Fig. 2 is a cross-sectional view of a conventional ultrasonic probe that generates and detects transverse ultrasonic waves. 3 is a diagram showing the waveform of the current flowing through the rounded flat coil that generates ultrasonic waves in the ultrasonic probe shown in FIG. 1 and FIG. 2, and FIG. 5 and 6 are diagrams showing the operation of the ultrasonic probe of the present invention, respectively. 10---rlP4":) Iron core for 10a-Cylinder, Job...Cylinder, 10cm...Groove, 11...1st
Iron core for magnet k, l: j:...Second! Coil for magnet z, 13...first flat coil m14...
Second flat coil, ltL~14 L-... Leading wire. 2t? , In the figure, the same part is indicated by the same name. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】[Claims] 柱状部分と円筒部分を有しその間に溝を形成し九強磁性
体のマグネット用鉄心、上記柱状部分に巻装された第1
のマグネット用コイル、上記円筒部分に巻装され第1の
マグネット用コイルと向心状の第2のマグネット用コイ
ル、上記マグネット用鉄心の下端面の所定個所に配設さ
れ上記第1のマグネット用コイルが選択励磁されたとき
KJl波超音波を発生、検出する第1の偏平コイル、上
記マグネット用鉄心の下端面の所定個所に配設され上記
第2のマグネット用コイルが選択されたときに横波超音
波を発生、検出する第2の偏平コイルを備えてなる超音
波探触子。
a magnet core made of nine ferromagnetic material having a columnar part and a cylindrical part with a groove formed therebetween; a first core wound around the columnar part;
a second magnet coil wound around the cylindrical portion and centripetal to the first magnet coil; a second magnet coil disposed at a predetermined location on the lower end surface of the magnet core; A first flat coil that generates and detects KJl-wave ultrasonic waves when the coil is selectively excited; An ultrasonic probe comprising a second flat coil that generates and detects ultrasonic waves.
JP56101867A 1981-06-30 1981-06-30 Ultrasonic probe Granted JPS582743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56101867A JPS582743A (en) 1981-06-30 1981-06-30 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56101867A JPS582743A (en) 1981-06-30 1981-06-30 Ultrasonic probe

Publications (2)

Publication Number Publication Date
JPS582743A true JPS582743A (en) 1983-01-08
JPS6319023B2 JPS6319023B2 (en) 1988-04-21

Family

ID=14311935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56101867A Granted JPS582743A (en) 1981-06-30 1981-06-30 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS582743A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138098A (en) * 1992-10-29 1994-05-20 Nippon Steel Corp Electromagnetic ultrasonic transducer
CN102721751A (en) * 2012-05-28 2012-10-10 华中科技大学 Magnetostrictive guided wave receiving sensor
JP2015206782A (en) * 2013-12-24 2015-11-19 株式会社神戸製鋼所 Residual stress evaluation method and residual stress evaluation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138098A (en) * 1992-10-29 1994-05-20 Nippon Steel Corp Electromagnetic ultrasonic transducer
CN102721751A (en) * 2012-05-28 2012-10-10 华中科技大学 Magnetostrictive guided wave receiving sensor
JP2015206782A (en) * 2013-12-24 2015-11-19 株式会社神戸製鋼所 Residual stress evaluation method and residual stress evaluation device

Also Published As

Publication number Publication date
JPS6319023B2 (en) 1988-04-21

Similar Documents

Publication Publication Date Title
EP0332048A3 (en) Multiple coil eddy current probe and method of flaw detection
JP3572452B2 (en) Eddy current probe
JPS582743A (en) Ultrasonic probe
JPS6411969B2 (en)
US2877406A (en) Non-destructive method and means for flaw detection
GB1070859A (en) Apparatus for the measurement of changes in diameter of wire or tubular metal and a method for the determination of the corrosion of such metal
JPH0815229A (en) High resolution eddy current flaw detector
US4835470A (en) Magnetizer having a main electromagnet and leakage flux reducing auxiliary electromagnets for magnetographic inspection
JP2003344362A (en) Eddy current flaw detection probe and eddy current flaw detector
JPS59112257A (en) Method and device for nondestructive inspection of ferromagnetic material
JPH10160710A (en) Division-type flaw-detecting sensor and flaw detecting method for conductive tube
JPH0239252Y2 (en)
JPS6333440Y2 (en)
JP2006053053A (en) Probe device for eddy current flaw detection
JPH0727868A (en) Device for detecting position of buried metallic object
JPH10123097A (en) Sensor for detecting wall thinning
JPH04145359A (en) Rotating flux type magnetic sensor and defect survey device
JPS5977352A (en) Electromagnetic ultrasonic measuring apparatus
SU1163250A1 (en) Electromagnetic transducer for non-destructive testing of articles
JP2005043154A (en) Eddy current flaw detecting probe
JPH10328152A (en) Electromagnetic rheometer
JPH10160709A (en) Eddy current flaw detecting probe
JPH0142378B2 (en)
SU649997A1 (en) Eddy-current device for non-destructive inspection of articles
JPH0210151A (en) Magnetic flaw detector