JPS5827126B2 - car cooler control device - Google Patents

car cooler control device

Info

Publication number
JPS5827126B2
JPS5827126B2 JP54118790A JP11879079A JPS5827126B2 JP S5827126 B2 JPS5827126 B2 JP S5827126B2 JP 54118790 A JP54118790 A JP 54118790A JP 11879079 A JP11879079 A JP 11879079A JP S5827126 B2 JPS5827126 B2 JP S5827126B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerant compressor
evaporator
car
outlet side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54118790A
Other languages
Japanese (ja)
Other versions
JPS5643020A (en
Inventor
泰司 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP54118790A priority Critical patent/JPS5827126B2/en
Priority to US06/188,552 priority patent/US4326386A/en
Publication of JPS5643020A publication Critical patent/JPS5643020A/en
Publication of JPS5827126B2 publication Critical patent/JPS5827126B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/321Control means therefor for preventing the freezing of a heat exchanger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 本発明は冷媒圧縮機のオン・オフ制御により車内温度を
制御するカークーラ制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a car cooler control device that controls the interior temperature of a car by on/off control of a refrigerant compressor.

この種のカークーラ制御装置には、冷媒蒸発器の冷気吹
出側にサーミスタ等による温度検出素子を配設して、蒸
発器の吹出側空気温度が所定値まで低下すると冷媒圧縮
機を停止し、これにより吹出側空気温度が上昇して前記
所定値より十分高い所定値に達すると再び冷媒圧縮機を
駆動して車内温度制御を行なうものと、車内にも温度検
出素子を配設して車内温度によっても同様の制御を行な
えるようにしたものとがある。
This type of car cooler control device is equipped with a temperature detection element such as a thermistor on the cold air outlet side of the refrigerant evaporator, and when the air temperature on the outlet side of the evaporator drops to a predetermined value, the refrigerant compressor is stopped. When the temperature of the air on the outlet side rises and reaches a predetermined value that is sufficiently higher than the predetermined value, the refrigerant compressor is driven again to control the temperature inside the car, and a temperature detection element is also installed inside the car to control the temperature inside the car. There are also devices that allow similar control.

しかしながら、いずれの装置でも真夏時の車外温度が高
い時には車内温度も下がりにくいので、実質上蒸発器の
吹出側空気温度による制御が行なわれることとなる。
However, in either device, when the temperature outside the vehicle is high in midsummer, the temperature inside the vehicle is difficult to drop, so control is essentially performed based on the air temperature on the outlet side of the evaporator.

ここで、冷媒圧縮機をオフにする吹出側空気温度を低く
設定すると、冷媒圧縮機の稼動率も高くなり、これが長
時間続くと蒸発器の表面温度は0℃以下であるため蒸発
器表面に着霜が生じ始める。
Here, if the air temperature on the outlet side is set low to turn off the refrigerant compressor, the operating rate of the refrigerant compressor will also increase, and if this continues for a long time, the surface temperature of the evaporator will be below 0°C, so Frost begins to form.

この着霜は蒸発器における熱交換を阻害して吹出側空気
温度の低下を妨げるだけでなく、吹出空気量を不安定に
して蒸発器の吹出側に配設された温度検出素子の出力を
不安定にするため車内温度制御が不安定になってしまう
This frost formation not only obstructs heat exchange in the evaporator and prevents the temperature of the air on the outlet side from decreasing, but also destabilizes the amount of air blown out and disrupts the output of the temperature detection element installed on the outlet side of the evaporator. In order to stabilize the temperature inside the car, the temperature control becomes unstable.

このことから、冷媒圧縮機のオン・オフ制御の確実性を
得るには、冷媒圧縮機をオフにする時の吹出側空気温度
をやや高めに設定せざるを得ず、これによって冷媒圧縮
機の能力をフルに活用できず冷房効果も甘くなってしま
うという欠点があった。
Therefore, in order to ensure reliable on/off control of the refrigerant compressor, it is necessary to set the outlet air temperature slightly higher when the refrigerant compressor is turned off. The drawback was that the capacity could not be fully utilized and the cooling effect would be poor.

本発明はこのような欠点を解消しようとするものであり
、蒸発器に対する着霜防止機能を有して冷房能力を十分
に発揮し得るカークーラ制御装置を提供することを目的
とする。
The present invention aims to eliminate such drawbacks, and aims to provide a car cooler control device that has a frost-preventing function on the evaporator and can fully demonstrate its cooling capacity.

本発明は蒸発器の吹出側空気温度が所定値まで低下した
時冷媒圧縮機を停止する回路の他に、吹出側空気温度が
前記所定値よりやや高い温度以下で所定時間経過した時
冷媒圧縮機を停止する回路を設けたカークーラ制御装置
であり、車内空気温度に応じて冷媒圧縮機をオン・オフ
制御する回路と組合せることもできる。
In addition to a circuit that stops the refrigerant compressor when the air temperature on the outlet side of the evaporator drops to a predetermined value, the present invention also provides a circuit that stops the refrigerant compressor when the air temperature on the outlet side of the evaporator is below a temperature slightly higher than the predetermined value for a predetermined period of time. This is a car cooler control device that is equipped with a circuit that stops the refrigerant compressor, and can also be combined with a circuit that controls the refrigerant compressor on and off depending on the temperature of the air inside the car.

以下に図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図は本発明の第1の実施例を冷媒圧縮機を駆動する
電磁クラッチ部分までについて示している。
FIG. 1 shows a first embodiment of the present invention up to an electromagnetic clutch that drives a refrigerant compressor.

Th1は蒸発器(図示省略)の吹出側(蒸発器のフィン
間でも良い)に設置された温度検出素子としてのサーミ
スタ、OPlはサーミスタTh1の検出出力で吹出側空
気温度が設定値T1(例えば3℃)以下になった時出力
が低レベルになる比較増幅器OP2は同じく吹出側空気
温度がT1よりも低い下限値とされるべき温度T2(例
えば0℃)まで低下した時出力が低レベルになる比較増
幅器、OF2は抵抗R7とコンデンサCとによる遅延回
路を介して比較増幅器OP1と接続して、比較増幅器O
P1の出力が低レベルになってから遅延回路の放電時定
数で決まる所定時間11(例えば10分間)後に出力が
低レベルになる比較増幅器、A1はアンドゲートで、比
較増幅器OP2.OP3の両方の出力が高レベルの時の
みトランジスタQを導通させてリレーRLを動作させる
ことにより、冷媒圧縮機駆動用の電磁クラッチMCに通
電するようになっている。
Th1 is a thermistor as a temperature detection element installed on the blowout side of the evaporator (not shown) (may be between the fins of the evaporator), and OPl is the detection output of thermistor Th1, and the blowout side air temperature is set to T1 (for example, 3 Similarly, the comparator amplifier OP2 outputs a low level when the temperature drops below T1 (℃), and the output goes to a low level when the air temperature on the outlet side drops to a temperature T2 (for example, 0℃), which should be the lower limit value lower than T1. The comparison amplifier OF2 is connected to the comparison amplifier OP1 through a delay circuit consisting of a resistor R7 and a capacitor C.
A comparator amplifier whose output becomes low level after a predetermined time 11 (for example, 10 minutes) determined by the discharge time constant of the delay circuit after the output of P1 becomes low level; Only when both outputs of OP3 are at a high level, transistor Q is made conductive to operate relay RL, thereby energizing electromagnetic clutch MC for driving the refrigerant compressor.

R5,R6はそれぞれ、比較増幅器OP1.OP2にヒ
ステリシス特性を与えるための抵抗である。
R5 and R6 are respectively comparator amplifiers OP1. This is a resistor for providing hysteresis characteristics to OP2.

なお、比較増幅器OP2の出力は、吹出側空気温度がT
2まで低下して低レベルになることにより冷媒圧縮機が
停止されてから温度が上昇して所定値T3まで上昇した
時反転して高レベルになるが、この温度T3は蒸発器に
着霜がある場合にこれを冷媒供給が無い状態で送風を継
続することにより除去し得る程度の時間が得られるよう
に設定され、これは抵抗R6の値で任意に調整可能であ
る。
Note that the output of the comparison amplifier OP2 is determined when the air temperature on the outlet side is T.
When the refrigerant compressor is stopped and the temperature rises to a predetermined value T3, it reverses and becomes a high level. It is set so that, in some cases, a sufficient amount of time can be obtained to remove this by continuing air blowing without refrigerant supply, and this can be arbitrarily adjusted by the value of the resistor R6.

Dlは抵抗R7とコンデンサCとによる遅延回路の動作
をリセットするためのダイオードであり、吹出側空気温
度がT1以下となって比較増幅器OP1の出力が低レベ
ルとなることによりコンデンサCが放電を開始してから
前記所定時間11以内に吹出側空気温度がT1より高く
なった場合にダイオードD1を通して瞬時にコンデンサ
Cを充電して遅延動作を停止させるようになっている。
Dl is a diode for resetting the operation of the delay circuit made up of resistor R7 and capacitor C, and when the air temperature on the outlet side falls below T1 and the output of comparator amplifier OP1 becomes low level, capacitor C starts discharging. If the air temperature on the outlet side becomes higher than T1 within the predetermined time 11 thereafter, the capacitor C is instantly charged through the diode D1 to stop the delay operation.

また、D2は比較増幅器OP3の低レベル出力で比較増
幅器OP2の出力を低レベルにするダイオードであり、
吹出側空気温度がT1以下になってから所定時間t1が
経過した場合に、比較増幅器OP2の出力が高レベル、
すなわち吹出側空気温度がT2より高くてもダイオード
D2を介して比較増幅器OP2の出力を低レベルにし、
冷媒圧縮機を再駆動する時の温度を吹出側空気温度がT
2まで低下した場合と同様T3に設定して除霜に必要な
十分な時間が得られるようにしている。
Further, D2 is a diode which makes the output of the comparison amplifier OP2 low level with the low level output of the comparison amplifier OP3,
When a predetermined time t1 has elapsed since the air temperature on the outlet side became lower than T1, the output of the comparator amplifier OP2 is at a high level.
In other words, even if the air temperature on the outlet side is higher than T2, the output of the comparison amplifier OP2 is set to a low level via the diode D2,
The temperature at which the refrigerant compressor is re-driven is determined by the outlet air temperature being T.
As in the case where the temperature drops to 2, the setting is set to T3 so that sufficient time necessary for defrosting can be obtained.

次に、蒸発器の吹出側空気温度一時間特性を示した第2
図をも参照して回路動作を説明する。
Next, a second graph showing the hourly characteristics of the air temperature on the outlet side of the evaporator is shown.
The circuit operation will be explained with reference to the figures.

第2図中aの領域は、吹出側空気温度が設定温度T1ま
で低下していない場合であり、この状態では比較増幅器
OP1.OP2の出力はいずれも高レベルであり、電磁
クラッチMCへの通電が維持される。
In the region a in FIG. 2, the air temperature on the outlet side has not decreased to the set temperature T1, and in this state, the comparator amplifier OP1. Both outputs of OP2 are at a high level, and energization of electromagnetic clutch MC is maintained.

第2図中すの領域は、蒸発器における熱負荷が比較的小
さく吹出側空気温度が設定温度T2まで低下する場合で
あり、比較増幅器OP2はブリッジ回路を構成している
抵抗R1と抵抗R2,R3とによって分割された電圧と
、抵抗R4、サーミスタTh、とによって分割された電
圧との比較を行ない、吹出側空気温度がT2まで低下す
ると反転端子電圧と非反転端子電圧とが等しくなって出
力が低レベルになることにより、電磁クラッチMCへの
通電が断たれて冷媒圧縮機が停止される。
The area in the middle of FIG. 2 is a case where the heat load on the evaporator is relatively small and the outlet air temperature drops to the set temperature T2. The voltage divided by R3 is compared with the voltage divided by resistor R4 and thermistor Th, and when the air temperature on the blowing side decreases to T2, the inverting terminal voltage and the non-inverting terminal voltage become equal and are output. When this becomes a low level, the power to the electromagnetic clutch MC is cut off and the refrigerant compressor is stopped.

この後、吹出側空気温度が上昇し始めてT3に達すると
比較増幅器OP2の出力は再び高レベルになって電磁ク
ラッチMCは通電状態になる。
Thereafter, when the air temperature on the outlet side begins to rise and reaches T3, the output of the comparator amplifier OP2 becomes high level again, and the electromagnetic clutch MC becomes energized.

なお、領域すに示されるような周期的な温度変化は、冷
房時間が短く蒸発器に着霜があまり生じていない場合で
あり、このような状態では吹出側空気温度がT1からT
2まで低下して再びT2まで上昇するまでの時間は前記
所定時間t1よりも十分短い。
Note that the periodic temperature changes shown in the area S occur when the cooling time is short and there is not much frost on the evaporator, and in such conditions the outlet air temperature changes from T1 to T
The time it takes for the temperature to drop to T2 and rise again to T2 is sufficiently shorter than the predetermined time t1.

しかしながら、このような制御だけでは蒸発器の熱負荷
が大きい状態で長時間運転を継続した場合の蒸発器への
着霜を完全に防止することは難しく、徐々に着霜が蓄積
し始める。
However, with such control alone, it is difficult to completely prevent frost from forming on the evaporator when the evaporator continues to operate for a long time with a large heat load, and frost gradually begins to accumulate.

着霜が蓄積し始めると、第2図中Cの領域に示すように
、蒸発器の熱交換効率が悪化して吹出側空気温度はT2
まで低下しにくくなりT2よりやや高めの状態が続くこ
とになる。
When frost begins to accumulate, the heat exchange efficiency of the evaporator deteriorates and the air temperature on the outlet side decreases to T2, as shown in area C in Figure 2.
It becomes difficult for the temperature to drop to T2, and the state continues to be slightly higher than T2.

比較増幅器OP1は、抵抗R1,R2と抵抗R3とによ
って分割された電圧と、抵抗R4とサーミスタTh1と
によって分割された電圧との比較を行ない、吹出側空気
温度がT1まで低下すると反転端子の電圧が非反転端子
の電圧と等しくなって出力が低レベルになる。
Comparison amplifier OP1 compares the voltage divided by resistors R1, R2 and resistor R3 with the voltage divided by resistor R4 and thermistor Th1, and when the air temperature on the blowing side decreases to T1, the voltage at the inverting terminal changes. becomes equal to the voltage at the non-inverting terminal, and the output becomes low level.

−力、比較増幅器OP3は抵抗R1,R2と抵抗R3と
によって分割された電圧と、コンデンサCの端子電圧と
の比較を行ない比較増幅器OP1の出力が低レベルにな
ると同時にコンデンサCが放電を開始するので非反転端
子電圧は指数関数的に降下して反転端子電圧と等しくな
った時、すなわち所定時間t1後出力が低レベルとなる
- Comparison amplifier OP3 compares the voltage divided by resistors R1, R2 and resistor R3 with the terminal voltage of capacitor C, and at the same time the output of comparator amplifier OP1 becomes low level, capacitor C starts discharging. Therefore, when the non-inverting terminal voltage drops exponentially and becomes equal to the inverting terminal voltage, that is, after a predetermined time t1, the output becomes a low level.

これによって電磁クラッチMCへの通電が断たれて冷媒
圧縮機が停止されるが、前述したようにこの時ダイオー
ドD2により比較増幅器OP2の出力も低レベルとなる
ので、冷媒圧縮機は吹出側空気温度がT3に上昇するま
で停止が継続され、この間に蒸発器表面への着霜は除去
される。
As a result, the power to the electromagnetic clutch MC is cut off and the refrigerant compressor is stopped. However, as mentioned above, at this time, the output of the comparator amplifier OP2 is also reduced to a low level due to the diode D2, so the refrigerant compressor changes the temperature of the air on the outlet side. The stoppage continues until the temperature rises to T3, and during this time the frost on the evaporator surface is removed.

なお、吹出側空気温度がT1に低下してから所定時間t
1以内に再びT1より高くなった場合には、これも前述
したようにダイオードD1によりコンデンサCが充電さ
れて放電開始前の状態に戻ると共に、比較増幅器OP1
も出力が高レベルの状態に戻り、再び吹出側空気温度が
T1に低下した時から作動を開始する。
Note that a predetermined time t has elapsed since the air temperature on the outlet side decreased to T1.
If it becomes higher than T1 again within 1, as described above, the capacitor C is charged by the diode D1 and returns to the state before the start of discharging, and the comparator amplifier OP1
When the output returns to a high level and the air temperature on the blowing side falls to T1 again, the operation starts.

以上のことから理解できるように、本発明では蒸発器あ
るいはその吹出側空気温度を検出して冷媒圧縮機をオン
・オフ制御することにより車内温度制御を行なう他、蒸
発器への着霜が蓄積し始めつつあることを吹出側空気温
度の停滞現象により検出して冷媒圧縮機を除霜に必要な
十分な時間停止させることにより、着霜を最小限にとど
めることができるものである。
As can be understood from the above, the present invention not only controls the temperature inside the vehicle by detecting the air temperature of the evaporator or its outlet side and controlling the refrigerant compressor on and off, but also prevents the accumulation of frost on the evaporator. By detecting that frost is beginning to occur based on a stagnation phenomenon in the outlet air temperature and stopping the refrigerant compressor for a sufficient period of time necessary for defrosting, frost formation can be kept to a minimum.

このことによって、設定温度T2を従来より低くした車
内温度制御が可能になって冷媒圧縮機の能力をフルに利
用することが可能となり、真夏時でも十分な冷房効果が
得られて常に快適な車内冷房を行なうことができる。
This makes it possible to control the interior temperature of the vehicle with the set temperature T2 lower than before, making it possible to fully utilize the capacity of the refrigerant compressor, and providing sufficient cooling effect even in the middle of summer, ensuring a comfortable interior at all times. Can be used for cooling.

第3図は本発明の他の実施例の回路図である。FIG. 3 is a circuit diagram of another embodiment of the present invention.

この実施例は、蒸発器の吹出側に配設したサーミスタT
h1の他に、車内に温度検出素子としてのサーミスタT
h2を配設しその出力で車内温度制御が行なえるように
したものである。
This embodiment uses a thermistor T installed on the outlet side of the evaporator.
In addition to h1, there is a thermistor T as a temperature detection element inside the car.
h2 is arranged so that the temperature inside the vehicle can be controlled by its output.

OF2は車内温度が運転者によって設定された温度T4
に低下した時出力が低レベルになる比較増幅器であり、
この温度T4は可変抵抗VRにより任意(例えば18〜
28℃)に調整することができる。
OF2 is the temperature T4 where the temperature inside the vehicle is set by the driver.
It is a comparison amplifier whose output becomes low level when the voltage drops to
This temperature T4 can be set arbitrarily by variable resistor VR (for example, 18~
28°C).

すなわち、比較増幅器OP4は、ブリッジ回路を構成し
ている抵抗R1□と抵抗R13とによって分割された電
圧と、抵抗R1□と可変抵抗VR、サーミスタTh2と
によって分割された電圧との比較を行ない、車内温度が
T4まで低下して反転端子電圧と非反転端子電圧とが等
しくなった時出力が低レベルとなって電磁クラッチMC
への通電を断つ。
That is, the comparison amplifier OP4 compares the voltage divided by the resistor R1□ and the resistor R13 forming the bridge circuit with the voltage divided by the resistor R1□, the variable resistor VR, and the thermistor Th2, When the temperature inside the vehicle drops to T4 and the inverting terminal voltage and non-inverting terminal voltage become equal, the output becomes a low level and the electromagnetic clutch MC
Cut off the power to.

このような車内温度による制御は、蒸発器における熱負
荷が比較的小さい場合であり、冷媒圧縮機の稼動率は大
きくならないので蒸発器への着霜もほとんど無い。
Such control based on the vehicle interior temperature is performed when the heat load on the evaporator is relatively small, and the operating rate of the refrigerant compressor does not increase, so there is almost no frost on the evaporator.

吹出側空気温度による制御は、前記実施例と同様であり
、蒸発器へ着霜が生じないような温度制御が行なわれる
The control based on the air temperature on the outlet side is the same as in the embodiment described above, and temperature control is performed so that frost does not form on the evaporator.

このことから明らかなように、本実施例では蒸発器の吹
出側空気温度による着霜防止制御と車内温度による車内
温度制御とが行なわれるので、前記実施例同様、蒸発器
への着霜を防止できることは勿論任意の設定温度による
快適な車内冷房を行なうことができる。
As is clear from this, in this embodiment, frost formation prevention control is performed based on the air temperature on the outlet side of the evaporator, and vehicle interior temperature control is performed using the vehicle interior temperature, so as in the previous embodiment, frost formation on the evaporator is prevented. Of course, it is possible to comfortably cool the inside of the car at any set temperature.

第4図は蒸発器あるいはその吹出側空気温度検出のみで
着霜防止制御と第1図の実施例より快適な車内温度制御
を可能にした実施例の回路図である。
FIG. 4 is a circuit diagram of an embodiment that enables frost prevention control and more comfortable vehicle interior temperature control than the embodiment of FIG.

この実施例は比較増幅器OP2の周辺回路を除いては第
1図の回路と同じであるが、比較増幅器OP2の非反転
入力端子への基準電圧を車内温度設定用の可変抵抗■R
1により変えることができるようにして、蒸発器あるい
はその吹出側空気温度の設定値T2を一定範囲内で可変
とすることにより、冷媒圧縮機をオン・オフ制御して可
変抵抗VR1で設定した温度を中心とする車内温度制御
を行なうことができる。
This embodiment is the same as the circuit shown in Fig. 1 except for the peripheral circuit of the comparator amplifier OP2, but the reference voltage to the non-inverting input terminal of the comparator amplifier OP2 is connected to a variable resistor R for setting the temperature inside the vehicle.
By making the set value T2 of the air temperature of the evaporator or its outlet side variable within a certain range, the temperature set by the variable resistor VR1 can be controlled by turning on and off the refrigerant compressor. It is possible to control the interior temperature of the vehicle.

また、可変抵抗VR1にスイッチSWを連動させて、可
変抵抗vR1により最強冷房にセットした時比較増幅器
OP2の帰還抵抗R6に直列接続した抵抗R18を短絡
するようにしている。
Further, a switch SW is linked to the variable resistor VR1, so that when the maximum cooling is set by the variable resistor vR1, the resistor R18 connected in series to the feedback resistor R6 of the comparator amplifier OP2 is short-circuited.

このようにすれば、比較増幅器OP2の正帰還が抵抗R
6゜R18を通して行なわれている時には、比較増幅器
OP2により冷媒圧縮機が停止されてから再び駆動され
るまでの時間を第1図の回路に比して短くすることがで
き、これによって車内温度の変化を小さくすることがで
きるので快適な冷房が実現できる。
In this way, the positive feedback of the comparator amplifier OP2 is connected to the resistor R
6° R18, the time from when the refrigerant compressor is stopped by the comparator amplifier OP2 to when it is driven again can be shortened compared to the circuit shown in Fig. 1, thereby reducing the temperature inside the vehicle. Comfortable cooling can be achieved because the changes can be minimized.

一方、可変抵抗VR1により最強冷房にセットした場合
には、着霜が生じ易くなるが、スイッチSWによる短絡
により比較増幅器OP2の帰還抵抗を小さくして、第1
図の実施例同様、前述の冷媒圧縮機が再1駆動されるま
での時間を長(することにより、着霜を確実に防止する
制御を行なうことができる。
On the other hand, when the strongest cooling is set using the variable resistor VR1, frost formation is likely to occur, but the feedback resistance of the comparator amplifier OP2 is reduced due to the short circuit caused by the switch SW.
As in the embodiment shown in the figure, by lengthening the time until the refrigerant compressor is driven again, control can be performed to reliably prevent frost formation.

勿論、スイッチSWの代わりに無接点スイッチを用いて
も良い。
Of course, a non-contact switch may be used instead of the switch SW.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の制御回路図、第2図は
この制御回路による蒸発器の吹出側空気温度及び車内温
度の時間変化を示した特性図、第3図、第4図はそれぞ
れ、本発明の第2、第3の実施例の制御回路図。 図中、Th1.Th2はサーミスタ、OPl、OF2゜
O20,OF2はそれぞれ、比較増幅器、RLはリレー
、MCは電磁クラッチ、A1はアンドゲート。
Fig. 1 is a control circuit diagram of the first embodiment of the present invention, Fig. 2 is a characteristic diagram showing temporal changes in the air temperature on the outlet side of the evaporator and the temperature inside the vehicle due to this control circuit, Figs. The figures are control circuit diagrams of second and third embodiments of the present invention, respectively. In the figure, Th1. Th2 is a thermistor, OPl, OF2゜O20, OF2 are comparative amplifiers, RL is a relay, MC is an electromagnetic clutch, and A1 is an AND gate.

Claims (1)

【特許請求の範囲】 1 冷媒圧縮機のオン・オフ制御により車内温度制御を
行なうカークーラ制御装置において、蒸発器あるいはそ
の吹出側空気温度を検出して、該検出温度が第1の値ま
で低下した時前記冷媒圧縮機を停止する回路と、前記第
1の値より高い第2の値以下で所定時間経過した時前記
冷媒圧縮機を停止する回路とを備えたことを特徴とする
カークーラ制御装置。 2 冷媒圧縮機のオン・オフ制御により車内温度制御を
行なうカークーラ制御装置において、蒸発器あるいはそ
の吹出側空気温度を検出して、該検出温度が第1の値ま
で低下した時前記冷媒圧縮機を停止する回路と、前記第
1の値より高い第2の値以下で所定時間経過した時前記
冷媒圧縮機を停止する回路と、車内温度を検出して、該
車内温度が所定値まで低下した時前記冷媒圧縮機を停止
する回路を備えたことを特徴とするカークーラ制御装置
[Scope of Claims] 1. In a car cooler control device that controls the temperature inside a car by on/off control of a refrigerant compressor, the air temperature of an evaporator or its outlet side is detected, and the detected temperature has decreased to a first value. A car cooler control device comprising: a circuit that stops the refrigerant compressor when the refrigerant compressor reaches a second value that is higher than the first value, and a circuit that stops the refrigerant compressor when a predetermined time elapses at or below a second value higher than the first value. 2. In a car cooler control device that controls the temperature inside a car by on/off control of a refrigerant compressor, the air temperature of the evaporator or its outlet side is detected, and when the detected temperature drops to a first value, the refrigerant compressor is turned on. a circuit for stopping the refrigerant compressor when a predetermined period of time has elapsed at or below a second value higher than the first value; and a circuit for detecting the temperature inside the car and when the temperature inside the car has decreased to a predetermined value. A car cooler control device comprising a circuit for stopping the refrigerant compressor.
JP54118790A 1979-09-18 1979-09-18 car cooler control device Expired JPS5827126B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP54118790A JPS5827126B2 (en) 1979-09-18 1979-09-18 car cooler control device
US06/188,552 US4326386A (en) 1979-09-18 1980-09-18 Temperature control circuit for automobile air-conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54118790A JPS5827126B2 (en) 1979-09-18 1979-09-18 car cooler control device

Publications (2)

Publication Number Publication Date
JPS5643020A JPS5643020A (en) 1981-04-21
JPS5827126B2 true JPS5827126B2 (en) 1983-06-07

Family

ID=14745151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54118790A Expired JPS5827126B2 (en) 1979-09-18 1979-09-18 car cooler control device

Country Status (1)

Country Link
JP (1) JPS5827126B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474672U (en) * 1990-11-14 1992-06-30

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194115A (en) * 1981-05-26 1982-11-29 Nissan Motor Co Ltd Automotive air conditioner
US7073394B2 (en) * 2004-04-05 2006-07-11 Rosemount Inc. Scalable averaging insertion vortex flow meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474672U (en) * 1990-11-14 1992-06-30

Also Published As

Publication number Publication date
JPS5643020A (en) 1981-04-21

Similar Documents

Publication Publication Date Title
US4003729A (en) Air conditioning system having improved dehumidification capabilities
US4251999A (en) Defrosting control system
JPS62116881A (en) Refrigerator-temperature and defrostation controller
JPS6225522B2 (en)
US3127754A (en) Refrigeration control apparatus with time delay means
JPS5827126B2 (en) car cooler control device
JPS5824285B2 (en) Car cooler control device
US2572582A (en) Safety control for liquid-cooled devices
JPS6229909Y2 (en)
JPS592812B2 (en) temperature control device
JPS6113544B2 (en)
JPS6331702B2 (en)
JPH08210750A (en) Refrigerator
US3118603A (en) Automotive heating systems
JPS6129012Y2 (en)
JPS5851049Y2 (en) Temperature control device for vehicle cooling system
JPH0480318B2 (en)
JPS58148374A (en) Preventive device for freezing of evaporator
JPH0330779Y2 (en)
JPS637531Y2 (en)
JPH0113989Y2 (en)
JPS5953225A (en) Car air-conditioner
JPS5843742Y2 (en) Refrigerant flow control device
JPS6370059A (en) Refrigerator
US2256503A (en) Thermostatic control