JPS6370059A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS6370059A
JPS6370059A JP21389286A JP21389286A JPS6370059A JP S6370059 A JPS6370059 A JP S6370059A JP 21389286 A JP21389286 A JP 21389286A JP 21389286 A JP21389286 A JP 21389286A JP S6370059 A JPS6370059 A JP S6370059A
Authority
JP
Japan
Prior art keywords
temperature
compressor
set temperature
refrigerator
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21389286A
Other languages
Japanese (ja)
Inventor
亨 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21389286A priority Critical patent/JPS6370059A/en
Publication of JPS6370059A publication Critical patent/JPS6370059A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷蔵庫に係り、特に急冷運転からの復帰およ
び霜とり運転からの復帰後の庫内温度制御に好適な冷蔵
庫に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refrigerator, and particularly to a refrigerator suitable for controlling the internal temperature after returning from a rapid cooling operation and after returning from a defrosting operation.

〔従来の技術〕[Conventional technology]

冷凍室および冷蔵室内を急速に冷却する装置を備えた従
来の冷蔵庫としては、例えば特開昭55−43303号
公報記載のように、庫外に設けられた急冷冷却スタート
スイッチを押すと、冷凍室および冷蔵室の温度調整ダイ
ヤル等を回わさずに設定温度が下がり、しかも急冷時間
も任意に変えられ、また、冷却したい飲料水、食品等が
適度に冷却された場合、または一定時間が経過すると、
自動的に通常運転状態に復帰するようにしたものが知ら
れている。
In a conventional refrigerator equipped with a device that rapidly cools the freezer compartment and the refrigerator compartment, for example, as described in Japanese Patent Application Laid-Open No. 55-43303, when a quick cooling start switch provided outside the refrigerator is pressed, the freezer compartment cools down. The set temperature can be lowered without turning the temperature adjustment dial of the refrigerator compartment, and the quenching time can also be changed arbitrarily, and when the drinking water, food, etc. that you want to cool is properly cooled, or when a certain period of time has passed. Then,
A device that automatically returns to a normal operating state is known.

また、実公昭61−1328号公報記載によれば、急冷
中はその終了を待って霜取りに入り、霜取り中はその終
了を待って急冷運転を行い、かつ、急冷運転終了後は自
動的に急冷運転前の設定温度による自動運転に復帰する
冷蔵庫の温度制御装置が開示されている。      
     −〔発明が解決しようとする問題点〕 上記従来の冷蔵庫において、冷却器からファン等で冷凍
室および冷蔵室に冷気を供給する方式の冷蔵庫において
、冷凍室の急冷運転を行うと、急冷運転から通常運転へ
の復帰時(以下単に急冷復帰時という)に、冷凍室温度
は充分冷却された状態であり、設定温度よりも低い温度
となる。
Furthermore, according to the description in Japanese Utility Model Publication No. 61-1328, during quenching, defrosting is started after waiting for the end of quenching, and during defrosting, quenching operation is performed after waiting for the end of quenching, and after quenching is finished, quenching is automatically performed. A temperature control device for a refrigerator is disclosed that returns to automatic operation using a preset temperature before operation.
- [Problems to be Solved by the Invention] In the conventional refrigerator described above, in which cold air is supplied from the cooler to the freezer compartment and the refrigerator compartment using a fan, etc., when the freezing compartment is operated rapidly, the rapid cooling operation stops. When returning to normal operation (hereinafter simply referred to as rapid cooling return), the temperature of the freezer compartment is in a sufficiently cooled state and is lower than the set temperature.

このため、急冷復帰時、圧縮機、ファンは停止となり、
冷凍室温度が圧縮機オン温度まで上昇しないと圧縮機、
ファンは運転せず、また、この停止時間は通常運転時の
停止時間より長く (冷蔵庫の周囲温度が低いとさらに
長くなる)冷蔵室への冷気供給が長い時間な(なり冷蔵
室温度が上昇してしまうことについて配慮されていなか
った。
Therefore, when returning to rapid cooling, the compressor and fan will stop.
If the freezer compartment temperature does not rise to the compressor on temperature, the compressor
The fan does not operate, and this stop time is longer than the stop time during normal operation (even longer if the ambient temperature of the refrigerator is low). No consideration was given to the possibility that the

また、通常運転中、霜とり運転が開始されると冷却器の
温度が上昇し、冷凍室温度も上昇し、さらに庫内食品温
度も上昇する。霜とり運転が終了し冷却運転に入ると上
記温度は下がり始めるが、通常の設定温度で圧縮機の断
続を行うと、温度検出器のヒートマスが食品のヒートマ
スより小さいため、容量の大きい食品等が充分冷却され
ない状態で、圧縮機が断続してしまうことについて配慮
 ′されていなかった。
Further, during normal operation, when the defrosting operation is started, the temperature of the cooler increases, the temperature of the freezer compartment also increases, and the temperature of the food in the refrigerator also increases. When the defrosting operation is finished and the cooling operation starts, the temperature mentioned above starts to drop, but if the compressor is turned on and off at the normal set temperature, the heat mass of the temperature sensor is smaller than the heat mass of the food, so large-capacity foods, etc. No consideration was given to the possibility that the compressor would shut off without sufficient cooling.

本発明は、前述の従来技術の問題点を解決するためにな
されたもので、急冷温度復帰時の冷凍室冷蔵室温度保障
、すなわち庫内温度上昇の防止、ならびに、霜取り運転
復帰後の庫内温度上昇に対する保護、すなわち霜取り運
転で温度上昇した庫内食品をすばやく適冷温度に戻すこ
とのできる冷蔵庫を提供することを、その目的としてい
る。
The present invention has been made in order to solve the problems of the prior art mentioned above, and it is possible to guarantee the temperature of the freezer compartment and the refrigerator compartment when the rapid cooling temperature returns, that is, to prevent the temperature inside the refrigerator from rising, and to The purpose is to provide a refrigerator that can protect against temperature rises, that is, quickly return food in the refrigerator whose temperature has risen during defrosting operation to an appropriate temperature.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明に係る冷蔵庫の構成
は、圧縮機のオフ温度として第1の設定温度、圧縮機の
オン温度として第2の設定温度をそれぞれ設定し、庫内
温度検出器を設けて、その検出出力信号に従って、第1
の設定温度と第2の設定温度との温度範囲に庫内温度を
制御するように圧縮機が断続運転するとともに、急冷運
転スイッチを入力することにより一定時間連続運転を行
ったのち通常の前記断続運転に復帰するように制御回路
を備えてなる冷蔵庫において、前記第2の設定温度より
低い第3の設定温度を設定し、急冷運転終了後の圧縮機
オンオフの一断続のみ圧縮機のオンを前記第3の設定温
度で制御し、その後は第1の設定温度と第2の設定温度
との温度範囲で通常の断続運転を行うように制御回路を
構成したものである。
In order to achieve the above object, the configuration of the refrigerator according to the present invention is such that a first set temperature is set as the off temperature of the compressor, a second set temperature is set as the on temperature of the compressor, and an internal temperature detector is set. is provided, and according to the detection output signal, the first
The compressor operates intermittently to control the internal temperature within the temperature range between the preset temperature and the second preset temperature, and after continuous operation for a certain period of time by inputting the rapid cooling operation switch, the normal intermittent operation is resumed. In a refrigerator equipped with a control circuit so as to return to operation, a third set temperature lower than the second set temperature is set, and the compressor is turned on only for one intermittent period of turning on and off the compressor after the end of the rapid cooling operation. The control circuit is configured to perform control at the third set temperature and thereafter perform normal intermittent operation within the temperature range of the first set temperature and the second set temperature.

なお付記すると、第1の設定温度より低い第4の設定温
度を設定し、霜取り運転終了後の圧縮機オンオフの一断
続のみ圧縮機のオフを前記第4の設定温度で制御し、そ
の後は第1の設定温度と第2の設定温度との温度範囲で
通常の断続運恢を行うように制御回路を構成したもので
ある。
It should be noted that a fourth set temperature lower than the first set temperature is set, and the compressor is controlled to be turned off at the fourth set temperature only during the period when the compressor is turned on and off after the defrosting operation is completed. The control circuit is configured to perform normal intermittent operation in the temperature range between the first set temperature and the second set temperature.

〔作用〕[Effect]

上記技術手段がどのような働きをしているかを次に述べ
る。
The following describes how the above technical means work.

急冷運転復帰時、圧縮機が長時間停止する状態は急冷運
転で冷凍室内が過冷却されるため、通常の設定温度(圧
縮機オン温度)まで戻るのに時間がかかるためであり、
この間はファンも停止しており、冷蔵室の冷却は冷凍室
からの熱伝導のみとなり冷蔵室温度が上昇する訳で、こ
の停止時間は急冷運転復帰時のみ圧縮機がオンする設定
温度を下げれば短かくすることができ、冷蔵室へ冷気を
供給することができる。
When returning to rapid cooling operation, the compressor is stopped for a long time because the freezer compartment is supercooled during rapid cooling operation, and it takes time to return to the normal set temperature (compressor on temperature).
During this time, the fan is also stopped, and the only cooling in the refrigerator compartment is through heat conduction from the freezer compartment, causing the temperature in the refrigerator compartment to rise. It can be shortened and can supply cold air to the refrigerator compartment.

また霜取り運転復帰時は、圧縮機がオフする設定温度を
さらに下げることにより霜取り運転時に上昇した庫内食
品をすばやく適冷温度に戻すことができる。
Furthermore, when the defrosting operation is resumed, by further lowering the set temperature at which the compressor is turned off, the food in the refrigerator, which has risen during the defrosting operation, can be quickly returned to an appropriate cooling temperature.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図ないし第5図を参照し
て説明する。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 1 to 5.

ここに第1図は、本発明の一実施例に係る冷蔵庫の温度
制御回路図、第2図は、第1図の温度検出器からの出力
信号と温度との関係を示す線図、第3図は、通常の断続
運転時の冷凍室温度の温度線図、第4図は、急冷運転復
帰時の冷凍室温度の温度線図、第5図は、霜取り運転復
帰時の冷凍室温度の温度線図である。
Here, FIG. 1 is a temperature control circuit diagram of a refrigerator according to an embodiment of the present invention, FIG. 2 is a diagram showing the relationship between the output signal from the temperature detector of FIG. 1 and temperature, and FIG. The figure is a temperature diagram of the freezer compartment temperature during normal intermittent operation, Figure 4 is the temperature diagram of the freezer compartment temperature when returning to rapid cooling operation, and Figure 5 is the temperature diagram of the freezer compartment temperature when returning to defrosting operation. It is a line diagram.

第1図において、1は増幅器、2は抵抗、3は冷凍室に
設置された温度検出器である。4.5.6.7は抵抗で
、以下に説明する各設定温度はこれらの抵抗により設定
される。8は、冷却器に設置された温度検出器等からな
る霜取り復帰用温度検出回路、9は、増幅器1からの出
力信号を処理し、圧縮機を制御するとともに、急冷運転
の時間のカウントおよび霜とり運転制御等を行なわせる
マイクロコンピュタである。10は、急冷運転入切用の
スイッチである。11,12は、バッファ回路、13は
、霜とリヒータをオン、オフさせる交流制御素子、14
は霜取りヒータ、15は、圧縮機をオン、オフさせる交
流制御素子、16は圧縮機、17は交流電源である。
In FIG. 1, 1 is an amplifier, 2 is a resistor, and 3 is a temperature detector installed in the freezer compartment. 4.5.6.7 are resistors, and each set temperature described below is set by these resistors. Reference numeral 8 indicates a temperature detection circuit for defrosting recovery, which is comprised of a temperature detector installed in the cooler, etc.; 9 indicates a temperature detection circuit for defrost recovery, which processes the output signal from amplifier 1, controls the compressor, counts the time of rapid cooling operation, and This is a microcomputer that controls the operation of the cage. 10 is a switch for turning on/off the rapid cooling operation. 11 and 12 are buffer circuits; 13 is an AC control element that turns on and off the frost and reheater; 14
15 is an AC control element that turns on and off the compressor; 16 is a compressor; and 17 is an AC power source.

増幅器1の出力は、マイクロコンピュータ9(以下マイ
コンという)に入力され、増幅器1のマイナスの入力端
子は、抵抗2と温度検出器3の中点に接続されている。
The output of the amplifier 1 is input to a microcomputer 9 (hereinafter referred to as microcomputer), and the negative input terminal of the amplifier 1 is connected to the midpoint between the resistor 2 and the temperature detector 3.

また、増幅器1のプラスの入力端子は、抵抗4.5の中
点に接続され、さらに抵抗6.7を介してマイコン9の
出力にそれぞれ接続されている。
Further, the positive input terminal of the amplifier 1 is connected to the midpoint of the resistor 4.5, and further connected to the output of the microcomputer 9 via the resistor 6.7.

抵抗2の一端は抵抗4の一端と接続され、かつ、マイコ
ン9の電源端子(V OC)に接続されている。また、
温度検出器3の一端は抵抗5の一端と接続され、かつ、
マイコン9の電源端子(G N D)に接続されている
。そして、温度検出回路の出力はマイコン9の入力に接
続されている。
One end of the resistor 2 is connected to one end of the resistor 4, and is also connected to the power supply terminal (VOC) of the microcomputer 9. Also,
One end of the temperature detector 3 is connected to one end of the resistor 5, and
It is connected to the power terminal (GND) of the microcomputer 9. The output of the temperature detection circuit is connected to the input of the microcomputer 9.

急冷運転大切用スイッチ10は、マイコン9の入力端子
と電源端子(G N D)に接続されている。
The rapid cooling operation important switch 10 is connected to the input terminal of the microcomputer 9 and the power terminal (GND).

バッファ回路11の入力はマイコン9の出力に、バッフ
ァ回路11の出力は交流制御素子15のゲート端子に接
続されている。また、バッファ回路120入力はマイコ
ン9の出力に、バッファ回路12の出力は交流制御素子
13のゲート端子に接続されている。交流電源17の一
端は圧縮機16と交流制御素子15を介して交流電源1
7の他端に戻るとともに、霜取りヒータ14と交流制御
素子13を介して戻るように接続されている。
The input of the buffer circuit 11 is connected to the output of the microcomputer 9, and the output of the buffer circuit 11 is connected to the gate terminal of the AC control element 15. Further, the input of the buffer circuit 120 is connected to the output of the microcomputer 9, and the output of the buffer circuit 12 is connected to the gate terminal of the AC control element 13. One end of the AC power source 17 is connected to the AC power source 1 via the compressor 16 and the AC control element 15.
7 and is connected to the defrost heater 14 and back via the AC control element 13 .

次に、このような構成の制御回路をもつ冷蔵庫の温度制
御の作用を説明する。以下の説明に用いる第2図は、横
軸に冷凍室温度(T℃)、縦軸に増幅器1の出力(v)
をとって、その出力信号のレベル変化を示している。ま
た、以下の説明に用いる第4図ないし第5図は、いずれ
も横軸に時間t、縦軸に冷凍室温度T℃をとり、冷凍室
温度変化を実線で示している。一点鎖線は設定温度のレ
ベルを示している。
Next, the operation of temperature control in a refrigerator having a control circuit having such a configuration will be explained. In Fig. 2 used for the following explanation, the horizontal axis is the freezing room temperature (T°C), and the vertical axis is the output of amplifier 1 (v).
shows the level change of the output signal. In addition, in each of FIGS. 4 and 5 used in the following explanation, time t is plotted on the horizontal axis, and freezer compartment temperature T° C. is plotted on the vertical axis, and changes in the freezer compartment temperature are shown by solid lines. The one-dot chain line indicates the level of the set temperature.

第9図に示す通常の断続運転時において、冷凍室温度が
高いと増幅器1の出力は゛H″レベルとなり、マイコン
9からバッファ回路11の入力に”H″レベル入力され
、交流制御素子15がオンし、圧縮機16が運転状態と
なる。
During the normal intermittent operation shown in FIG. 9, when the temperature of the freezer compartment is high, the output of the amplifier 1 becomes "H" level, the "H" level is input from the microcomputer 9 to the input of the buffer circuit 11, and the AC control element 15 is turned on. Then, the compressor 16 becomes operational.

圧縮機16が運転しているため冷凍室が冷却され、温度
検出器3が検出する冷凍室温度が低(なると増幅器1の
マイナス入力端子電圧が除々に上昇し、抵抗4.5で決
まるプラス入力端子電圧よりも高くなると増幅器1の出
力が“14″レベルから“L″レベルなり、交流制御素
子15がオフし、第3図に示す第1の設定温度Bで圧縮
機16が停止する。
Since the compressor 16 is operating, the freezer compartment is cooled, and the freezer compartment temperature detected by the temperature sensor 3 is low (then the voltage at the negative input terminal of the amplifier 1 gradually increases, and the voltage at the positive input terminal determined by the resistor 4.5) increases. When the voltage becomes higher than the terminal voltage, the output of the amplifier 1 changes from the "14" level to the "L" level, the AC control element 15 turns off, and the compressor 16 stops at the first set temperature B shown in FIG.

これと同時に、抵抗6の一端が接続されるマイコン9の
出力が“L″レベル通常はフローティングとなっている
。)になり、増幅器1のプラス入力端子電圧は、抵抗5
.6が並列接続になるため低下する。
At the same time, the output of the microcomputer 9 to which one end of the resistor 6 is connected is set to "L" level, which is normally floating. ), and the positive input terminal voltage of amplifier 1 is
.. 6 is connected in parallel, so it decreases.

そこで、圧縮機16が停止しているため冷凍室温度が上
昇すると増幅器1のマイナス入力端子電圧が徐々に低下
し、抵抗4.5.6で決まるプラス入力端子電圧よりも
低くなると再び増幅器1の出力が“H″レベルなり(第
2図B点実線矢印参照)、バッファ回路11の入力が“
L″レベルら“H″レベルなり交流制御素子15がオン
し、第3図に示す第2の設定温度Fで圧縮機16が運転
状態となる。同時に抵抗6の一端が接続されているマイ
コン9の出力は“Lルベルからフローティングの状態と
なるため、増幅器1のプラス入力端子電圧は抵抗4.5
で決まり、また上昇する。以下これを繰返し庫内を一定
温度に制御する。
Therefore, since the compressor 16 is stopped, when the freezer compartment temperature rises, the negative input terminal voltage of the amplifier 1 gradually decreases, and when it becomes lower than the positive input terminal voltage determined by the resistor 4.5.6, the voltage of the amplifier 1 increases again. When the output becomes "H" level (see solid line arrow at point B in Figure 2), the input of the buffer circuit 11 becomes "H" level.
When the AC control element 15 goes from L'' level to H level, the AC control element 15 turns on, and the compressor 16 becomes operational at the second set temperature F shown in FIG. Since the output of is in a floating state from the "L level", the positive input terminal voltage of amplifier 1 is connected to the resistor 4.5.
It is determined by , and it rises again. Thereafter, this process is repeated to control the inside temperature to a constant temperature.

このような通常の断続運転中に急冷運転大切用スイッチ
10が押されると、マイコン9からバッファ回路11の
入力に°H″レベルが入力され、圧縮機16が強制的に
連続運転となり、第4に示す急冷運転状態となる。
When the rapid cooling operation important switch 10 is pressed during such normal intermittent operation, the microcomputer 9 inputs the °H'' level to the input of the buffer circuit 11, forcing the compressor 16 to operate continuously, and the fourth The rapid cooling operation state shown in is reached.

急冷運転時間は、マイコン9のカウンタで一定時間カウ
ントし、自動的に通常の断続運転に復帰する。この急冷
運転復帰時は、冷凍室温度が充分低いため増幅器1の出
力は“L″レベルなり圧縮機16は停止する。同時に抵
抗7の一端が接続されているマイコン9の出力が“I)
”レベルとなり(通常はフローティング)、増幅器1の
プラス入力端子は抵抗4.7が並列、抵抗5.6が並列
となり、抵抗7の値を小さく設定しであるため、端子電
圧は、通常の圧縮機16の停止時より高くなる。このた
め、増幅器1のマイナス入力端子電圧が低下してきたと
き、通常の停止時より早く増幅器1の出力は“L″レベ
ルら”1(″レベルとなり(第2図C点破線矢印参照)
、バッファ回路11の入力カ″″L″レベルから“H”
レベルトナリ、第4図に示す第3の設定温度Jで圧縮機
16が運転を開始する。同時に、抵抗6.7の一端が接
続されたマイコン9のそれぞれの出力は“L″レベルら
フローティングとなり、増幅器1のプラス入力端子電圧
は抵抗4.5で決まる通常の第1の設定温度Eとなる。
The quenching operation time is counted by a counter of the microcomputer 9 for a certain period of time, and the normal intermittent operation is automatically resumed. At the time of returning to the rapid cooling operation, the temperature of the freezer compartment is sufficiently low so that the output of the amplifier 1 is at the "L" level and the compressor 16 is stopped. At the same time, the output of the microcomputer 9 to which one end of the resistor 7 is connected is “I”
” level (normally floating), and the positive input terminal of amplifier 1 is connected with resistor 4.7 in parallel and resistor 5.6 in parallel, and the value of resistor 7 is set small, so the terminal voltage is equal to the normal compression voltage. Therefore, when the negative input terminal voltage of the amplifier 1 decreases, the output of the amplifier 1 goes from the "L" level to the "1" level (second level) earlier than when the amplifier 1 is stopped. (See dotted line arrow in figure C)
, the input voltage of the buffer circuit 11 goes from “L” level to “H”
The compressor 16 starts operating at the third set temperature J shown in FIG. 4. At the same time, each output of the microcomputer 9 to which one end of the resistor 6.7 is connected becomes floating from the "L" level, and the positive input terminal voltage of the amplifier 1 becomes equal to the normal first set temperature E determined by the resistor 4.5. Become.

このように、急冷運転復帰時の圧縮機オンオフの一断続
のみ圧縮機16がオンする温度は、通常の第2の設定温
度Fより低い第3の設定温度Jで行われ、その後は、第
1の設定温度Eと第2の設定温度Fとの温度範囲で通常
の断続運転が行われる。
In this way, the temperature at which the compressor 16 is turned on only for one intermittent period of compressor on/off when returning to rapid cooling operation is set at the third set temperature J, which is lower than the normal second set temperature F, and thereafter Normal intermittent operation is performed in a temperature range between the set temperature E and the second set temperature F.

断続運転が続くと冷却2羽に着霜する。そこで、圧縮機
のオン時間積算等で制御されて霜取り運転が行われる。
If intermittent operation continues, frost will form on the two cooling wings. Therefore, defrosting operation is performed under control such as by integrating the on-time of the compressor.

断続運転中に霜取り運転の出力信号がマイコン9から出
力されると、バッファ回路12の入力が”H″レベルバ
ッファ回路11の入力が°L″レベルとなり圧縮機16
が停止し、霜取りヒータ14が通電され第5図に示すよ
うに霜取り運転に入る。霜取り運転から通常の断続運転
への復帰(以下霜取り運転復帰という)は、霜取り復帰
用温度検出回路8の信号により復帰する。温度検出器8
からの復帰信号が入力されると、バッファ回路12の入
力はマイコン9により゛H#レベルから“L″レベルな
り、霜取りヒータ14はオフとなり霜取り運転が終了す
る。
When the output signal for defrosting operation is output from the microcomputer 9 during intermittent operation, the input of the buffer circuit 12 becomes "H" level, and the input of the buffer circuit 11 becomes °L" level, causing the compressor 16
stops, the defrosting heater 14 is energized, and defrosting operation begins as shown in FIG. Return from defrosting operation to normal intermittent operation (hereinafter referred to as defrosting operation return) is performed by a signal from defrosting return temperature detection circuit 8. Temperature detector 8
When the return signal is inputted, the microcomputer 9 changes the input of the buffer circuit 12 from the "H#" level to the "L" level, the defrosting heater 14 is turned off, and the defrosting operation is completed.

その後、マイコン9からの出力によりバッファ回路11
の入力が“14″レベルとなり圧縮機16が運転を開始
し、冷却運転を始める。これと同時に、抵抗7の一端が
接続されているマイコン9の出力が”l(″レベルとな
り、増幅器1のプラス入力端子電圧は抵抗4.7が並列
となり、抵抗5がそれに直列に接続されるため通常の第
1の設定温度時の電位よりも高くなる。また、増幅器1
のマイナス入力端子電圧は冷却状態にあるため除々に上
昇し、抵抗4.5.7で決まるプラス入力端子電圧まで
上昇すると増幅器1の出力は“トI″レベルから”L″
レベルなり(第2図り点破線矢印参照)、第5図に示す
第4の設定温度にで圧縮機16がオフとなる。すなわち
、霜取り運転終了後の圧縮機オンオフの一断続のみ圧縮
機16のオフを第4の設定温度にで制御し、その後は第
1の設定温度Eと第2の設定温度Fとの温度範囲で通常
の断続運転が行われる。
After that, the output from the microcomputer 9 causes the buffer circuit 11 to
The input becomes "14" level, the compressor 16 starts operating, and starts cooling operation. At the same time, the output of the microcomputer 9 to which one end of the resistor 7 is connected becomes "L" level, and the positive input terminal voltage of the amplifier 1 is connected to the resistor 4.7 in parallel, and the resistor 5 is connected in series to it. Therefore, the potential becomes higher than the potential at the normal first set temperature.
Since the negative input terminal voltage of the amplifier 1 is in the cooling state, it gradually increases, and when it rises to the positive input terminal voltage determined by the resistor 4.5.7, the output of the amplifier 1 changes from the "I" level to "L".
When the temperature reaches the fourth set temperature shown in FIG. 5, the compressor 16 is turned off. That is, the compressor 16 is controlled to be turned off at the fourth set temperature only during one intermittent turn on and off of the compressor after the end of the defrosting operation, and thereafter it is controlled within the temperature range between the first set temperature E and the second set temperature F. Normal intermittent operation is performed.

このように本実施例によれば、急冷運転が行われたのち
復帰に当って、第2の設定温度F(圧縮機オン温度)よ
り低い第3の設定温度Jを設け、圧縮機16を制御する
ことにより、圧縮機16の長時間停止が防止でき、冷蔵
庫の庫内温度上昇が防止できる。
As described above, according to the present embodiment, upon recovery after rapid cooling operation is performed, the third set temperature J lower than the second set temperature F (compressor ON temperature) is provided to control the compressor 16. By doing so, the compressor 16 can be prevented from being stopped for a long time, and the temperature inside the refrigerator can be prevented from rising.

また、霜取り運転後においては、第1の設定温度E(圧
縮機オフ温度)より低い第4の設定温度Kを設け、圧縮
機16を制御することにより、霜取り運転で温度上昇し
た庫内食品をすばやく適冷温度に戻すことのできる。
In addition, after the defrosting operation, a fourth set temperature K lower than the first set temperature E (compressor off temperature) is provided and the compressor 16 is controlled to remove the food in the refrigerator whose temperature has risen during the defrosting operation. It can quickly return to the appropriate temperature.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、急冷温度復帰時の
冷凍室、冷蔵室温度保障、すなわち庫内温度上昇の防止
、ならびに、霜取り運転復帰後の。
As described above, according to the present invention, the temperatures of the freezer and refrigerator compartments are guaranteed when the rapid cooling temperature returns, that is, the temperature inside the refrigerator is prevented from rising, and after the defrosting operation is resumed.

庫内温度上昇に対する保護、すなわち霜取り運転で温度
上昇した庫内食品をすばやく適冷温度に戻すことの可能
な冷蔵庫を提供することができる。
It is possible to provide a refrigerator that can protect against an increase in temperature inside the refrigerator, that is, can quickly return food inside the refrigerator whose temperature has risen during defrosting operation to an appropriate cool temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る冷蔵庫の温度制御回
路図、第2図は、第1図の温度検出器からの出力信号と
温度との関係を示す線図、第3図は、通常の断続運転時
の冷凍室温度の温度線図、第4図は、急冷運転復帰時の
冷凍室温度の温度線図、第5図は、霜取り運転復帰時の
冷凍室温度の温度線図である。 3・・・温度検出器、8・・・霜取り復帰用温度検出回
路、9・・・マイコン、10・・・急冷運転大切用スイ
ッチ、16・・・圧縮機、B・・・第1の設定温度、F
・・・第2の設定温度、J・・・第3の設定温度、K・
・・第4の設定温度。 7、−7・
FIG. 1 is a temperature control circuit diagram of a refrigerator according to an embodiment of the present invention, FIG. 2 is a diagram showing the relationship between the output signal from the temperature detector of FIG. 1 and temperature, and FIG. , Figure 4 is a temperature diagram of the freezer compartment temperature during normal intermittent operation, Figure 4 is a temperature diagram of the freezer compartment temperature when returning to rapid cooling operation, and Figure 5 is a temperature diagram of the freezer compartment temperature when returning to defrosting operation. It is. 3... Temperature detector, 8... Temperature detection circuit for defrosting recovery, 9... Microcomputer, 10... Rapid cooling operation important switch, 16... Compressor, B... First setting temperature, F
...Second set temperature, J...Third set temperature, K.
...Fourth set temperature. 7, -7・

Claims (1)

【特許請求の範囲】 1、圧縮機のオフ温度として第1の設定温度、圧縮機の
オン温度として第2の設定温度をそれぞれ設定し、庫内
温度検出器を設けて、その検出出力信号に従って、第1
の設定温度と第2の設定温度との温度範囲に庫内温度を
制御するように圧縮機が断続運転するとともに、急速運
転スイッチを入力することにより一定時間連続運転を行
ったのち通常の前記断続運転に復帰するように制御回路
を備えてなる冷蔵庫において、前記第2の設定温度より
低い第3の設定温度を設定し、急冷運転終了後の圧縮機
オン・オフの一断続のみ圧縮機のオンを前記第3の設定
温度で制御し、その後は第1の設定温度と第2の設定温
度との温度範囲で通常の断続運転を行うように制御回路
を構成したことを特徴とする冷蔵庫。 2、特許請求の範囲第1項記載のものにおいて、第1の
設定温度より低い第4の設定温度を設定し、霜取り運転
終了後の圧縮機オンオフの一断続のみ圧縮機のオフを前
記第4の設定温度で制御し、その後は第1の設定温度と
の温度範囲で通常の断続運転を行うように制御回路を構
成したものである冷蔵庫。
[Claims] 1. A first set temperature is set as the off-temperature of the compressor, a second set temperature is set as the on-temperature of the compressor, and an internal temperature detector is provided, and according to the detected output signal. , 1st
The compressor operates intermittently to control the internal temperature within the temperature range between the preset temperature and the second preset temperature, and after continuous operation for a certain period of time by inputting the rapid operation switch, the compressor resumes normal intermittent operation. In a refrigerator equipped with a control circuit so as to return to operation, a third set temperature lower than the second set temperature is set, and the compressor is only turned on and off once after the end of the rapid cooling operation. The refrigerator is characterized in that the control circuit is configured to control the temperature at the third set temperature, and thereafter perform normal intermittent operation in the temperature range between the first set temperature and the second set temperature. 2. In the device described in claim 1, a fourth set temperature lower than the first set temperature is set, and the compressor is turned off only during one intermittent turn on and off of the compressor after the end of the defrosting operation. A refrigerator in which a control circuit is configured to control the temperature at a set temperature, and thereafter perform normal intermittent operation within a temperature range from the first set temperature.
JP21389286A 1986-09-12 1986-09-12 Refrigerator Pending JPS6370059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21389286A JPS6370059A (en) 1986-09-12 1986-09-12 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21389286A JPS6370059A (en) 1986-09-12 1986-09-12 Refrigerator

Publications (1)

Publication Number Publication Date
JPS6370059A true JPS6370059A (en) 1988-03-30

Family

ID=16646741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21389286A Pending JPS6370059A (en) 1986-09-12 1986-09-12 Refrigerator

Country Status (1)

Country Link
JP (1) JPS6370059A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042133A (en) * 2010-08-19 2012-03-01 Toshiba Corp Refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042133A (en) * 2010-08-19 2012-03-01 Toshiba Corp Refrigerator

Similar Documents

Publication Publication Date Title
JPH06213548A (en) Refrigerator
US3474638A (en) Electronic refrigeration system defrost control
JPS6370059A (en) Refrigerator
US3436929A (en) Refrigeration defrost control responsive to operation of compartment air circulating fan
JPS5931662B2 (en) Defrost control device for cooling equipment
JPH0712862Y2 (en) Refrigeration showcase controller
JP2644852B2 (en) Defrost control device for refrigerators, etc.
JPH0415473A (en) Defrosting device of refrigerator
KR890007134Y1 (en) Control circuit for a refrigerator
JPH0480318B2 (en)
KR0158010B1 (en) Defrosting method of a refrigerator
JPH03225171A (en) Operation control device for refrigerator
JPS6089663A (en) Rapid refrigerator for refrigerator
JPS6082768A (en) Refrigerator with rapid refrigerator
JPS589756Y2 (en) Cooler defrosting heater heat adjustment device
JPS6091172A (en) Rapid refrigerator for refrigerator
JPS6259355A (en) Refrigerator
JPS589351B2 (en) Reiki Yakukino Chiyaku Kenchi Cairo
JPH0128308B2 (en)
JPS5878077A (en) Control of temperature of freezing refrigerator
JPS63131973A (en) Box temperature controller for refrigerator
JPH0151753B2 (en)
JPH0694978B2 (en) refrigerator
JPS59195079A (en) Refrigerator
JPS5913876A (en) Defrosting controller