JPS5826218A - Measuring method for quantity of intake air for electronically controlled engine - Google Patents

Measuring method for quantity of intake air for electronically controlled engine

Info

Publication number
JPS5826218A
JPS5826218A JP12506681A JP12506681A JPS5826218A JP S5826218 A JPS5826218 A JP S5826218A JP 12506681 A JP12506681 A JP 12506681A JP 12506681 A JP12506681 A JP 12506681A JP S5826218 A JPS5826218 A JP S5826218A
Authority
JP
Japan
Prior art keywords
intake air
air amount
engine
intake
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12506681A
Other languages
Japanese (ja)
Inventor
Koichi Osawa
幸一 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP12506681A priority Critical patent/JPS5826218A/en
Publication of JPS5826218A publication Critical patent/JPS5826218A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/363Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction with electrical or electro-mechanical indication

Abstract

PURPOSE:To measure the quantity of intake air of a controllable engine smoothly by operating the quantity of air in accordance with the quantity of air measured with an air flowmeter provided in an intake passage and the quantity of air measured from the pressure in an intake pipe and the number of revolutions of the engine. CONSTITUTION:An air flowmeter 14 and an intake pressure sensor 22 are provided to the intake passage 12 of an engine 10, and the output thereof is inputted to a digital electronic control circuit 56 which controls a fuel injection rate 30, an ignition timing 34, a recirculation rate 52 for exhaust gas, etc. of the engine. The output of a crank angle sensor 40 provided to a distributor 36 is inputted to a control circuit 56. The circuit 56 operates the fuel injection rate, the ignition timing and the recirculation rate of exhaust gas by taking the quantity Q1 of intake air from the air flowmeter 13 as quantity Q of intake air when the Q1 is below the prescribed value and by determining the quantity Q2 of intake air from the sensors 22 and 40 when the Q1 is above the prescribed value and taking the product of the average value of the ratio between the previously measured Q'1 and Q'2 as the quantity Q of intake air, thereby controlling the engine easily.

Description

【発明の詳細な説明】 本発明は、電子制御エンジンの吸入空気量計量方法に係
り、特に、吸入空気量に応じて、燃料噴射量、点火時期
、排気ガス再循環量等を制御する自動車用電子制御工/
ジ/に用いるに好適な、低吸入空気量域は、吸気通路に
配設した空気流量計の出力から求められる第1の吸入空
気量′ft機関の吸入空気量とし、高吸入空気量域は、
吸気絞9弁よシ下流側の吸気管圧力と機関回転数から求
められる第2の吸入空気量を機関の吸入空気量とするよ
うにした電子制御エンジンの吸入空気量計量方法の゛改
良に関する0 近年、電子制御回路を用いて、燃料噴射量、点火時期、
排気ガス再循環量等を制御するようにした自動車用電子
制御エンジンが実用化されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the amount of intake air in an electronically controlled engine, and more particularly, to a method for measuring the amount of intake air in an electronically controlled engine, particularly for use in automobiles that controls the amount of fuel injection, ignition timing, amount of exhaust gas recirculation, etc. according to the amount of intake air. Electronic control engineering/
The low intake air amount region suitable for use in engine/engine is the first intake air amount 'ft determined from the output of the air flow meter installed in the intake passage, and the high intake air amount region is the intake air amount of the engine. ,
0 Concerning an improvement in a method for measuring the intake air amount of an electronically controlled engine in which the second intake air amount determined from the intake pipe pressure downstream of the nine intake throttle valves and the engine speed is used as the engine intake air amount. In recent years, electronic control circuits have been used to control fuel injection amount, ignition timing,
Electronically controlled automobile engines that control the amount of exhaust gas recirculation and the like have been put into practical use.

この電子制御エンジ/には種々あるが、そのうち、低吸
入空気流域は、吸気通路に配設したエアフ四メータ等の
空気流量針の出力から求められる#11の吸入空気量t
aXの吸入空気量とし、−万、高吸入空気量域は、吸気
絞シ弁よシ下流側の吸気管圧力と機関回転数から求めら
れるj12の吸入空気量上機関の吸入空気量として、計
量てれた吸入空気量に応じて、燃料噴射量、点火時期、
排気ガス再脅環量等を制御するようにしたものが提案さ
れている@このような電子制御エンジンによれば、低吸
入空気量域から高吸入空気量域までの全吸入空気量域に
わたって、前記第1Q吸入空気量を機関の吸入空気量と
する場合や1或いは、同じく全吸入空気量域にわたって
、前記第2の吸入空気量を機関の吸入空気量とする場合
に比べて、それぞれ−低吸入空気量域、高吸入空気量域
に適し九吸入空気量を用いて、燃料噴射量、点火時期、
排気ガス再循環量等が制御畜れるという特徴を有する。
There are various types of this electronic control engine/, but among them, the low intake air region is the #11 intake air amount t determined from the output of the air flow rate needle such as an air meter installed in the intake passage.
The amount of intake air is a The amount of fuel injection, ignition timing,
An electronically controlled engine has been proposed that controls the amount of exhaust gas reintroduction. -lower than when the first Q intake air amount is the engine intake air amount, or when the second intake air amount is the engine intake air amount over the entire intake air amount range. Intake air amount range, suitable for high intake air amount range.9 Using intake air amount, fuel injection amount, ignition timing,
It has the feature that the amount of exhaust gas recirculation, etc. can be controlled.

しかしながら、通常、前記第1の吸入空気量と第2の吸
入空気量は、空気流量計或いは吸気管圧力計等のセンサ
の製造公差のために、同時刻においても必ずしも一致し
ていない。仁の丸め、吸気通路に配設し九空気流量針の
出力から求められる第10吸入空気量が、所定値以上と
なって、吸気絞ル弁よシ下流側の吸空管圧力と機関回転
数から求められる第2の吸入空気量に切換った時点で、
計量し九吸入空気1li−AX不連続的に変化してしま
う・従って、該吸入空気量から算出される燃料噴射量、
点火時期、排気ガス再循環量等も不連続的に変化し、息
付、サージング等が生じて、車両運転性能が悪化する。
However, normally, the first intake air amount and the second intake air amount do not necessarily match even at the same time due to manufacturing tolerances of sensors such as an air flow meter or an intake pipe pressure gauge. When the 10th intake air amount, which is determined from the output of the 9th air flow rate needle disposed in the intake passage, exceeds a predetermined value, the intake pipe pressure downstream of the intake throttle valve and the engine speed increase. When switching to the second intake air amount calculated from
The measured intake air 1li-AX changes discontinuously. Therefore, the fuel injection amount calculated from the intake air amount,
Ignition timing, exhaust gas recirculation amount, etc. also change discontinuously, causing breathing, surging, etc., and deteriorating vehicle driving performance.

又、エンジンの製造公差に起因するエンジン個体毎の吸
入空気量の差に対して、一般には、吸気通路に配設した
空気流量計の出力から吸入空気量を求める方式は、前記
のような差を打消すが、吸気絞シ弁よ)下流側の吸気管
圧力と機関回転数から吸入空気量を求める方式では、そ
の差がその壕ま生じる。従って、高吸入空気量域では、
エンジン個体毎に、燃料噴射量、点火時期、排気ガス再
循環量等に差異が生じてしまい、有害−成分の放出量が
増大したり、或いは、燃料消費量が増大する等の問題点
1有した。
Additionally, in order to deal with differences in the amount of intake air for each individual engine due to engine manufacturing tolerances, the method of determining the amount of intake air from the output of an air flow meter installed in the intake passage generally eliminates the difference as described above. However, in the method of determining the amount of intake air from the intake pipe pressure on the downstream side (intake throttle valve) and the engine speed, the difference will occur. Therefore, in the high intake air amount range,
Problem 1: Differences occur in fuel injection amount, ignition timing, exhaust gas recirculation amount, etc. for each individual engine, resulting in an increase in the amount of harmful components released or an increase in fuel consumption. did.

本発明は、前記従来の欠点を解消するべくなされたもの
で、低吸入空気量域から高吸入空気量域までの全吸入空
気量域にわたって、燃料噴射量、点火時期、排虹ガス再
11111量等を精度良く且つ円滑に制御することがで
亀、しかも、エンジンの個体差も吸取することができ、
従って、燃料消費量及び有害成分の放出量を抑制し、且
つ、良好な這@性能を確保することができる電子制御エ
ンジンの吸入空気量計量方法を提供することを目的とす
るO 本発明は1低吸入空気量域社、吸気通路に配設し九空気
流量針の出方から求められる第1の吸入空気量を機関の
吸入空気量とし、高吸入空気量域は、吸気絞〕弁より下
流側の吸気管圧力とman転数から求められる第2の吸
入空気量を機関の吸入空気量とするようにした電子制御
エンジンの吸入空気量計量方法において、低吸入空気量
域は、前記第10吸入空気量と菖2の吸入空気量の比の
平均値を求めて記憶しておくと共に、前記第1の吸入空
気量を機関の吸入空気量とし、高吸入空気量域は、前記
82の吸入空気量に前記平均値を乗じた値tllllr
o@入空気量とする上空気量て、前記目的を達成したも
のである◎ 以下図面を参照して、本発明の実施例を詳細に説明する
The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional art, and it is possible to adjust the fuel injection amount, ignition timing, and exhaust gas amount over the entire intake air amount range from the low intake air amount area to the high intake air amount area. By controlling the engine speed accurately and smoothly, it is possible to absorb individual differences between engines.
Therefore, it is an object of the present invention to provide a method for measuring the intake air amount of an electronically controlled engine, which can suppress fuel consumption and the amount of harmful components released, and ensure good engine performance. The first intake air amount, which is located in the intake passage and determined from the direction of the nine air flow rate needles, is the intake air amount of the engine. In the method for measuring the intake air amount of an electronically controlled engine in which the second intake air amount obtained from the side intake pipe pressure and the man rotation number is used as the intake air amount of the engine, the low intake air amount region is The average value of the ratio of the intake air amount to the intake air amount of the irises 2 is determined and stored, and the first intake air amount is taken as the intake air amount of the engine, and the high intake air amount region is defined as the intake air amount of the 82 above. The value obtained by multiplying the air amount by the above average value tllllr
The above object has been achieved by reducing the upper air amount to the inlet air amount. ◎ Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施例は、第1wi及び第2図に示す如く、エンジン
100吸気通路12に設けられえ、吸入空気温に応動し
て電気信号1出方するエア70−メータ14と、該エア
7四−メータ14の上流側圧設けられた、吸入空気温に
応じて電気償J6を出方する吸気温センサ16と、吸気
絞ル弁18よシ下流の吸気管2oに連通畜れた感圧部を
有し、v&気f20の圧力に応じて電気信fを出力する
[!![圧センサ22と、燃料タンク24がら燃料ポン
プ26によ〕圧送畜れてきた燃料を、Wk気!ニホルド
28に噴射するインジェクタ3oと、工ンジ/燃焼室3
2内に導入された混合気に着火するための点火プラグ3
−4と、エンジンのクランク軸([示省略)によって駆
動畜れるディストリビュータ軸36Jlの回転に応じて
、点火コイル38で発生された点火2次、信号管エンジ
ンの各気筒に配設された点火プラグ84に分配供給する
と共に、前記ディス−トリビヱータ軸36a+O1l転
に応じて、機、関刷転速度に応じた電気信号を聞カする
クランク角センナ40が内蔵されたディストリビュータ
36と、排気マニホルド42の下流側に設けられ九、排
気ガス中の残存酸素濃度に応じて電気信号1出方する酸
素濃度センサ44と、エンジンブロック46に設けられ
た、エンジン冷却水温に応じて電気信号を出力する冷却
水温センサ48と、排気マニホルド42と吸気管20を
連通する排気ガス再循環通路(以下FiGR3l路と称
する)50の中間に配設され、排気ガス再循環量(以下
113GR量と称する)を制御する排気ガス再循環量制
御弁(以下BGR弁と称する)52と、バッテリ54と
、吸入空気量が所定値以下の低吸入空気量域は、前記エ
ア7p−メータ14出力の電気信号から求められる第1
の吸入空気量Qltll関の吸入空気量とし、吸入空気
量が所定値以上の高吸入空気量域は、前記吸気圧セン+
22tH力の吸気圧センサと、前記クランク角センサ4
(13力から求められる機関回転数とから求められる第
2の吸入空気量Q2t−機関の吸入空気量として、燃料
噴射量、点火時期、排気ガス再循環量等を演算し、゛こ
れに応じて、前記インジェクタ30q点火’イル38 
、][a G R弁52等を制御するデジタル電子制御
回路s6とを備え良電子制御エンジンにおいて、前記デ
ジタル電子制御回路s6で、第1の吸入空気量Q1が所
定値以下の低吸入空気量域は、前記第1の吸入空気量Q
1と第2の吸入空気量Q2の比の平均値Kを求めて記憶
しておくと共に、前記第1の吸入空気量Q 1 tfl
lHe)Ilk人空気量とし、高吸入空気量域は、前記
第2の吸入空気量Q2に前記平均値Kを乗じ九億KXQ
2’i機関の吸入空気量として、燃料噴射量、点火時期
、排気ガス再循環量等を求め、これに応じて、前記イン
ジェクタ30、点火;イル38、EGR弁52等を制御
するようにしたものである・図において、58は排気管
、60は、前記デジタル電子制御回路56を接地するた
めの接地線である〇 前記電子制御回路56は、1/PJ2図に詳細に示す如
く、エアフローメータ14、吸気温センサ16、吸気圧
センナ22、冷却水温センナ48、バッテリ54出力の
アナログ信号を、演算処理に適したデジタル信vK、!
LF換する、マルチプレクサ機能を備え九アナログーデ
ジタル変換1162と、前記り2ンク角セン+40及び
!!嵩濃度七ンサ44出力のデジタル信号を演算処理に
適したタイミングでデジタル電子制御回路56内に取込
むと共に、該デジタル電子制御回路56内で演算畜れた
演算結果を、出力に適したタイミングで前記インジェク
タ3G、点火:2 イ# 8 g及びPSGBI弁82
KH5力するた6ぐバッファ機能を備えた入出力インタ
−7エース回路64と、水晶発振器efJat備えた!
イクロプロセツナからなる中央演算処理装置66と、リ
ードオンリーメモリ68と、ランダムアクセスメモリ7
0と、前記各構成要素間を接続するパス72とから構l
ll1されている0以下作用會説明する。吸気通路12
の吸気口12麿から吸入され九吸入空気は、その量に応
じて電気償J#を出力するエア70−メータ14t−通
り篇吸気絞り弁18でその量を調整されて吸気管20に
導かれる・吸気圧センサ22は、前記吸気管20の圧力
に応じ良電気信号をデジタル電子制御回路56に出力す
る。前記吸気管20の下流側でインジェクタ30から噴
射される燃料と混合石れた吸入密気は、エンジン燃焼室
32へ導かれ、このエンジノ燃焼−室32内で点火プラ
グ34によシ着火されて燃焼し、排気ガスに変化する。
As shown in FIG. 1 and FIG. 2, this embodiment includes an air meter 14 that can be provided in the intake passage 12 of the engine 100 and outputs an electric signal 1 in response to the intake air temperature; It has an intake air temperature sensor 16, which is provided on the upstream side of the meter 14 and outputs an electric compensation J6 according to the intake air temperature, and a pressure sensitive part that communicates with the intake pipe 2o downstream of the intake throttle valve 18. and outputs electric signal f according to the pressure of v&ki f20 [! ! [By the pressure sensor 22 and the fuel pump 26 from the fuel tank 24] The fuel that has been pumped is pumped! The injector 3o that injects into the nitrogen holder 28 and the engine/combustion chamber 3
Spark plug 3 for igniting the air-fuel mixture introduced into 2
-4 and the secondary ignition generated by the ignition coil 38 in accordance with the rotation of the distributor shaft 36Jl driven by the engine crankshaft ([not shown)], the ignition plug disposed in each cylinder of the engine. The distributor 36 has a built-in crank angle sensor 40 that distributes and supplies the oil to the exhaust manifold 42 and listens to an electric signal corresponding to the machine rotation speed according to the rotation of the distributor shaft 36a+O1l, and the exhaust manifold 42. An oxygen concentration sensor 44 is provided on the side and outputs an electrical signal according to the residual oxygen concentration in the exhaust gas, and a cooling water temperature sensor is provided on the engine block 46 and outputs an electrical signal according to the engine cooling water temperature. 48 and an exhaust gas recirculation passage (hereinafter referred to as the FiGR3l passage) 50 that communicates the exhaust manifold 42 and the intake pipe 20, and controls the amount of exhaust gas recirculation (hereinafter referred to as the 113GR amount). The recirculation amount control valve (hereinafter referred to as BGR valve) 52, the battery 54, and the low intake air amount region where the intake air amount is less than a predetermined value are controlled by the first
The intake air amount is defined as the intake air amount Qltll, and the high intake air amount region where the intake air amount is equal to or higher than the predetermined value is determined by
22tH force intake pressure sensor and the crank angle sensor 4
(Second intake air amount Q2t found from the engine speed found from the 13 force - Calculate the fuel injection amount, ignition timing, exhaust gas recirculation amount, etc. as the engine intake air amount, and , the injector 30q ignition 'il 38
, ] [a In a well-electronically controlled engine equipped with a digital electronic control circuit s6 that controls the G R valve 52, etc., the digital electronic control circuit s6 controls a low intake air amount in which the first intake air amount Q1 is equal to or less than a predetermined value. is the first intake air amount Q
1 and the second intake air amount Q2 and store it, and also calculate the average value K of the ratio of the first intake air amount Q 1 tfl
lHe) Ilk human air volume, and the high intake air volume range is calculated by multiplying the second intake air volume Q2 by the average value K to obtain 900 million KXQ.
The fuel injection amount, ignition timing, exhaust gas recirculation amount, etc. are determined as the intake air amount of the 2'i engine, and the injector 30, ignition valve 38, EGR valve 52, etc. are controlled accordingly. In the figure, 58 is an exhaust pipe, and 60 is a grounding wire for grounding the digital electronic control circuit 56. The electronic control circuit 56 is an air flow meter, as shown in detail in Figure 1/PJ2. 14. The analog signals of the intake temperature sensor 16, intake pressure sensor 22, cooling water temperature sensor 48, and battery 54 are converted into digital signals suitable for calculation processing.
LF conversion, multiplexer function, 9 analog-to-digital conversion 1162, and the above 2 ink angle sensor +40 and! ! The digital signal output from the bulk concentration sensor 44 is taken into the digital electronic control circuit 56 at a timing suitable for arithmetic processing, and the calculation results calculated in the digital electronic control circuit 56 are taken in at a timing suitable for output. Said injector 3G, ignition: 2 i#8g and PSGBI valve 82
Equipped with an input/output interface 7 ace circuit 64 with a KH5 input/output buffer function and a crystal oscillator efJat!
A central processing unit 66 consisting of a microprocessor, a read-only memory 68, and a random access memory 7
0 and a path 72 connecting each component.
The function below 0 which is ll1 will be explained. Intake passage 12
The intake air taken in from the intake port 12 is guided to the intake pipe 20 after its amount is adjusted by the air intake throttle valve 18, which outputs an electric compensation J# according to the amount. - The intake pressure sensor 22 outputs a good electrical signal to the digital electronic control circuit 56 in accordance with the pressure of the intake pipe 20. The intake air mixed with fuel injected from the injector 30 on the downstream side of the intake pipe 20 is guided to the engine combustion chamber 32, and is ignited by the spark plug 34 within the engine combustion chamber 32. Burns and turns into exhaust gas.

排気ガスは、排気マニホルド42、排気管58t−介し
て大気へ放出嘔れる。前記エアフローメータ14の上流
側に設けられた吸気温センt16は、吸入空気温和応じ
良電気信号をデジタル電子制御回路56に出力する。又
、工ンジンブ筒ツク46に設けられた冷却水温センサ4
8は、エンジン冷却水温に応じた電気信号をデジタル電
子制御回路56に出力する・更、鐵排気!ニホルド42
に配設された酸素濃度センサ44は、排気ガス中の残存
酸素濃度に応じ良電気信号をデジタル電子制御回路56
に出力する。又、クランク角センサ40は、ニンジンの
クランク軸によって駆動されるディストリビュータ軸3
6麿の回転から、エンジン回転速度に応じた電気信号管
デジタル電子制御回路56に出力する・又、バッテリ5
4の電位も前記デジタル電子制御回路s6に入力される
0デジタル電子制御回路56は、前記各センナ及びエア
70−メータ14の出力、バッテリ54の電位等を演算
パラメータとして燃料噴射量を演算し、この結果を燃料
噴射信号に変換してインジェクタ30に出力する◎又、
同4]lK、前記の演算パラメータからEGRllt−
演算し、この結果を電気信号に変換して前記EGR弁5
2に出力する。更に、同様に、前記の演算パラメータか
ら点火時期を演算し、この結果を電気信号罠蛮換して前
記点火コイル38に出力する〇前記デジタル電子制御回
路56においては、演算処理に際して、第3図に示すよ
うなフ四−チャ−)K従って吸入空気量tS出してhる
・即ち、まず、前記エア7a−メータ14出力の電気信
号から第10rR人空気量Qlを求める0りいで、前記
吸気圧センサ22出力の吸気管圧力信号と前記クランク
角竜ンt4(1$力から求められる機関回転数から第2
の吸入空気量Q2を求める0更に、前記第1の吸入空気
量Qlを基準として、該#Ilの吸入空気量Q1が所定
値以下でめゐ低吸入空気量域である場合には、次式によ
p1前記第1の吸入空気量Q1と前記第2の吸入空気量
Q2の比の平均値Knt算出する0 こξで、Kn−、は、前河計量時の平均値でるり、機関
始動時には、所定の初期値とされている〇更に1前記第
10e人空気量Qlを、燃料噴射量、点火時期、排気ガ
ス再循環量等を演算するための機関の吸入空気量Qとす
る〇 一方、前記第1の吸入空気量Q1が所定値t−趨えてい
る場合には、次式に示す如く、前記第2の吸入空気量Q
2に前記平均値Knt乗じた値KnXQ2を、燃料噴射
量、点火時期、排気ガス再循環量等を演算するための機
関の吸入空気量QとするOQ = K n X Q 2
 ・・・・・・・・・(2)なお、前記実施例において
は、第1の吸入空気量Q1と所定値の大小関係を比較し
て、低吸入空気量域と高吸入空気量域の判yNt行なう
よ゛うにしていたが、低吸入空気量域と高吸入空気量域
の判別を第2の吸入空気量Q2に応じて行なうこと4勿
論可能である。
The exhaust gas is released into the atmosphere via the exhaust manifold 42 and the exhaust pipe 58t. The intake temperature center t16 provided upstream of the air flow meter 14 outputs a good electrical signal to the digital electronic control circuit 56 in accordance with the intake air temperature. In addition, a cooling water temperature sensor 4 provided on the engine cylinder 46
8 outputs an electric signal according to the engine cooling water temperature to the digital electronic control circuit 56.In addition, the iron exhaust! Nifold 42
The oxygen concentration sensor 44 disposed in
Output to. Further, the crank angle sensor 40 is connected to the distributor shaft 3 driven by the carrot crankshaft.
From the 6th rotation, an electric signal tube corresponding to the engine rotational speed is output to the digital electronic control circuit 56. Also, the battery 5
The digital electronic control circuit 56, which also inputs the potential of 4 to the digital electronic control circuit s6, calculates the fuel injection amount using the outputs of the sensors and air 70-meter 14, the potential of the battery 54, etc. as calculation parameters, This result is converted into a fuel injection signal and output to the injector 30 ◎Also,
4] lK, EGRllt- from the above calculation parameters
The result is converted into an electrical signal and the EGR valve 5
Output to 2. Furthermore, in the same way, the ignition timing is calculated from the above-mentioned calculation parameters, and this result is converted into an electric signal and output to the ignition coil 38. In the digital electronic control circuit 56, during calculation processing, the ignition timing is calculated as shown in FIG. Therefore, the intake air amount tS is outputted and The intake pipe pressure signal output from the atmospheric pressure sensor 22 and the crank angle t4 (the second
Calculate the intake air amount Q2 of According to p1, calculate the average value Knt of the ratio of the first intake air amount Q1 and the second intake air amount Q2. Sometimes, it is set as a predetermined initial value〇Furthermore, the 1st 10e human air amount Ql is used as the intake air amount Q of the engine for calculating the fuel injection amount, ignition timing, exhaust gas recirculation amount, etc.〇1 On the other hand, when the first intake air amount Q1 is below the predetermined value t, the second intake air amount Q1 is increased as shown in the following equation.
2 multiplied by the above-mentioned average value Knt, Kn
(2) In the above embodiment, the magnitude relationship between the first intake air amount Q1 and the predetermined value is compared, and the difference between the low intake air amount region and the high intake air amount region is determined. However, it is of course possible to discriminate between the low intake air amount region and the high intake air amount region according to the second intake air amount Q2.

又、前記実施例においては、低吸入空気量域では、エア
70−メータ出力から求められる第1の吸入空気量Q1
を、そのまま演算に用いていたが、この第1の吸入空気
量Q1を、酸素濃度センサ44出力の排気ガス中の残存
酸素濃度に応じて、燃料噴射量を帰還補正するための空
燃比帰還補正係数により学習補正するよ5[して、よ〉
正確な第1の吸入空気量を求めるようにすることも可能
で娶る。
Further, in the above embodiment, in the low intake air amount region, the first intake air amount Q1 determined from air 70 - meter output
was used as is in the calculation, but this first intake air amount Q1 is used for air-fuel ratio feedback correction to feedback-correct the fuel injection amount according to the residual oxygen concentration in the exhaust gas output from the oxygen concentration sensor 44. I'll correct the learning using the coefficient.
It is also possible to obtain an accurate first intake air amount.

以上説明し九道9、本発明によれけ、低吸入空気量域か
ら高吸入空気量域までの全吸入空気量域にわ九って、燃
料噴射量、点火時期、排気ガス再循環量等を精度良く且
つ円滑に制御することがでキ、シかも、エンジンの個体
差も段取−することかてきるので、運転性能が向1し、
燃料消費量及び有害成分の放出量も少なくできるという
優れた効果を有する。
As explained above, the present invention covers the entire intake air amount range from the low intake air amount area to the high intake air amount area, including fuel injection amount, ignition timing, exhaust gas recirculation amount, etc. It is possible to control the engine accurately and smoothly, and also to adjust the individual differences between engines, which improves driving performance.
It has the excellent effect of reducing fuel consumption and the amount of harmful components released.

【図面の簡単な説明】[Brief explanation of the drawing]

j[1図は、本発明に係る吸入空気量計量方決の実施例
が採用畜れた電子制御工/ジン及びその制御装置を示す
、一部ブロック線図を含む断面図、第2図は、前記制御
装置で用いられているデジタル電子制御回路の回路構成
を示すブロック線図、第3図は、同じく前記デジタル電
子制御回路内の吸入空気量演算)p−を示す流れ図であ
る。 10・・・内燃機関、12・・・吸気通路、14・・・
エア70−メータ、18・・・吸気絞り弁、20・・・
吸気管、22・・・吸気圧センサ、30・・・インジェ
クタ、38・・・点火コイル、40・・・クランク角セ
/す、 52・・・排気ガス再循環量制御弁、 56・・・デジタル電子制御回路。 代理人  高  矢   鍮 (はか1名) 第 l 図
[Figure 1 is a sectional view, including a partial block diagram, showing an electronic control system/engine and its control device in which an embodiment of the intake air amount metering method according to the present invention is adopted; Figure 2 is a sectional view including a partial block diagram; FIG. 3 is a block diagram showing the circuit configuration of the digital electronic control circuit used in the control device, and FIG. 3 is a flowchart showing the intake air amount calculation (p-) in the digital electronic control circuit. 10... Internal combustion engine, 12... Intake passage, 14...
Air 70-meter, 18... Intake throttle valve, 20...
Intake pipe, 22... Intake pressure sensor, 30... Injector, 38... Ignition coil, 40... Crank angle control valve, 52... Exhaust gas recirculation amount control valve, 56... Digital electronic control circuit. Representative: Takaya Brass (1 person) Figure l

Claims (1)

【特許請求の範囲】[Claims] (1)  低吸入空気量域は、v&気通路に配設した空
気流量針の出力から求められる第1og&人空気量を機
関の吸入空気量とし、高吸入空気量域は、吸気絞り弁よ
シ下流側の吸気管圧力と機関回転数から求められる第2
の吸入空気量上機関の吸入空気量とするようにした電子
制御エンジンの吸入空気量計量方法において、低吸入空
気量域は、前記第1の吸入空気量と第2の吸入空気量の
比の平均値を求めて記憶しておくと共に、前記第1oW
k人空気量を機関の吸入空気量とし、高吸入空気量域は
、前記第2の吸入空気量に前記平均値を乗じ友値を機関
の吸入空気量とするようにしたことt特徴とする電子制
御エンジンの吸入空気量計量方法。
(1) In the low intake air amount region, the engine's intake air amount is the 1st og & human air amount determined from the output of the air flow needle installed in the V & air passage, and in the high intake air amount region, the intake throttle valve and The second
In the method for measuring the intake air amount of an electronically controlled engine in which the intake air amount is determined to be the intake air amount of the engine, the low intake air amount region is defined as the ratio of the first intake air amount to the second intake air amount. In addition to calculating and storing the average value, the first oW
It is characterized in that the amount of human air is taken as the intake air amount of the engine, and in the high intake air amount region, the second intake air amount is multiplied by the average value and the value is taken as the intake air amount of the engine. Method for measuring intake air volume for electronically controlled engines.
JP12506681A 1981-08-10 1981-08-10 Measuring method for quantity of intake air for electronically controlled engine Pending JPS5826218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12506681A JPS5826218A (en) 1981-08-10 1981-08-10 Measuring method for quantity of intake air for electronically controlled engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12506681A JPS5826218A (en) 1981-08-10 1981-08-10 Measuring method for quantity of intake air for electronically controlled engine

Publications (1)

Publication Number Publication Date
JPS5826218A true JPS5826218A (en) 1983-02-16

Family

ID=14900969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12506681A Pending JPS5826218A (en) 1981-08-10 1981-08-10 Measuring method for quantity of intake air for electronically controlled engine

Country Status (1)

Country Link
JP (1) JPS5826218A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192838A (en) * 1985-01-14 1986-08-27 フオ−ド、モ−タ−、カンパニ− Engine control apparatus and determination of mass flow amount

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192838A (en) * 1985-01-14 1986-08-27 フオ−ド、モ−タ−、カンパニ− Engine control apparatus and determination of mass flow amount

Similar Documents

Publication Publication Date Title
EP0478120B1 (en) Method and apparatus for inferring barometric pressure surrounding an internal combustion engine
US4172433A (en) Process and apparatus for fuel-mixture preparation
US6272427B1 (en) Method and device for controlling an internal combustion engine in accordance with operating parameters
EP0476811B1 (en) Method and apparatus for controlling an internal combustion engine
JPS58148238A (en) Electron control fuel injection method for internal- combustion engine
JPS5459510A (en) Electronic type engine controller
JPS58144642A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPWO2003038262A1 (en) Apparatus and method for detecting atmospheric pressure of 4-stroke engine
JPS5826218A (en) Measuring method for quantity of intake air for electronically controlled engine
JPS58214632A (en) Electronically controlled fuel injection method for internal-combustion engine
JPS58144633A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPS62189333A (en) Air-fuel ratio control device for alcohol-gasoline mixed fuel
JPH05125984A (en) Fuel injection amount controller for internal combustion engine
JPS5546060A (en) Electronic fuel injection device for internal combustion engine
JPS59176448A (en) Method of controlling idling revolution speed of internal-combustion engine
JPS59153932A (en) Electronic control fuel injector
JPS5828557A (en) Method of supplying internal combustion engine with gasoline containing alcohol
JPH0368221B2 (en)
JP2767345B2 (en) Fuel supply control device for internal combustion engine
JPS6327071Y2 (en)
JPS58144640A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS58150042A (en) Electronically controlled fuel injection method of internal-combustion engine
KR19990002226A (en) Transient operation of gasoline vehicle direct injection engine Fuel compensation control method
JPS59206624A (en) Method of controlling reference injection amount in electronically controlled fuel injection engine
JPS58217735A (en) Electronic controlled fuel injection method for internal-combustion engine