JPS5826193B2 - Printed wiring board manufacturing method - Google Patents

Printed wiring board manufacturing method

Info

Publication number
JPS5826193B2
JPS5826193B2 JP49103352A JP10335274A JPS5826193B2 JP S5826193 B2 JPS5826193 B2 JP S5826193B2 JP 49103352 A JP49103352 A JP 49103352A JP 10335274 A JP10335274 A JP 10335274A JP S5826193 B2 JPS5826193 B2 JP S5826193B2
Authority
JP
Japan
Prior art keywords
pattern
metal
film
printed wiring
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49103352A
Other languages
Japanese (ja)
Other versions
JPS5130358A (en
Inventor
勝 河北
智三 宮崎
友彦 佐田
徹 小田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP49103352A priority Critical patent/JPS5826193B2/en
Publication of JPS5130358A publication Critical patent/JPS5130358A/en
Publication of JPS5826193B2 publication Critical patent/JPS5826193B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】 本発明はプリント配線板の製法、特にパターンメッキ転
写法による基板と金属板界面の剥離−転写の工程を容易
に行ない得るように改良した方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a printed wiring board, and more particularly to a method improved so that the process of peeling and transferring the interface between a substrate and a metal plate by a pattern plating transfer method can be carried out easily.

今日、電気絶縁性積層材と導電性金属箔の積層物は電子
工業のプリント回路、電気スイッチング装置或は一般装
飾装置などの分野で広く用いられている。
Today, laminates of electrically insulating laminates and conductive metal foils are widely used in fields such as printed circuits in the electronic industry, electrical switching devices, and general decorative devices.

ところで、従来、この種プリント回路などにおいて金属
の導電性パターン回路を得ようとする場合には、例えば
一つの方法として所謂エツチング法が用いられている。
By the way, conventionally, when attempting to obtain a metal conductive pattern circuit in this type of printed circuit, for example, a so-called etching method has been used as one method.

すなわち、この方法は銅などの金属箔に接着剤を塗布し
、これを電気絶縁性基板に貼り合わせ、その金属膜上に
シルクスクリーン印刷法等で耐酸性樹脂被膜を所要パタ
ーン状に被覆形成し、銅表面の不要部分すなわち上記耐
酸性樹脂被膜によって被覆されていない部分を塩化第二
鉄、過硫酸アンモニウムなどの水溶液に浸漬して溶解除
去し、パターン回路を得る方法であるO しかし、このような方法に於ては、エツチング等に使用
する薬品はすべて腐蝕性が強く有害であり、その廃水処
理には高価な設備を必要とし、また金属膜を基板全面に
形成させた後、それをパターン状に溶解除去するため非
能率であり、使用金属膜の量に対する回路パターンとし
ての収量が悪く不経済であった。
In other words, this method involves applying an adhesive to a metal foil such as copper, bonding this to an electrically insulating substrate, and then forming an acid-resistant resin coating on the metal film in the desired pattern using a silk screen printing method, etc. , is a method of obtaining a patterned circuit by immersing the unnecessary portions of the copper surface, that is, the portions not covered by the acid-resistant resin coating, in an aqueous solution of ferric chloride, ammonium persulfate, etc., and dissolving them. In this method, all the chemicals used for etching are highly corrosive and harmful, and expensive equipment is required to treat the wastewater.Also, after forming a metal film on the entire surface of the substrate, it is patterned. It was inefficient because it had to be dissolved and removed, and the yield as a circuit pattern was low relative to the amount of metal film used, making it uneconomical.

また、池の方法として所謂無電解メッキ法が知られてい
る。
In addition, a so-called electroless plating method is known as a method.

この方法は触媒を含んだインクなどを絶縁性基板上にパ
ターン印刷し、これに無電解メッキを施し、印刷された
インク上に金属を析出させて所要パターン状の金属メッ
キ膜を基板上に得るものである。
This method involves printing a pattern of ink containing a catalyst on an insulating substrate, applying electroless plating to this, and depositing metal on the printed ink to obtain a metal plating film in the desired pattern on the substrate. It is something.

しかし、このような無電解メッキではメッキ付着強度が
悪く、プリント配線板に要求される接着性、ハンダ耐熱
性などの諸性質を満足するプリント配線板を得ることが
できなかった。
However, with such electroless plating, the plating adhesion strength is poor, and it has not been possible to obtain a printed wiring board that satisfies various properties such as adhesiveness and solder heat resistance required for a printed wiring board.

また、最近パターンメッキ転写法によるプリント配線板
の製造方法が考えられている。
Furthermore, recently, a method of manufacturing printed wiring boards using a pattern plating transfer method has been considered.

この方法は金属板面上に所定パターン部分のみを残して
それ以外の部分を被覆するようにマスキング面を形成し
、これに電解メッキを施して上記被覆されていないパタ
ーン部分に導電性金属パターンを形成し、その上に接着
剤を塗布して基板を形成し、この基板に上記導電性金属
パターンを剥離−転写するようにしたものである。
In this method, a masking surface is formed on the metal plate surface so that only a predetermined pattern part is left and the other parts are covered, and then electrolytic plating is applied to this masking surface to form a conductive metal pattern on the uncovered pattern part. A conductive metal pattern is formed, an adhesive is applied thereon to form a substrate, and the conductive metal pattern is peeled off and transferred onto this substrate.

しかし、これまでに開示されている方法に於ては実際に
製造する場合全面に接着剤を塗布すれば基板はマスキン
グ面とも接着し、金属パターン部分だけを明確に剥離−
転写するということは実施上非常に困難な工程となる。
However, in the methods disclosed so far, in actual manufacturing, if adhesive is applied to the entire surface, the substrate will also adhere to the masking surface, and only the metal pattern portion can be clearly peeled off.
Transferring is a very difficult process to implement.

そこで、本発明は上述の如き従来法の欠点に鑑み、エツ
チング法や無電解メッキ法に於ける不経済性、非能率性
などの欠点を除去するとともに、これまでのパターンメ
ッキ転写法で実際にフリント配線板の製造をする場合に
非常に困難であった電気絶縁性基板の金属板界面からの
剥離−転写の工程を容易確実に行ない得るようにするこ
とを目的とするものである。
Therefore, in view of the drawbacks of the conventional methods as described above, the present invention eliminates the drawbacks such as uneconomical and inefficient methods in the etching method and electroless plating method, and also improves the practical performance of the conventional pattern plating transfer method. The purpose of this invention is to make it possible to easily and reliably carry out the process of peeling off and transferring an electrically insulating substrate from a metal plate interface, which is extremely difficult when manufacturing flint wiring boards.

また、本発明は電解メッキにより形成した金属導体回路
パターンを直接電気絶縁性基板上に転写させて明確な導
体回路パターンを得ることができ、しかも基板原料とし
て使用できる樹脂の範囲を拡大し得るようにしたことを
目的とするものである。
In addition, the present invention makes it possible to directly transfer a metal conductor circuit pattern formed by electrolytic plating onto an electrically insulating substrate to obtain a clear conductor circuit pattern, and to expand the range of resins that can be used as substrate raw materials. The purpose is to

本発明方法は、電解メッキした金属との剥離性の良い金
属板面上に印刷法によって所定パターン状の電気絶縁性
物質(以下レジストという)の被膜を形成させ、その上
へ電解メッキにより導電性金属の回路パターンを形成さ
せ、その回路パターン表面に直接電気絶縁性基板又は電
気絶縁性フィルムを形成させてから剥離−転写して上記
電気絶縁性基板又は電気絶縁性フィルム上へ金属導体の
パターンを形成させるにあたり、上記レジストとして電
気絶縁性、離型性、耐熱性の良好なシリコーン系樹脂す
なわちシリコーンゴムまたはシリコーン離型剤あるいは
これらと熱硬化性樹脂との混合物を用いることを特徴と
するものである。
The method of the present invention involves forming a film of an electrically insulating material (hereinafter referred to as resist) in a predetermined pattern by a printing method on the surface of a metal plate that has good removability from electrolytically plated metal, and then electrolytically plating the film to form a film of electrically insulating material (hereinafter referred to as resist). A metal circuit pattern is formed, an electrically insulating substrate or an electrically insulating film is formed directly on the surface of the circuit pattern, and then a pattern of metal conductors is formed on the electrically insulating substrate or film by peeling and transferring. In forming the resist, a silicone resin having good electrical insulation properties, mold release properties, and heat resistance, that is, silicone rubber, a silicone mold release agent, or a mixture of these and a thermosetting resin is used as the resist. be.

本発明方法によりプリント配線板を製造する場合、まず
第1図に示すごとく電解メッキを施すための金属板1を
準備する。
When manufacturing a printed wiring board by the method of the present invention, a metal plate 1 to be electrolytically plated is first prepared as shown in FIG.

この金属板1の素地としては電着した金属が容易に剥離
するものが好ましく、例えばステンレスやチタン等を用
いる。
The material for the metal plate 1 is preferably one from which the electrodeposited metal can be easily peeled off, such as stainless steel or titanium.

そして、この金属板1の一生面上にシルクスクリーン印
刷法によって第2図に示す如くパターン状のレジスト被
膜2を形成する。
Then, a patterned resist film 2 is formed on the entire surface of the metal plate 1 by silk screen printing as shown in FIG.

このレジスト被膜2は後述する導電金属パターン部分の
形成マスクとしての役割、さらに後述する剥離−転写を
容易に行なわせるための離型剤としての役割を果すもの
であり、したがって電気絶縁性、離型性が良好で耐熱性
にすぐれ、しかも電解メッキ浴中で変質することのない
耐酸性または耐アルカリ性などに秀れた性質を有する物
質であることが必要である。
This resist film 2 serves as a mask for forming a conductive metal pattern portion, which will be described later, and also as a mold release agent to facilitate peeling and transfer, which will be described later. It is necessary that the material has good properties such as good properties, excellent heat resistance, and excellent acid resistance or alkali resistance so that it does not change in quality in an electrolytic plating bath.

すなわち、本発明方法に用いるレジストとしては、一般
に市販されているポリジメチルシクロキサンを主体とし
たシリコーンRTV及びLTVゴム或は離型剤或はこれ
らを2〜30部熱硬化性樹脂溶液たとえば通常エツチン
グレジストやソルダーレジストとして用いられているフ
ェノール系樹脂やエポキシ−メラミン樹脂溶液に混合し
たもの等がある。
That is, the resist used in the method of the present invention is generally commercially available silicone RTV and LTV rubber mainly composed of polydimethylcycloxane, or a release agent, or 2 to 30 parts of these in a thermosetting resin solution, for example, etching. Examples include those mixed with phenolic resins and epoxy-melamine resin solutions used as resists and solder resists.

そして、これらレジストは使用に際して適度のスクリー
ン印刷適性をもたせるために、溶剤や充填剤などを加え
て粘度、チキントロピック性を調節するようにしても良
い。
In order to make these resists suitable for screen printing when used, solvents, fillers, etc. may be added to adjust the viscosity and chicken tropic properties.

そして、上記レジスト被膜2により被覆された金属板1
の部分1aは回路パターンとしては不必要な部分であり
、後工程の電解メッキ処理によっても導電金属が電着さ
れざる部分となる。
Then, the metal plate 1 covered with the resist film 2
The portion 1a is an unnecessary portion as a circuit pattern, and becomes a portion on which conductive metal is not electrodeposited even in the subsequent electrolytic plating process.

次に上記レジスト被膜2を形成した上へ電解メッキによ
って第3図に示すごとく導電性金属パターン3を形成さ
せる。
Next, on the resist film 2 formed above, a conductive metal pattern 3 is formed by electrolytic plating as shown in FIG.

このときパターン3の表面周部、すなわちレジスト被膜
2との境界部分は第3図中に誇張図示するように稍々盛
り上った状態3aとなっている。
At this time, the peripheral portion of the surface of the pattern 3, that is, the boundary portion with the resist film 2 is in a slightly raised state 3a as shown in an exaggerated diagram in FIG.

そして、次に上記金属板1の一生面上に形成されたレジ
スト被膜2及び導電性金属パターン3上に直接熱硬化性
樹脂溶液を塗布し、常圧加熱または加圧加熱して硬化さ
せて第4図に示すごとく基板4を形成した後に剥離−転
写して第5図に示す如く絶縁性の基板4上に導電性金属
の回路パターン3を形成したプリント配線基板5を得る
Next, a thermosetting resin solution is applied directly onto the resist film 2 and the conductive metal pattern 3 formed on the entire surface of the metal plate 1, and is cured by heating under normal pressure or pressure. After a substrate 4 is formed as shown in FIG. 4, it is peeled off and transferred to obtain a printed wiring board 5 in which a conductive metal circuit pattern 3 is formed on an insulating substrate 4 as shown in FIG.

この場合、電着したパターン状の導電性金属パターン3
のみが転写されていれば良く、レジスト被膜2が転写さ
れる必要はない。
In this case, the electrodeposited patterned conductive metal pattern 3
It is sufficient that only the resist film 2 is transferred, and there is no need for the resist film 2 to be transferred.

したがって、レジスト被膜と金属板の接合強度の方がレ
ジスト板と基板との接合強度より大きいことが必要であ
る。
Therefore, it is necessary that the bonding strength between the resist film and the metal plate be greater than the bonding strength between the resist plate and the substrate.

なお、上記電解析出金属としては電導性が高く、電解メ
ッキが可能な金属であり、例えば銀、銅、クロム、鉄、
コバルト、ニッケル等或はこれらの合金が用いられる。
The above-mentioned electrolytically deposited metals are metals that have high conductivity and can be electrolytically plated, such as silver, copper, chromium, iron,
Cobalt, nickel, etc. or alloys thereof are used.

そして、電着した金属たとえば銅の表面上にさらに能の
金属たとえばニッケルをメッキし、防蝕性、接着性等を
向上させるようにしても良い。
Then, the surface of the electrodeposited metal, such as copper, may be further plated with a metal such as nickel to improve corrosion resistance, adhesion, and the like.

以下に本発明の実施例を詳細に説明する。Examples of the present invention will be described in detail below.

実施例 l 5older Re5ist 5R−3IC3−−8E
−・・−・90部(タムラ化研■製) KS707(信越化学■製) ・・・・・・10部
の組成のレジストをステンレス板上に所定のパターン状
として印刷し、10分間風乾後120℃で30分間加熱
し硬化させる。
Example l 5older Re5ist 5R-3IC3--8E
--- 90 parts (manufactured by Tamura Kaken ■) KS707 (manufactured by Shin-Etsu Chemical ■) --- 10 parts of resist was printed in a predetermined pattern on a stainless steel plate, and after air-drying for 10 minutes. Heat and cure at 120°C for 30 minutes.

この硬化後ステンレス板表面に次の条件、 すなわち 硫酸銅浴組成 硫酸銅 ・・・・・・2509/
13硫酸 ・・・・・・759/13 電解条件 液 温 25℃電流密度
8 A/d7712 メッキ時間 30分 により銅メッキを行なって導電性パターンを形成させ、
さらにその上に銅とステンレス板との界面の引剥し強さ
を向上させるために次の条件、すなわち ニッケル浴組成 硫酸ニッケル ・・・150 &/1
3塩化アンモン ・・・ 15 &/1 ホウ 酸・・・15971 電解条件 pH6,0 液 温 25℃ NIM密W 10 A/ d7712メッキ時間
1 分 により、銅の表面をニッケルで被覆する。
After this hardening, the stainless steel plate surface is subjected to the following conditions: Copper sulfate bath composition Copper sulfate...2509/
13 Sulfuric acid ・・・759/13 Electrolytic conditions Liquid temperature 25°C Current density 8 A/d7712 Plating time 30 minutes Copper plating was performed to form a conductive pattern,
Furthermore, in order to improve the peel strength of the interface between the copper and the stainless steel plate, the following conditions are met: nickel bath composition Nickel sulfate...150 &/1
Ammonium trichloride...15 &/1 Boric acid...15971 Electrolytic conditions pH 6.0 Liquid temperature 25°C NIM Density W 10 A/d7712 Plating time 1 minute to coat the copper surface with nickel.

このようにして処理後水洗し、乾燥したステンレス板上
に下記組成の熱硬化性樹脂溶液、すなわち Ni sso −PB−TE−200019,=、50
部(日曹化成■製) スチレンモノマー ・・・・・・34部
無水マレイン酸 ・・・・・・ 5部
エチレンシメチルメクアクリレート ・・・・・・1
0部過酸化ベンゾイル ・・・・・・
1部の組成の組成物を塗布し、補強のためその上にガラ
スクロス(日東紡WE116BV)1枚を載せて加圧し
上記樹脂溶液をガラスクロスに含浸させるとともにパタ
ーン表面に一様に密着させる。
After treatment, a thermosetting resin solution having the following composition was placed on a stainless steel plate that was washed with water and dried.
parts (manufactured by Nisso Kasei ■) Styrene monomer: 34 parts Maleic anhydride: 5 parts Ethylene dimethyl mekuacrylate: 1
0 parts benzoyl peroxide ・・・・・・
A sheet of glass cloth (Nittobo WE116BV) is placed on top of the composition for reinforcement, and pressure is applied to impregnate the glass cloth with the resin solution and make it adhere uniformly to the pattern surface.

そして、この板を120℃で12時間加熱し硬化させる
Then, this plate is heated and cured at 120° C. for 12 hours.

硬化後にステンレス板から硬化した基板を容易に剥離す
ることができ、パターン状の導電部分が樹脂表面へきれ
いに転写されて厚さ平均120μのプリント配線板が得
られた。
After curing, the cured substrate could be easily peeled off from the stainless steel plate, and the patterned conductive portion was clearly transferred to the resin surface, yielding a printed wiring board with an average thickness of 120 μm.

このようにして得たプリント配線板は銅と基板との界面
の引き剥がし強さが常態で1.8Ky/crfL、26
0℃で20秒間ハンダ浸漬後で1.7Ky/cmであっ
た。
The printed wiring board thus obtained has a normal peel strength of 1.8 Ky/crfL at the interface between the copper and the board, 26
It was 1.7 Ky/cm after being immersed in solder for 20 seconds at 0°C.

実施例 2 レジストとして信越化学■製KE、12R,TV(常温
で一昼夜放置し硬化させたもの)、および東しシリコー
ン■製5H9556RTV(100℃30分硬化させた
もの)を用いた場合も、実施例1と同様に容易に剥離−
転写することができ、しかも繰り返し使用することが可
能であった。
Example 2 The results were also carried out when KE, 12R, TV (cured by standing overnight at room temperature) manufactured by Shin-Etsu Chemical ■ and 5H9556RTV manufactured by Toshi Silicone ■ (cured for 30 minutes at 100°C) were used as resists. Easily peeled off as in Example 1.
It could be transferred and used repeatedly.

実施例 3 レジストとして東しシリコーン■製5H9556R,T
V(100℃で30分硬化させたもの)を用い、実施例
1と同様に銅およびニッケルをパターン状に電解メッキ
したステンレス板の上へ下記組成の樹脂溶液、 すなわち エピコール#1001(シェル製)・・・100部ジシ
アンジアミド溶液 4部(20wt%
i n DMF ) ベンジルジメチルアミド ・・・ 0.2部の
組成物をアセトンで粘度200 cpsに調整したもの
をガラスクロス(日東紡WE−116BV)に含浸させ
てプリプレグシートを作る。
Example 3 As a resist, Toshi silicone 5H9556R,T was used.
Using V (hardened at 100°C for 30 minutes), a resin solution with the following composition, namely Epicol #1001 (manufactured by Shell) was placed on a stainless steel plate electrolytically plated with copper and nickel in the same manner as in Example 1. ...100 parts dicyandiamide solution 4 parts (20wt%
in DMF) Benzyldimethylamide... A prepreg sheet is prepared by impregnating a glass cloth (Nittobo WE-116BV) with 0.2 parts of the composition adjusted to a viscosity of 200 cps with acetone.

乾燥条件は初め100℃2分行ない次に160℃4分行
なった。
Drying conditions were first at 100°C for 2 minutes and then at 160°C for 4 minutes.

このプリプレグシート1枚をパターン上に置き、温度1
60℃接触圧で5分、次に40 Ky /crit’圧
で1時間熱プレスした後剥離した。
Place one prepreg sheet on the pattern and
It was hot pressed at 60° C. contact pressure for 5 minutes, then at 40 Ky/crit' pressure for 1 hour, and then peeled off.

この場合も実施例1と同様にパターンを容易に転写でき
、厚さ110μのフレキシブル回路を得た。
In this case as well, the pattern could be easily transferred as in Example 1, and a flexible circuit with a thickness of 110 μm was obtained.

実施例 4 ポリエステルフィルムにアクリル共重合体の粘着剤を約
20μの厚さで塗布し、粘着剤付きフィルムを調整する
Example 4 An adhesive made of acrylic copolymer is applied to a polyester film to a thickness of about 20 μm to prepare a film with adhesive.

次にレジストとして東しシリコーン■製5H9556R
TVを用いてステンレス板上にパターン状にスクリーン
印刷して100℃30分硬化させたあと、実施例1と同
様に銅およびニッケルをパターン状に電解メッキしたあ
と、この上に粘着剤付きフィルムを貼り合わせてパター
ンをステンレス板から剥離−転写させ、ポリエステルベ
ースのフレキシブル配線板を得た〇 この場合も非常に楽に剥離することができた。
Next, as a resist, use silicone ■ 5H9556R.
After screen printing a pattern on a stainless steel plate using a TV and curing it at 100°C for 30 minutes, copper and nickel were electrolytically plated in a pattern in the same manner as in Example 1, and then a film with an adhesive was placed on top of this. The pattern was peeled off and transferred from the stainless steel plate to obtain a polyester-based flexible wiring board. In this case as well, peeling was very easy.

上述のように、本発明方法によれば、エツチング法や無
電解メッキ法に比べ経済的、能率的にプリント配線板を
製造でき、また従来のパターンメッキ転写法で実際に製
造する場合に非常に困難であった電気絶縁性基板の金属
板表面からの剥離−転写の工程を容易確実にし、電解メ
ッキにより形成された金属導体パターンを直接電気絶縁
性基板上に転写させて明確な導電回路パターンを得るこ
とができ、しかも電解メッキした金属板表面に、例えば
不飽和ポリエステル系樹脂のような無溶剤系樹脂を直接
流し込み、そのまま硬化させて基板を得ることもできる
ので、基板原料として使用できる樹脂の範囲が拡大する
As mentioned above, according to the method of the present invention, printed wiring boards can be manufactured more economically and efficiently than the etching method or electroless plating method, and it is also much easier to manufacture when actually manufactured using the conventional pattern plating transfer method. The process of peeling and transferring an electrically insulating substrate from the surface of a metal plate, which was previously difficult, has been made easier and more reliable, and the metal conductor pattern formed by electrolytic plating can be directly transferred onto the electrically insulating substrate to create a clear conductive circuit pattern. Moreover, it is also possible to directly pour a solvent-free resin such as an unsaturated polyester resin onto the surface of an electrolytically plated metal plate and cure it as it is to obtain a substrate. The range expands.

【図面の簡単な説明】 第1図から第5図まではそれぞれ本発明方法を工程順に
示す概略縦断面図である。 1・・・・・・金属板、2・・・・・・レジスト被膜、
3・・・・・・導電性金属パターン、4・・・・・・基
板。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 to FIG. 5 are schematic vertical sectional views showing the method of the present invention in the order of steps. 1...Metal plate, 2...Resist film,
3... Conductive metal pattern, 4... Substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 電着金属との剥離性の良い金属板の一生面上にパタ
ーン状にシリコン系樹脂よりなる電気絶縁物質の被膜を
形成する工程と、上記金属板の一生面上に電気メッキに
より導電性金属の回路パターンを形成する工程と、上記
金属板の一生面側に形成された電気絶縁物質の被膜及び
回路パターン上に絶縁性基板を形成する工程と、該絶縁
性基板と回路パターンを上記金属板と上記被膜から剥離
し2分離する工程とからなるプリント配線基板の製造方
法。
1. A step of forming a film of an electrically insulating material made of silicone resin in a pattern on the whole surface of the metal plate, which has good peelability from the electrodeposited metal, and applying a conductive metal to the whole surface of the metal plate by electroplating. a step of forming an insulating substrate on the electrically insulating material coating and the circuit pattern formed on the whole surface side of the metal plate, and a step of forming an insulating substrate and the circuit pattern on the metal plate. A method for manufacturing a printed wiring board, comprising the steps of: and separating the film from the film.
JP49103352A 1974-09-07 1974-09-07 Printed wiring board manufacturing method Expired JPS5826193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49103352A JPS5826193B2 (en) 1974-09-07 1974-09-07 Printed wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49103352A JPS5826193B2 (en) 1974-09-07 1974-09-07 Printed wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JPS5130358A JPS5130358A (en) 1976-03-15
JPS5826193B2 true JPS5826193B2 (en) 1983-06-01

Family

ID=14351727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49103352A Expired JPS5826193B2 (en) 1974-09-07 1974-09-07 Printed wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JPS5826193B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834991A (en) * 1981-08-25 1983-03-01 住友電気工業株式会社 Method of producing printed circuit board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913667A (en) * 1972-05-19 1974-02-06
JPS4963999A (en) * 1972-10-27 1974-06-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913667A (en) * 1972-05-19 1974-02-06
JPS4963999A (en) * 1972-10-27 1974-06-20

Also Published As

Publication number Publication date
JPS5130358A (en) 1976-03-15

Similar Documents

Publication Publication Date Title
US3698940A (en) Method of making additive printed circuit boards and product thereof
US3854973A (en) Method of making additive printed circuit boards
JPS60207395A (en) Method of producing through-hole plated electric printed circuit board
US3230163A (en) Reusable transfer plate for making printed circuitry
GB2037488A (en) Thermoplastics printed circuit board material
EP0096701B1 (en) Circuit board fabrication leading to increased capacity
GB2090476A (en) Electrical conductors arranged in multiple layers and preparation thereof
JPH0590740A (en) Sheet for transferring conductor circuit, its manufacture, printed wiring body utilizing it, and its manufacture
JPS5826193B2 (en) Printed wiring board manufacturing method
JPH0839728A (en) Production of metal-clad laminate substrate
JPS5952557B2 (en) Manufacturing method for printed wiring boards
JPH0422039B2 (en)
JP2842631B2 (en) Manufacturing method of printed wiring board
JPH0527999B2 (en)
JPS5892293A (en) Circuit board and method of producing same
JPH0337878B2 (en)
JPS6236895A (en) Manufacture of flexible circuit board
GB1337338A (en) Process for making printed circuit boards and products obtained by said process
JPS5916439B2 (en) Method for manufacturing multilayer printed wiring board
JPS647517B2 (en)
JPS6362919B2 (en)
JPS5967693A (en) Method of producing conductor circuit for printed circuit board
JPS605237B2 (en) How to form printed circuits
JPH0222149B2 (en)
JPH0139234B2 (en)