JPS5826019A - Casting method for polycrystalline silicon ingot - Google Patents

Casting method for polycrystalline silicon ingot

Info

Publication number
JPS5826019A
JPS5826019A JP56122469A JP12246981A JPS5826019A JP S5826019 A JPS5826019 A JP S5826019A JP 56122469 A JP56122469 A JP 56122469A JP 12246981 A JP12246981 A JP 12246981A JP S5826019 A JPS5826019 A JP S5826019A
Authority
JP
Japan
Prior art keywords
mold
silicon
polycrystalline silicon
ingot
silicon ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56122469A
Other languages
Japanese (ja)
Other versions
JPS5953209B2 (en
Inventor
Akio Shimura
志村 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56122469A priority Critical patent/JPS5953209B2/en
Publication of JPS5826019A publication Critical patent/JPS5826019A/en
Publication of JPS5953209B2 publication Critical patent/JPS5953209B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Moulds, Cores, Or Mandrels (AREA)
  • Silicon Compounds (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To easily separate a polycrystalline silicon ingot from a mold having a higher softening point then the m.p. of silicon and a partially detachable bottom by coating the inside of the mold with silicon carbide and applying a powdered mold releasing agent. CONSTITUTION:Part of the bottom of a carbon mold 1 having a higher softening point than the m.p. of silicon is made detachable with a carbon plate 4, and the whole inside of the mold 1 and the surface of the plate 4 are coated with a silicon carbide film 2. A powdered mold releasing agent 3 is applied to the film 2, and silicon as starting material is put in the mold 1 and melted by heating. After thoroughly melting the silicon in the mold 1, the melt is solidified from the bottom to obtain a polycrystalline silicon ingot. By pushing the plate 4 upward, the ingot can be easily taken out, and since the ingot 1 itself is not damaged, it can be reused.

Description

【発明の詳細な説明】 本発IjIFi多結晶シリコンインゴットの鋳造法に関
するものである◎ 最近、太陽電池による太陽光発電エネルギー源として見
直され低価格太陽電池の開発が盛んである1、しかし高
い効率を得るためKは欠陥の少ないもので、できるだけ
完全表革結晶シリコンを用いなければならない。このた
め太陽電池の価格は高いものとなり、地上での使用は現
在まで限られたものである。そこで単結晶シリコンに代
る低価格太陽電池用材料として多結晶の開発が始められ
るようになりた。多結晶シリコンは鋳造法によりて作る
ことが行なわれている。このような鋳造法は単結晶を得
る場合のチョクラルスキー法と比較して結晶成長速度が
大きいことと、任意の形状のインゴットが得られること
と熟練を必要とせず操作が容易なこと等から低価格化の
可能性が大きい。
[Detailed Description of the Invention] This relates to the casting method of the IjIFi polycrystalline silicon ingot of the present invention. Recently, solar cells have been reconsidered as a solar power generation energy source, and development of low-cost solar cells has been active1. In order to obtain this, it is necessary to use K with as few defects as possible and completely crystalline silicon. For this reason, the cost of solar cells has become high, and their use on land has been limited to date. This led to the development of polycrystals as a low-cost solar cell material to replace single-crystal silicon. Polycrystalline silicon is manufactured by a casting method. This casting method has a higher crystal growth rate than the Czochralski method for obtaining single crystals, can obtain ingots of arbitrary shapes, and is easy to operate without requiring any skill. There is great potential for lower prices.

例えば黒鉛のプロツタを鋳型として用いて、多結晶イン
ゴットを形成し1 oclmx 10tx の多結晶板
を切り出し10%以上の光電変換効率を有する太陽電池
セルを得ている報告がある。([th IEEE 。
For example, there are reports of using a graphite plotter as a mold to form a polycrystalline ingot and cutting out polycrystalline plates of 1 oclm x 10 tx to obtain a solar cell having a photoelectric conversion efficiency of 10% or more. ([th IEEE.

Photovoltaic 5pecialists 
Conference p861976χ。
Photovoltaic 5specialists
Conference p861976χ.

しかし、鋳型として黒鉛管用いるためシリコン融液と鋳
型とが漏れないように工夫することが重要であるが、こ
の点については鋳型の温Ifをシリコンの融点よりもか
なシ低温tVC保つことで漏れの問題を解決しようとし
ている。(特開昭 51−101466 ) Lかしな
がらこの方法の欠点は低ilRで急速同化させるために
、多結晶粒径が大きくならないことkある@ 一般に、多結晶粒径が大きいものはと太陽電池とした場
合に高い光電変換効率が得られる・そこで鋳型として石
英ルツボを用いてその中にシリコンを溶融し、しかる後
石英ルツボの底から適白な速度で結晶を成長させ多結晶
粒#kを大きくすることが提案さhている。
However, since a graphite tube is used as the mold, it is important to take measures to prevent leakage between the silicon melt and the mold.In this regard, it is important to keep the temperature If of the mold at a temperature tVC slightly lower than the melting point of silicon. trying to solve the problem. (Japanese Patent Application Laid-open No. 51-101466) However, the drawback of this method is that the polycrystalline grain size does not increase due to rapid assimilation at low ILR. In general, large polycrystalline grains are used for solar cells. High photoelectric conversion efficiency can be obtained when It is suggested that it be made larger.

しかし従来の方法である石英ルツボを用いた多結晶シリ
コン塊形成法においては、石英ルツボとシリコン融液と
は激しく反応し、冷却固化させると強く固着する。
However, in the conventional method of forming polycrystalline silicon lumps using a quartz crucible, the quartz crucible and the silicon melt react violently, and when the silicon melt is cooled and solidified, they are strongly stuck together.

このために冷却時に石英とシリコン多結晶塊にり2ツク
が入り、こまかく割れてしまうために1多結晶シリコン
萬を得ることができなかった。
For this reason, when the quartz and silicon polycrystalline lumps were cooled, the quartz and silicon polycrystalline lumps were broken into small pieces, making it impossible to obtain one polycrystalline silicon mass.

この問題を解決するためにグレーデッドクルジプル(G
r畠nd Crucible )という特殊な石英ルツ
ボを用いる方法が一発された。グレーデッドクルジプル
(Grad@d Crucible )t;Jルツボの
内面の書度を大きくし、外側のvli度を粗にした構造
であって、冷却時に石英ルツボのみが、こまかく割れる
ようKなりている。このためシリコン多結晶流にクラッ
クが入ることはない。この方法でほとんど単結晶に近い
大きな結晶粒径が得られる。
To solve this problem, Graded Kurjpur (G
A method using a special quartz crucible called ``R Hatake and Crucible'' was developed. Graded Crucible (Grad@d Crucible): A structure in which the inner surface of the crucible is made larger and the outer surface is rougher, so that only the quartz crucible can be finely cracked during cooling. There is. Therefore, cracks do not occur in the silicon polycrystalline flow. With this method, large crystal grain sizes that are almost single-crystal-like can be obtained.

(13th Photovoltaic 5pecia
lists 、 Conferencep137197
8 ) この方法の欠点はグレーデッドクルジプル(GrILd
@d 、  Crucible )という高価な特殊石
英ルツボが1回の使用でこまかく割れてしまうことであ
る0これは低価格化をさまたげる大きな要因となってい
る。
(13th Photovoltaic 5pecia
lists, Conferencep137197
8) The disadvantage of this method is that graded Kurzipul (GrILd)
An expensive special quartz crucible called ``Crucible'' breaks into small pieces after one use.This is a major factor preventing price reduction.

上記の欠点を解決した粉末離扱剤を用いる多結晶シリコ
ンインゴット鋳造法について本願発明者らが既に提案し
たが、この方法#i鋳型内面に粉末離型剤(窒化シリコ
ン)を塗布し、その中でシリコン原料を溶融し、冷却固
化して多結晶シリコンインゴットを得る方法である◇粉
末離壓剤の存在は冷却時に多結晶シリコンと鋳型との熱
膨張係数の相異によって・生ずるストレスを緩和し、ま
た鋳型との固着が原因で生ずる多結晶シリコンインゴッ
トのクラックの発生を防ぎ、多結晶シリコンインゴット
管鋳麗から容易に分離することができるようにすること
である0従来の方法は多結晶シリコンインゴットを保持
する鋳型の材質に石英を用いてシリコンを溶融した。鋳
型と溶液との関には漏れはなく多結晶シリコンインゴッ
トを容易K11jlり出すことができたが、石英の軟化
点以上に加熱されるため、石英鉤部の一部が質形し、〈
シ返し使用することができない勢の欠点があ−1)fr
、。
The inventors of the present invention have already proposed a polycrystalline silicon ingot casting method using a powder release agent that solves the above-mentioned drawbacks. This is a method of obtaining polycrystalline silicon ingots by melting silicon raw materials and cooling and solidifying them.◇The presence of a powder release agent alleviates the stress caused by the difference in thermal expansion coefficient between polycrystalline silicon and the mold during cooling. In addition, the purpose is to prevent cracks in the polycrystalline silicon ingot caused by sticking to the mold, and to allow the polycrystalline silicon ingot to be easily separated from the tube casting. Silicon was melted using quartz as the material for the mold that holds the ingot. There was no leakage between the mold and the solution, and the polycrystalline silicon ingot could be easily ejected, but since it was heated above the softening point of quartz, a portion of the quartz hook formed.
There is a disadvantage that it cannot be used for return purposes - 1) fr
,.

カーボン製鋳型(内面にシリコンカーバイトコート)は
、上記の欠点を全て解決した材質であるが離型剤の粉末
が鋳型と多結晶シリコンインゴットの関につまっている
ために簡単に多結晶シリコンインゴットを現状のII#
型からでね取り出しにくい欠点があった。
Carbon molds (silicon carbide coated on the inner surface) are a material that solves all of the above disadvantages, but because mold release agent powder gets stuck between the mold and the polycrystalline silicon ingot, it is easy to break the polycrystalline silicon ingot. The current II#
The drawback was that it was difficult to remove from the mold.

本発明の目的はかかる欠点をなくした多結晶シリコンイ
ンゴットの製造方法を提供することKあるO 上記の目的を達成するためKは、鋳型からシリコンイン
ゴットが容易に取り出すことができ鋳mt連続して使用
できるようにする心像がある。そのために本発明におい
ては、鋳型の底面に上部が大きく下部が小さい傾斜をつ
けた穴を開け、その穴と同じ傾きをもったカーボン板を
鋳型上部より挿入し穴を塞ぐように#瓜の底面の一部が
脱着できるように構成し、この鋳型の中にシリコン原料
を入れ加熱融解し、これを冷却固化するととKよって多
結晶シリコンインゴットを形成する。
An object of the present invention is to provide a method for producing polycrystalline silicon ingots that eliminates such drawbacks. There is a mental image that allows you to use it. To this end, in the present invention, a hole is made in the bottom of the mold with a slope that is large at the top and small at the bottom, and a carbon plate with the same slope as the hole is inserted from the top of the mold to cover the hole. A silicon raw material is placed in this mold, heated and melted, and then cooled and solidified to form a polycrystalline silicon ingot.

以下本発明の実旌例について図面を用いて説明する◎ 第1図は本発明の一実施例を説明するための図である。Practical examples of the present invention will be explained below using drawings◎ FIG. 1 is a diagram for explaining one embodiment of the present invention.

図のようにカーボン鋳m(1)の底面の一部がカーボン
板(4)Kよつて脱着できるように構成され、この鋳型
の内側全面にシリコンカーバイ) (Sie )II[
をコーテング(2)する。もちろん底面に挿入するカー
ボン板(4)の鋳型内面にもコートする。更にシリコン
カーバイト族の上に粉末離型剤(窒化シリコン)(3)
を塗布し、その鋳智の中でシリコン原料を入れ加熱融解
する。
As shown in the figure, a part of the bottom of the carbon mold (1) is configured to be removable using a carbon plate (4), and a silicon carbide (Sie) II [
Coating (2). Of course, the inner surface of the mold of the carbon plate (4) inserted into the bottom is also coated. Furthermore, a powder mold release agent (silicon nitride) is added on top of the silicon carbide group (3)
The silicon raw material is placed in the casting chimney and heated and melted.

シリコン原料は鉤部内で完全く融液となシ、このような
条件0%とで鋳110底より固化させると1時間後に全
部固化し多結晶シリコンインゴットが得られる。
The silicon raw material is not completely melted in the hook, and if it is solidified from the bottom of the casting 110 under these conditions of 0%, it will be completely solidified after 1 hour and a polycrystalline silicon ingot will be obtained.

カーゼン側−渥底部に傾斜を持つ丸穴を開け、その*に
入るカーボン板に傾斜をつけ、両者を合わせると完全に
穴を富ぐようにする。その穴はシリコン融液O圧力によ
りて密閉されるととKなり、そのため融液が漏れること
社ない。
Drill a round hole with an inclination on the bottom of the box side, and make the carbon plate that goes into that hole with an inclination, so that when the two are put together, the hole is completely filled. When the hole is sealed by the pressure of the silicon melt O, there is no chance of the melt leaking out.

固化した多結晶シリコンインゴクトを鋳型から取り出す
場合、カーボン板(4)を上に押し上げることによp多
結晶シリコンインゴットを押し上け、また鋳型と多結晶
シリコンインゴットの関につまつている粉末離蓋剤も同
時に押し上げられる。このようにして多結晶シリコンイ
ンゴットを容易に鋳型から象り出すことができる。鋳型
自体には何ら損傷なく、再度使用することが可能である
。力−プン顧のため、他の鋳型材質より価格面において
も格安であり鋳WLVt加熱する必要な消費電力が少な
くすむ事、低コストのためのl1lli的な鋳型材質で
ある。第2図は底面の脱着構造の変形を示し、第1図と
同一記号は同一構成要素を示す〇このようにして固化し
た多結晶シリコンインゴットに熱応力が生じないように
除々に冷却して、温度を室温まで下ける。この方法で多
結晶シリコ70粒径が3■〜20簡のものが容易KII
られた。
When taking out the solidified polycrystalline silicon ingot from the mold, push up the carbon plate (4) to push up the p-polycrystalline silicon ingot, and remove the powder stuck between the mold and the polycrystalline silicon ingot. The release agent is also pushed up at the same time. In this way, a polycrystalline silicon ingot can be easily carved out of the mold. There is no damage to the mold itself and it can be used again. Due to its low power consumption, it is cheaper than other mold materials, requires less power consumption to heat the casting WLVt, and is a low-cost mold material. Figure 2 shows the deformation of the attachment/detachment structure on the bottom surface, and the same symbols as in Figure 1 indicate the same components.The thus solidified polycrystalline silicon ingot is cooled gradually so as not to generate thermal stress. Reduce temperature to room temperature. With this method, it is easy to obtain polycrystalline silicon 70 particles with a particle size of 3 to 20 cm.
It was done.

窒化シリボンの融点は1900℃と高く、シリコンカー
バイトは更にこれよりも高いため、シリコン融液と鋳型
との関にも反応もない。また窒化シリコンの成分が多結
晶シリコン中に一部溶けこむがこれが不#ll1111
yとして働くことはない。
The melting point of silicon nitride is as high as 1900°C, and silicon carbide is even higher than this, so there is no reaction between the silicon melt and the mold. Also, some of the silicon nitride components dissolve into the polycrystalline silicon, but this is not possible.
I will never work as a y.

尚、鋳型の材料にカーボンを用いた場合について説明し
たが1それ以外の例えば窒化シリコンのようにシリコン
融点以上の軟化点を持つ材料を用いても同様の効果が得
られる@ 以上説明したように多結晶シリコンインゴットを形成す
るに際して、本発明の方法を用いてシリコン融点以上の
軟化点管持つ材料の#層内で直接シリコンを溶融するこ
とによつて多結晶シリコンインゴットを形成することが
できた。その結果シリコンインゴットは鈎盟内よりたや
すく堆り出すことができるようになシ連続して使用する
ことが可能となつた。
Although we have explained the case where carbon is used as the mold material, the same effect can be obtained by using other materials such as silicon nitride, which has a softening point higher than the melting point of silicon. In forming the polycrystalline silicon ingot, the method of the present invention could be used to form a polycrystalline silicon ingot by directly melting silicon within a layer of material with a softening point above the silicon melting point. . As a result, the silicon ingot can be easily deposited from the inside of the hook and can be used continuously.

得られた多結晶シリコンインゴットの結晶性は何ら問題
なく結晶粒径が大きく、欠陥の少ない多結晶シリコンイ
ンゴットが容易に得られた。
The crystallinity of the obtained polycrystalline silicon ingot had no problems, the crystal grain size was large, and a polycrystalline silicon ingot with few defects was easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための図で、第2
図は鋳MKおける底面の脱着構造の変形管示す図である
。図において 1−・・−カーボン製鋳型 2・・・−シリコンカーパ
イ) (Sic )コーテング 3・・・−・窒化シリ
コン(5L3Nい粉末離型剤  4・・・−・鋳型の底
面における脱着部 ′71回
FIG. 1 is a diagram for explaining one embodiment of the present invention, and FIG.
The figure shows a modified tube with a detachable structure on the bottom of a cast MK. In the figure, 1--Carbon mold 2--Silicon coating 3--Silicon nitride (5L3N powder mold release agent) 4--Detachable part on the bottom of the mold '71 times

Claims (1)

【特許請求の範囲】[Claims] シリコン融点以上の軟化点を持つ材質より成り、かつ底
部の一部を脱着できるように構成し九鋳型管用い、該鋳
渥の内側にシリコンカーバイトをコーティングした後、
粉末離型剤を塗布した彼、該鋳flio中で多結晶シリ
コンを鋳造することを特徴とする多結晶シリコンインゴ
ットの鋳造法。
A mold tube made of a material with a softening point higher than the melting point of silicon and configured so that a part of the bottom part can be detached is used, and after coating the inside of the mold tube with silicon carbide,
A method for casting polycrystalline silicon ingots, characterized in that polycrystalline silicon is cast in a flio coated with a powdered mold release agent.
JP56122469A 1981-08-06 1981-08-06 Casting method of polycrystalline silicon ingot Expired JPS5953209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56122469A JPS5953209B2 (en) 1981-08-06 1981-08-06 Casting method of polycrystalline silicon ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56122469A JPS5953209B2 (en) 1981-08-06 1981-08-06 Casting method of polycrystalline silicon ingot

Publications (2)

Publication Number Publication Date
JPS5826019A true JPS5826019A (en) 1983-02-16
JPS5953209B2 JPS5953209B2 (en) 1984-12-24

Family

ID=14836612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56122469A Expired JPS5953209B2 (en) 1981-08-06 1981-08-06 Casting method of polycrystalline silicon ingot

Country Status (1)

Country Link
JP (1) JPS5953209B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149416A (en) * 1984-08-17 1986-03-11 Hoxan Corp Coating method of carbon tray for manufacturing polycrystalline silicon wafer
US5431869A (en) * 1993-01-12 1995-07-11 Council Of Scientific & Industrial Research Process for the preparation of polycrystalline silicon ingot
JP2009523115A (en) * 2006-01-12 2009-06-18 ベスビウス クルーシブル カンパニー Crucible for processing molten silicon

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163919A (en) * 1986-01-14 1987-07-20 Canon Inc Rotary encoder
JPS62163918A (en) * 1986-01-14 1987-07-20 Canon Inc Rotary encoder
JPS62200221A (en) * 1986-02-27 1987-09-03 Canon Inc Rotary encoder
JPS62200222A (en) * 1986-02-27 1987-09-03 Canon Inc Rotary encoder
JPS62200224A (en) * 1986-02-27 1987-09-03 Canon Inc Rotary encoder
JPS62201314A (en) * 1986-02-28 1987-09-05 Canon Inc Encoder
JPS62201313A (en) * 1986-02-28 1987-09-05 Canon Inc Rotary encoder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149416A (en) * 1984-08-17 1986-03-11 Hoxan Corp Coating method of carbon tray for manufacturing polycrystalline silicon wafer
JPH038579B2 (en) * 1984-08-17 1991-02-06 Hokusan Kk
US5431869A (en) * 1993-01-12 1995-07-11 Council Of Scientific & Industrial Research Process for the preparation of polycrystalline silicon ingot
JP2009523115A (en) * 2006-01-12 2009-06-18 ベスビウス クルーシブル カンパニー Crucible for processing molten silicon

Also Published As

Publication number Publication date
JPS5953209B2 (en) 1984-12-24

Similar Documents

Publication Publication Date Title
JPS5826019A (en) Casting method for polycrystalline silicon ingot
CN202671713U (en) Crucible for polycrystalline silicon cast ingots
CN104032368A (en) Preparation method of high-efficiency polycrystalline silicon ingots
CN102383184A (en) Crystal, and method and device for casting same
JP2002170780A (en) Crucible and method for growing polycrystal silicon using it
CN104451870A (en) Casting method of polycrystalline silicon ingot
CN102644108A (en) Charging method for growing silicon crystal by using casting process and process for growing silicon crystal
JPH11236291A (en) Crucible for producing silicon ingot having unidirectionally solidified polycrystalline structure
US4946542A (en) Crystal growth method in crucible with step portion
JP2006273664A (en) Casting mold for silicon casting, silicon casting device and method for casting polycrystalline silicon ingot
TWI798177B (en) Crucible for growing silicon ingots and method for preparing a crucible for growing silicon ingots
JP3206540B2 (en) Laminated crucible for producing silicon ingot and method for producing the same
JPS5939897B2 (en) Method for manufacturing polycrystalline silicon semiconductor
JP4726454B2 (en) Method for casting polycrystalline silicon ingot, polycrystalline silicon ingot using the same, polycrystalline silicon substrate, and solar cell element
JP2008127254A (en) Method for manufacturing silicon ingot
JPS5953208B2 (en) Method for manufacturing polycrystalline silicon semiconductor
JPS609656B2 (en) Method for manufacturing polycrystalline silicon semiconductor
JPS59232908A (en) Manufacture of coarse crystal silicon
CN2629875Y (en) silicon carbide section mould for directional solidification
JPS5930794A (en) Melting crucible device for pulling up single crystal
JPH1192284A (en) Production of silicon ingot having polycrystal structure solidified in one direction
JPS61232295A (en) Production of silicon crystal semiconductor
JP4868747B2 (en) Silicon casting method
JPS5899115A (en) Casting method for polycrystalline silicon ingot
JPS6243535B2 (en)