JPS5825759B2 - Youkisakusankanokanokounouritsukahouhou - Google Patents

Youkisakusankanokanokounouritsukahouhou

Info

Publication number
JPS5825759B2
JPS5825759B2 JP14853175A JP14853175A JPS5825759B2 JP S5825759 B2 JPS5825759 B2 JP S5825759B2 JP 14853175 A JP14853175 A JP 14853175A JP 14853175 A JP14853175 A JP 14853175A JP S5825759 B2 JPS5825759 B2 JP S5825759B2
Authority
JP
Japan
Prior art keywords
film
electrolyte
anode
frequency
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14853175A
Other languages
Japanese (ja)
Other versions
JPS5272338A (en
Inventor
省三 水本
元雄 川崎
靖 那賀
秀美 縄舟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uemera Kogyo Co Ltd
Original Assignee
Uemera Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uemera Kogyo Co Ltd filed Critical Uemera Kogyo Co Ltd
Priority to JP14853175A priority Critical patent/JPS5825759B2/en
Publication of JPS5272338A publication Critical patent/JPS5272338A/en
Publication of JPS5825759B2 publication Critical patent/JPS5825759B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrochemical Coating By Surface Reaction (AREA)

Description

【発明の詳細な説明】 この発明は、アルミニウムまたはアルミニウム合金の陽
極酸化を高能率的に行う方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a highly efficient method for anodizing aluminum or aluminum alloys.

評言すれば、アルミニウムまたはアルミニウム合金(以
下、両者を一括してl?と略記する。
To comment, aluminum or aluminum alloy (hereinafter, both will be collectively abbreviated as l?).

)に化成する、酸化被膜を溶解する能力の大きい電解液
、例えば硫酸などを用い、常温ないし加温状態において
陽極に対し振巾0.1〜200mTIL1振動数1〜1
20Hzの振動を与え、陽極表面において電解液の乱流
を生じせしめつつ電解処理することからなるAAの陽極
酸化方法に関するものである。
), using an electrolytic solution with a large ability to dissolve oxide films, such as sulfuric acid, and an amplitude of 0.1 to 200 mTIL1 frequency of 1 to 1 with respect to the anode at room temperature or in a heated state.
This invention relates to a method for anodizing AA, which comprises performing electrolytic treatment while applying vibrations of 20 Hz and generating turbulent flow of electrolyte on the anode surface.

従来、Alに耐食性、耐摩耗性、密着性および着色性を
付与する目的で陽極酸化法が実施されており、それぞれ
の目的に合致する被膜の形成が行なわれている。
Conventionally, anodic oxidation has been carried out for the purpose of imparting corrosion resistance, abrasion resistance, adhesion and coloring properties to Al, and coatings that meet each purpose have been formed.

しかし、従来法によると処理に長時間を要し、しかも形
成可能な被膜量に限界があるなどの技術上の大きな欠点
があった。
However, the conventional method has major technical drawbacks, such as requiring a long time for processing and limiting the amount of film that can be formed.

さて、陽極酸化被膜の生成速度は、被膜の化成速度と電
解液への溶解速度との差であり、前記化成速度および溶
解速度は電流密度および処理温度を上昇すれば増大する
ことが知られている。
Now, the rate of formation of an anodic oxide film is the difference between the rate of chemical formation of the film and the rate of dissolution into the electrolytic solution, and it is known that the rate of chemical formation and dissolution rate increase if the current density and processing temperature are increased. There is.

従って、Alの陽極酸化において電流密度を高くすれば
、被膜の化成速度が大きくなり、ち密な被膜が得られる
ことになる。
Therefore, if the current density is increased in the anodic oxidation of Al, the rate of film formation will be increased and a dense film will be obtained.

しかしその反面、Alの表面における電解液の局部的温
度の上昇が発生しやすく、これによって被膜の溶解速度
も大きくなることは避けられず、その結果、生成速度と
生成量にも自づと限度がある。
However, on the other hand, the local temperature of the electrolyte on the Al surface tends to increase, which inevitably increases the dissolution rate of the film, and as a result, there is a limit to the production rate and amount. There is.

A7の陽極酸化は、通常室温において0.5〜2A/d
iの電流密度を採用して数十分間処理を行い最大30μ
程度の被膜を使用目的に応じ形成できる。
A7 anodic oxidation is usually 0.5 to 2 A/d at room temperature.
The current density of i is used and the treatment is carried out for several minutes, and the
A certain amount of coating can be formed depending on the purpose of use.

また特に硬質被膜が要求される場合には、5°C〜−1
0℃、1〜2 A7’d trt’という条件が採用さ
れる。
In addition, if a particularly hard coating is required, 5°C to -1
The following conditions are adopted: 0°C, 1-2 A7'd trt'.

しかし、被膜の生成効率を上げるため、電解液を冷却す
る方法は、設備とランニングに多大の費用を要し経済的
制約を受け、また被膜の生成速度と生成量を増大させる
という面でも決して満足できる方法ではなかった。
However, the method of cooling the electrolyte in order to increase the film production efficiency is economically constrained by requiring a large amount of equipment and running costs, and is never satisfactory in terms of increasing the film formation rate and amount. There was no way it could be done.

本発明者等は、上記従来法に見られる欠点を解消するた
め基礎実験を行い、陽極酸化中にAAの表面に発生する
大量の熱を速やかに取り除くことが必要であることを知
り得た。
The present inventors conducted basic experiments in order to eliminate the drawbacks seen in the above-mentioned conventional methods, and learned that it is necessary to quickly remove a large amount of heat generated on the surface of AA during anodization.

そこで、さらに実験と研究を続けた結果、Alを陽極酸
化するに当って、酸化被膜の溶解能力の大きい電解液を
用い常温ないし60℃程度までの加熱状態において陽極
に対し振巾0.1〜2−00 myrt、振動数1〜1
20H2の振動を与え陽極表面において電解液の乱流を
生じせしめつつ電解処理を行うことが、極めて効果的で
あることを多数の実験により確認した。
As a result of further experiments and research, we found that when anodic oxidizing Al, we used an electrolytic solution with a high ability to dissolve the oxide film, and when heated from room temperature to about 60°C, the amplitude was 0.1~0. 2-00 myrt, frequency 1-1
It has been confirmed through a number of experiments that it is extremely effective to perform electrolytic treatment while applying vibrations of 20H2 to generate a turbulent flow of electrolyte on the anode surface.

本発明は上記実験結果に基づいて完成をみたものである
○ 本発明をAlの陽極酸化に実施すれば、高電流密度の操
作が可能となり、陽極酸化を高速、高能率に行い得るこ
とになる。
The present invention has been completed based on the above experimental results. If the present invention is applied to anodic oxidation of Al, it will be possible to operate at high current density and perform anodic oxidation at high speed and with high efficiency. .

また生成被膜の量も顕著に向上でき、しかも60℃程度
までの高温操作によって低電圧の処理も可能であり、こ
れによって消費電力の節減もできるなどの効果もある。
Furthermore, the amount of film formed can be significantly improved, and furthermore, low voltage processing is possible by operating at high temperatures up to about 60° C., which also has the effect of reducing power consumption.

従って本発明は、この種の作業に画期的方法を提供する
と考える。
We therefore believe that the present invention provides an innovative method for this type of work.

さらに本発明について詳細に説明すると、本発明の陽極
酸化と類似の金属表面処理が、メッキ工程において、電
解液の空気攪拌、溶液循環、超音波攪拌あるいは被処理
物の揺動という形を採用して高電流密度で行なわれてい
る。
To further explain the present invention in detail, the metal surface treatment similar to the anodizing of the present invention employs air stirring of the electrolyte, solution circulation, ultrasonic stirring, or shaking of the object to be treated in the plating process. It is carried out at high current density.

しかし、Alの陽極酸化においては、前記メッキの場合
とは被膜の生成機構が全く異るためか、複雑な形状の品
物に均二被膜を形成する際に、空気または揺動によりゆ
るく攪拌する方法が実施されているだけで、高速、高能
率化を目的とする攪拌は全く考慮されていなかった。
However, in anodic oxidation of Al, the film formation mechanism is completely different from that in the case of plating, so when forming a uniform film on an item with a complicated shape, a method of gently stirring with air or rocking is used. However, stirring for the purpose of high speed and high efficiency was not considered at all.

AAI’の陽極酸化に前記メッキの場合と同様の攪拌方
式を採用すれば、その表面に発生する熱の拡散を速め、
被膜の生成速度を僅かながら増大できることは事実であ
る。
If the same stirring method used for plating is adopted for anodizing AAI', the heat generated on the surface will be diffused faster,
It is true that the rate of film formation can be increased slightly.

しかし、従来の攪拌方式によっては、高温または高電流
密度において陽極酸化を行ったとしても、被膜の生成を
直接支配するAlの表面近くの熱の移動、すなわちA1
表面の電解液の拡散を十分効果的には行い得ないため、
飛躍的効果を期待できなかった。
However, depending on the conventional stirring method, even if anodic oxidation is performed at high temperature or high current density, heat transfer near the surface of Al, which directly controls the formation of the film, that is, A1
Because the electrolyte on the surface cannot be diffused effectively enough,
I couldn't expect a dramatic effect.

ところが、本発明のようにA7と電解液との平均移動速
度(振巾と振動数との積の2倍である。
However, as in the present invention, the average moving speed of A7 and the electrolyte is twice the product of amplitude and frequency.

)が2、0 mml sec以上、好適には100mm
1 sec以上の振動を与えることにより、Alの表面
において電解液の乱流を形成させ、陽極酸化中に生ずる
熱を速かに拡散できるようなせば、高電流密度での作業
においても、A1表面の温度上昇を実質的に防止し、高
能率に陽極酸化を行い得ることになる。
) is 2.0 mml sec or more, preferably 100 mm
By applying vibrations of 1 sec or more, a turbulent flow of electrolyte is formed on the Al surface, and the heat generated during anodic oxidation can be quickly diffused. This means that anodic oxidation can be performed with high efficiency by substantially preventing a temperature rise in the temperature.

しかも上記20 mml sec以上の平均移動速度は
、公知のパイブレーク−によって容易に達成でき、本発
明の実施には全く支障がない。
Moreover, the above average moving speed of 20 mml sec or more can be easily achieved by a known pie break, and there is no problem in implementing the present invention.

つぎに本発明において陽極に与える振巾と振動数につい
て述べると、振巾0.1〜2001n7n1振動数1〜
120Hzの振動であり、それらの積の2倍が100以
上である範囲が好適である。
Next, in the present invention, the amplitude and frequency given to the anode will be described.
It is preferable that the vibration frequency is 120 Hz, and twice the product thereof is 100 or more.

本発明において、このように数値を限定した理由は、ま
ず振巾については0.1間以下では見かけ上静止状態と
なり、前記した乱流効果を果し得ないことを実験的に認
めたからであり、一方、200mm以上にすると、浴の
大きな波立ちと飛沫の発生などにより実施がむづかしく
なり、また被処理物の治具への固定が困難になるなどの
欠点がみられたからである。
In the present invention, the reason why the numerical values are limited in this way is that it has been experimentally found that if the amplitude is less than 0.1, it will appear to be in a stationary state and the above-mentioned turbulent flow effect cannot be achieved. On the other hand, if the length is 200 mm or more, it becomes difficult to carry out the process due to large ripples and splashes in the bath, and it also becomes difficult to fix the object to be treated on a jig.

また振動数については、IH2以下においてはAlの表
面に乱流が生ずる最低平均移動速度を得る場合に、大き
な振巾が必要となり、その結果、電解浴の波立ち、Al
のラッキングの困難性と共にエネルギー的損失が大きく
なる欠点があり、一方、120Hz以上とすれば、平均
移動速度を上げることになり、エネルギー的損失が大き
く、有効でないことを認めたからである。
Regarding the frequency, at IH2 or below, a large amplitude is required to obtain the minimum average moving speed that causes turbulence on the surface of Al, and as a result, the ripples in the electrolytic bath, and the
This is because it was recognized that there is a drawback that the racking is difficult and the energy loss is large. On the other hand, if the frequency is set to 120 Hz or higher, the average moving speed will be increased, resulting in a large energy loss and it is not effective.

つぎに陽極酸化における本発明の高速振動の効果は、使
用する電解質の種類、電流密度、温度などによっても異
なるが、通常20 mml s6c程度からAAの表面
において電解液は層流から乱流に変わり、攪拌の効果が
顕著となる。
Next, the effect of the high-speed vibration of the present invention in anodic oxidation varies depending on the type of electrolyte used, current density, temperature, etc., but normally the electrolyte changes from laminar flow to turbulent flow on the surface of AA from about 20 mml s6c. , the effect of stirring becomes significant.

すでに本発明者らは、Alの表面における溶液の動きが
層流である場合には、電解によって発生する熱の移動量
は流速のQ、5乗に比例し、これが乱流である場合には
、その0.7乗に比例することを実験によって確認して
いる。
The present inventors have already found that when the movement of the solution on the Al surface is laminar, the amount of heat transferred by electrolysis is proportional to the flow velocity Q to the 5th power, and when this is turbulent, , it has been confirmed through experiments that it is proportional to the 0.7th power.

そして、本発明の高速振動は、単にAAと電解液との平
均移動速度を増大させることから生れるとは予想し得な
いほど電解により発生する熱の除去に有効であると言っ
ても過言ではない。
It is no exaggeration to say that the high-speed oscillation of the present invention is so effective in removing heat generated by electrolysis that it would be impossible to imagine that it would result from simply increasing the average movement speed of AA and electrolyte. do not have.

従って、本発明の高速攪拌の条件は、振動数1〜120
H2%振巾0.1〜200間の範囲にあり、振動数と
振巾の積の2倍(平均移動速度)が201好ましくは1
00 mml s&C以上であり、A1表面で電解溶液
の乱流を生ずることを必要とした。
Therefore, the conditions for high-speed stirring of the present invention are a vibration frequency of 1 to 120.
H2% amplitude is in the range between 0.1 and 200, and twice the product of vibration frequency and amplitude (average moving speed) is 201, preferably 1
00 mml s&C and required a turbulent flow of the electrolytic solution on the A1 surface.

また、このような高速攪拌の効果は、電解液としてAl
上に形成される酸化被膜を溶解する能力の大きい例えば
、下表に掲げた種類および濃度の電解液が好適である。
In addition, the effect of such high-speed stirring is due to the fact that Al as an electrolyte
For example, electrolytic solutions having the types and concentrations listed in the table below are suitable because they have a high ability to dissolve the oxide film formed thereon.

(注)表記のアルカリ浴は、炭酸すh IJウム、リン
酸ナトリウム、メタホウ酸ナトリ ウムなどの浴である。
(Note) The alkaline baths mentioned are baths of sodium carbonate, sodium phosphate, sodium metaborate, etc.

これらの電解溶液は、化成した被膜を通してのバリア一
層への到達能力が犬で、被膜化成能力の太きいものであ
るが、同時に、電解中に発生する熱による逆反応、すな
わち、化成した被膜の溶解速度の増加度合も犬である。
These electrolytic solutions have the ability to reach the barrier layer through the chemically formed film and have a strong film forming ability, but at the same time, they are susceptible to reverse reactions due to the heat generated during electrolysis, that is, the formation of the chemically formed film. The degree of increase in dissolution rate is also variable.

従って、これらの溶液においては、高速攪拌による熱の
除去による被膜生成効率の向上が大きく、高能率で厚い
被膜を形成するのに好適である。
Therefore, in these solutions, the film formation efficiency is greatly improved by removing heat through high-speed stirring, and these solutions are suitable for forming thick films with high efficiency.

1例として15%硫酸を電解液とし、無攪拌状態で30
℃においてAlを陽極酸化する場合、被膜量は最適電流
密度6A/dm2で最大0.5g/dmであるのが、同
じような処理を、振巾1.2 mm、振動数60Hzの
条件で行うと被膜量は最適電流密度20A/dm”にお
いて最大3g/drI7″と増加する。
As an example, using 15% sulfuric acid as the electrolyte, the electrolyte was heated for 30 min without stirring.
When anodic oxidizing Al at ℃, the maximum coating amount is 0.5 g/dm at an optimum current density of 6 A/dm2, but a similar process is performed at a vibration width of 1.2 mm and a vibration frequency of 60 Hz. The coating amount increases to a maximum of 3 g/drI7'' at the optimum current density of 20 A/dm''.

すなわち、陽極振動の採用により6倍量の被膜の形成が
でき、しかも処理速度を3倍以上となし得る。
That is, by employing anode vibration, it is possible to form a film six times as large, and the processing speed can be tripled or more.

つぎに陽極酸化被膜の生成効率(実際に生成した被膜と
陽極酸化に要した電気量から計算によって求めた理論的
被膜生成量との比をいう。
Next, the production efficiency of the anodic oxide film (ratio between the film actually produced and the theoretical amount of film produced calculated from the amount of electricity required for anodic oxidation).

)について説明する。) will be explained.

生成効率は、電流密度によって異なり、また通電時間を
長くすると低下してくるが、上記浴条件においては、無
攪拌の場合は生成効率が約6A/d−のときが最高で、
振動処理では50A/dr11″以上において効率よく
生成が行なわれる。
The generation efficiency varies depending on the current density and decreases as the current application time increases, but under the above bath conditions, without stirring, the generation efficiency is at its highest when it is about 6 A/d-.
In the vibration treatment, generation is performed efficiently at 50 A/dr 11'' or higher.

さらに、前記した15%硫酸浴中で30℃で無攪拌にお
いて陽極酸化した場合に通電量を10.60.100A
mm/dmというように増大させて行くと、生成効率は
80%、70%、50%と順次低下し、それ以上にする
と急激に低下することがわかった。
Furthermore, when anodic oxidation was performed in the 15% sulfuric acid bath described above at 30°C without stirring, the amount of current applied was 10.60.100A.
It was found that when increasing the value of mm/dm, the production efficiency sequentially decreases to 80%, 70%, and 50%, and when it increases beyond that, it decreases rapidly.

一方、同一浴条件で振巾25m4振動数10Hzの陽極
振動を行いIOA/diの条件で陽極酸化し、電気量を
50.400.600゜900 Aim/ diという
ように増大させると生成効率は90%、80%、75%
、50%を示した。
On the other hand, if the anode oscillation is carried out under the same bath conditions with a width of 25 m4 and a frequency of 10 Hz and anodization is performed under the conditions of IOA/di, and the amount of electricity is increased to 50.400.600°900 Aim/di, the production efficiency is 90. %, 80%, 75%
, 50%.

すなわち、後者によれば前者に較べて実際10倍以上の
陽極酸化被膜の形成が可能ということになる。
That is, according to the latter method, it is actually possible to form an anodic oxide film ten times more than the former method.

また、成る一定の電流密度においてAAの表面に酸化処
理を行えば、陽極の振動条件(振巾と振動数)によって
生成効率と通電量による効率の降下度合は異なる。
Furthermore, if the surface of AA is oxidized at a constant current density, the generation efficiency and the degree of decrease in efficiency depending on the amount of current will vary depending on the vibration conditions (width and frequency) of the anode.

従って、陽極酸化に当っては、上記条件を適正とするよ
う考慮すべきである。
Therefore, when performing anodic oxidation, consideration should be given to ensuring that the above conditions are appropriate.

以上の説明によって、本発明を理解されたと考えるが、
以下、実施例を掲げて、さらに本発明を具体的に説明す
る。
It is assumed that the present invention has been understood through the above explanation, but
EXAMPLES Hereinafter, the present invention will be further specifically explained with reference to Examples.

実施例 1 15重量%の硫酸を電解溶液とし、振動モーターの振動
子に直結させである治具に、試片として清浄となした2
sアルミニウム板を固定し、振巾1間、振動数10Hz
で試片を振動させつつ、30℃で陽極酸化処理を行った
Example 1 15% by weight sulfuric acid was used as an electrolytic solution, and a clean sample was placed in a jig directly connected to the vibrator of a vibration motor.
s Fixed aluminum plate, amplitude 1 interval, frequency 10Hz
Anodizing treatment was performed at 30° C. while vibrating the specimen.

15A/dmの電流密度のとき、30分間で最大被膜が
得られ、その値は約60μであった。
At a current density of 15 A/dm, a maximum coating was obtained in 30 minutes with a value of approximately 60 μ.

比較のために、試片の振動を止めて、電解溶液を空気攪
拌を行いつつ上記と同様の処理を行ったところ、最大被
膜50μがIOA/dm”、60分で得られた。
For comparison, the same treatment as above was carried out while the vibration of the sample was stopped and the electrolytic solution was stirred with air, and a maximum coating film of 50 μm was obtained at IOA/dm” in 60 minutes.

実施例 2 実施例1と同様15重量%の硫酸を電解液とし、振動モ
ーターの振動子に直結させである治具に、試片として清
浄となした2sアルミニウム板を固定し、振巾57n1
1L1振動数10Hzで振動させつつ30℃、10A/
diで定電流電解を行ったところ、60分後、試片上に
厚さ120μの硬質で無色の良好な酸化被膜を形成でき
た。
Example 2 As in Example 1, 15% by weight sulfuric acid was used as the electrolyte, and a clean 2s aluminum plate was fixed as a test piece to a jig directly connected to the vibrator of the vibration motor, and the vibration width was 57n1.
1L1 Vibrating at a frequency of 10Hz at 30℃, 10A/
When constant current electrolysis was carried out using di, a good hard, colorless oxide film with a thickness of 120 μm was formed on the specimen after 60 minutes.

比較のため、振動を止めて、上記と同一試片に対し同一
条件で無攪拌状態において陽極処理を施したところ、1
0分後に8μの陽極酸化被膜の形成がみられたが、それ
以後は膜厚が減少して行くことを認めた。
For comparison, when the vibration was stopped and anodization was performed on the same specimen as above under the same conditions without stirring, 1
After 0 minutes, formation of an 8 μm anodic oxide film was observed, but the film thickness was observed to decrease thereafter.

実施例 3 実施例1で述べたと同一の電解液および装置を用いて、
振巾50間、振動数60Hzで陽極を振動させつつ30
℃、50A/dmで28アルミニウム試片に対して電解
処理を行ってみたところ、25分後に厚み250μの良
好な酸化被膜を形成し得た。
Example 3 Using the same electrolyte and equipment as described in Example 1,
30 minutes while vibrating the anode at a frequency of 60 Hz and a width of 50 minutes.
When electrolytic treatment was performed on a 28 aluminum specimen at 50 A/dm at 50° C., a good oxide film with a thickness of 250 μm was formed after 25 minutes.

比較のため、上記陽極振動にかえて空気攪拌を行い、同
一試片に対し同一条件で電解を行ったところ、被膜の生
成量は最大23μに止まった。
For comparison, when electrolysis was performed on the same specimen under the same conditions with air agitation instead of the anode vibration, the amount of film formed remained at a maximum of 23μ.

実施例 4 4重量%のシュウ酸を電解液とし、実施例1において述
べたと同様の装置を用い、振巾1001n11L1振動
数5 Hz1温度50℃、2sアルミニウムを陽極とし
て陽極電流密度50A/dmにおいて電解処理を行った
ところ、6分後に厚み50μの良好な酸化被膜を形成し
得た。
Example 4 Electrolysis was carried out using 4% by weight oxalic acid as an electrolyte, using the same apparatus as described in Example 1, amplitude 1001n11L1 frequency 5Hz1 temperature 50°C for 2s at an anode current density of 50A/dm using aluminum as an anode. When the treatment was carried out, a good oxide film with a thickness of 50 μm was formed after 6 minutes.

これと比較のため、陽極振動にかえて空気攪拌を行いつ
つ同一試片に対し、同一の条件で電解を行ってみたとこ
ろ、被膜の生成量は20μ厚みに止まることを知り得た
For comparison, electrolysis was performed on the same specimen under the same conditions while air agitation was used instead of anode vibration, and it was found that the amount of film formed was only 20 μm thick.

実施例 5 8重量%のクロム酸を電解液とし、実施例1と同様の装
置を用い、振巾Q、 5 mal、振動数100 H;
IA温度40℃となし、2sアルミニウムを陽極として
陽極電流密度40 A/ dmjにおいて電解処理を行
ってみたところ、10分後に厚み50μの良好な酸化被
膜を形成し得た。
Example 5 Using 8% by weight chromic acid as an electrolyte, using the same apparatus as in Example 1, amplitude Q, 5 mal, frequency 100 H;
When electrolytic treatment was carried out at an IA temperature of 40° C. and an anode current density of 40 A/dmj using 2s aluminum as an anode, a good oxide film with a thickness of 50 μm was formed after 10 minutes.

これと比較するため、陽極振動にかえて空気攪拌を行い
、上記と同一試片に対し、同一条件で電解を行ってみた
ところ、被膜の生成量は20μ厚みに止まった。
For comparison, when electrolysis was performed on the same specimen under the same conditions as above, using air agitation instead of anode vibration, the amount of film formed was only 20 μm thick.

上記実施例1〜5から本発明の陽極振動は、Al上に高
速、高能率で厚い酸化被膜を形成させるため有効である
ことは明白である。
From Examples 1 to 5 above, it is clear that the anode vibration of the present invention is effective for forming a thick oxide film on Al at high speed and with high efficiency.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウムまたはアルミニウム合金を陽極酸化す
るに当り、化成する酸化被膜を溶解する能力の大きい電
解液を用い、常温ないし加温状態において陽極に対し振
巾0.1〜200mm、振動数1〜120Hzの振動を
与え、陽極表面において電解液の乱流を生じせしめつつ
電解処理することを特徴とする陽極酸化の高能率化方法
1. When anodizing aluminum or aluminum alloy, use an electrolytic solution that has a high ability to dissolve the oxide film that is formed, and apply an oscillation wave of 0.1 to 200 mm and a frequency of 1 to 120 Hz to the anode at room temperature or in a heated state. A method for increasing the efficiency of anodic oxidation, which is characterized by performing electrolytic treatment while applying vibration to generate a turbulent flow of electrolyte on the anode surface.
JP14853175A 1975-12-15 1975-12-15 Youkisakusankanokanokounouritsukahouhou Expired JPS5825759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14853175A JPS5825759B2 (en) 1975-12-15 1975-12-15 Youkisakusankanokanokounouritsukahouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14853175A JPS5825759B2 (en) 1975-12-15 1975-12-15 Youkisakusankanokanokounouritsukahouhou

Publications (2)

Publication Number Publication Date
JPS5272338A JPS5272338A (en) 1977-06-16
JPS5825759B2 true JPS5825759B2 (en) 1983-05-30

Family

ID=15454856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14853175A Expired JPS5825759B2 (en) 1975-12-15 1975-12-15 Youkisakusankanokanokounouritsukahouhou

Country Status (1)

Country Link
JP (1) JPS5825759B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110449U (en) * 1984-12-26 1986-07-12
JPS61215457A (en) * 1985-03-22 1986-09-25 Aisin Seiki Co Ltd Onboard ignition device
JPS6299242A (en) * 1985-10-28 1987-05-08 Yamaha Motor Co Ltd Power source input device for vehicle
JPS63219452A (en) * 1987-03-07 1988-09-13 Fumio Hayakawa Antishift device for vehicle
JPH01153362A (en) * 1987-12-08 1989-06-15 Seiichi Makino Method of preventing vehicle from being thieved
JPH01115969U (en) * 1988-01-29 1989-08-04
JPH0218655U (en) * 1988-07-25 1990-02-07

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3217586B2 (en) * 1994-03-17 2001-10-09 株式会社半導体エネルギー研究所 Anodizing apparatus and anodizing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110449U (en) * 1984-12-26 1986-07-12
JPS61215457A (en) * 1985-03-22 1986-09-25 Aisin Seiki Co Ltd Onboard ignition device
JPS6299242A (en) * 1985-10-28 1987-05-08 Yamaha Motor Co Ltd Power source input device for vehicle
JPS63219452A (en) * 1987-03-07 1988-09-13 Fumio Hayakawa Antishift device for vehicle
JPH01153362A (en) * 1987-12-08 1989-06-15 Seiichi Makino Method of preventing vehicle from being thieved
JPH01115969U (en) * 1988-01-29 1989-08-04
JPH0218655U (en) * 1988-07-25 1990-02-07

Also Published As

Publication number Publication date
JPS5272338A (en) 1977-06-16

Similar Documents

Publication Publication Date Title
JP3046594B1 (en) Anodizing system for metals utilizing vibrating flow agitation
US4097342A (en) Electroplating aluminum stock
JPS5825759B2 (en) Youkisakusankanokanokounouritsukahouhou
Raj et al. Pulse anodizing—an overview
JP2004035930A (en) Aluminum alloy material and anodization treatment method therefor
JP3673477B2 (en) Method for forming a film of magnesium alloy
JPS60116800A (en) Degreasing and activating method by high speed current inversion electrolysis
JP2003239100A (en) Plating treatment method for preventing hydrogen brittleness
US2092130A (en) Anodic cleaning process
CN108914184B (en) A kind of low energy consumption aluminum alloy differential arc oxidation film layer preparation method
RU2068037C1 (en) Method to produce composition coatings on aluminum and its alloys
JPH04193998A (en) High-speed anodization method by repeated instantaneous current application
JP2001049493A (en) Method for formation of film on magnesium alloy and electrolytic solution therefor
CN109402709A (en) One kind being used to prepare Cu- nano TiC/SiO2The method of gradient layer
Kanagaraj et al. Effect of pulse frequency of pulse anodising of AA 1100 aluminium alloy in sulphamic acid
JP4616490B2 (en) Plating method for CVT pulley
JPS6312159B2 (en)
JPH03229895A (en) Aluminum alloy sheet to be coated for can lid and its production
JP4827149B2 (en) Surface treatment method for free access floor components and free access floor components
JPS59133399A (en) Method and device for continuous surface treatment
JP3202447B2 (en) Method for forming anodized film on aluminum alloy parts
Ponomarev et al. Features of the influence of electric modes on micro-arc oxidation process
JP2004277866A (en) Sealing treatment method for aluminum or aluminum alloy
JPS6313696A (en) Production of welding wire
JPS63235500A (en) Pretreatment for electrolytic surface roughening treatment