JPS5825419A - Preventing method for low-temperature cracking of martensitic stainless steel - Google Patents

Preventing method for low-temperature cracking of martensitic stainless steel

Info

Publication number
JPS5825419A
JPS5825419A JP12293081A JP12293081A JPS5825419A JP S5825419 A JPS5825419 A JP S5825419A JP 12293081 A JP12293081 A JP 12293081A JP 12293081 A JP12293081 A JP 12293081A JP S5825419 A JPS5825419 A JP S5825419A
Authority
JP
Japan
Prior art keywords
temperature
stainless steel
cooling
temp
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12293081A
Other languages
Japanese (ja)
Other versions
JPH0144768B2 (en
Inventor
Terutaka Tsumura
津村 輝隆
Yasuo Otani
大谷 泰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12293081A priority Critical patent/JPS5825419A/en
Publication of JPS5825419A publication Critical patent/JPS5825419A/en
Publication of JPH0144768B2 publication Critical patent/JPH0144768B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To prevent the low-temp. cracking of martensitic stainless steel quickly and surely by cooling the martensitic stainless steel after hot working once and holding and the same for a prescribed time then reheating the steel up to a pearlite transformation temp. CONSTITUTION:The martensitic stainless steel after hot working is cooled from its high temp. state down to a temp. T in the temp. region wherein the upper limit is Ms point +150 deg.C and the lower limit is the higher of Mf point of 100 deg.C at the cooling rate that does not enter the nose part of the pearlite transformation in a continuous cooling transformation curve; thereafter, the steel is held at said temp. region for at least the time (t) minute specified by the formula: t= 1/10 (T-Ms) when T>=Ms and t=0 when T<Ms (where t; minute, T: deg.C, Ms; deg.C), then the steel is reheated up to the prescribed temp. below the Ac1 point and is held at said temp. for at least one minute to undergo tempering of the transformed martensite and/or pearlite convertion of untransformed austenite, after which the steel is cooled down to an ordinary temp.

Description

【発明の詳細な説明】 本発明はマルテンサイト系ステンレス鋼、%に中炭素あ
るいは高炭素マルテンサイト系ステンレス鋼の熱間加工
後の遅れ破壊、焼割れ等の低温割れを防止する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing low-temperature cracking such as delayed fracture and quench cracking after hot working of martensitic stainless steel, medium carbon or high carbon martensitic stainless steel. be.

従来、マルテンサイト系ステンレス鋼、例えばマルテン
サイト系のクロムステンレス鋼は、マルテンサイト変態
による自硬性を呈する故に、それを利用する目的で広く
利用されてきている。また最近でFi、その耐炭績ガス
腐食性能が注目されて、%に中炭素の18Crステンレ
ス鋼などは油井管等、資源、エネルギー関連分野におい
て4幅広く使用されるよう罠なって来た。
Conventionally, martensitic stainless steels, such as martensitic chromium stainless steels, exhibit self-hardening properties due to martensitic transformation, and have therefore been widely used for the purpose of utilizing this property. In addition, recently, Fi, its gas corrosion resistance has attracted attention, and medium carbon 18Cr stainless steel has become widely used in resource and energy related fields such as oil country tubular goods.

しかしながら、この1ルチンサイト系ステンレス鋼は焼
入性が大きいため、高温における熱間加工後の放冷状態
で十分に焼きの入゛りた組織、つま〉マルテンサイト組
織となシ、常温まで完全に冷却し九場合にはs Ip#
K M m点が800℃以下のものでは、焼割れが起る
おそれがある。また、その冷却機、次工程に移るまでの
間に、置かれた環境によりては遅れ破壊を生じることも
ある。そしてこのような低温割れは、熱間加工の後工程
における処理を不能にしたり、あるいは手入れに多大の
工数を必要とするため、マルテンサイト系ステンレス鋼
製品製造の上で極めて大きな問題となっている。
However, since this type of rutinsite stainless steel has high hardenability, it does not form a sufficiently hardened structure, or even a martensitic structure, when left to cool after hot working at high temperatures. Cool to 9 s Ip#
If the K M m point is 800° C. or lower, quench cracking may occur. Furthermore, depending on the environment in which the cooling machine is placed, it may be delayed and destroyed before moving on to the next process. Such cold cracking is an extremely serious problem in the production of martensitic stainless steel products, as it makes post-hot processing impossible or requires a large amount of man-hours to clean. .

従来、このようなマルテンサイト系ステンレス銅の低温
割れを防止するために、高温における熱間加工の後、マ
ルテンサイト変態を起さないように処理したり、あるい
は多量にパー2イト変態を生じさせる処理をするなどし
て、冷却後の硬度を下げるようKする手段が講じられて
きた。
Conventionally, in order to prevent such cold cracking of martensitic stainless steel copper, after hot working at high temperatures, treatment is performed to prevent martensitic transformation, or a large amount of per2ite transformation is caused. Measures have been taken to lower the hardness after cooling, such as through treatment.

例えば、その方法の1)ti、高温に加熱して加工した
マルテンサイト系ステンレス鋼をAr1点からMs点の
関においてほぼ60℃/h以下の極めてゆり〈抄した冷
却速度で徐冷することKよシ、のである、しかしながら
、この処理方法は徐冷時間が極めて長いために置場の占
有時間や工程期間が長くなシ、短時間大量生産KFi極
めて不向きでありた。
For example, in the method 1) ti, martensitic stainless steel processed by heating to a high temperature is slowly cooled at a cooling rate of approximately 60°C/h or less from the Ar1 point to the Ms point. However, this treatment method requires an extremely long annealing time, requiring a long storage space and a long process period, making it extremely unsuitable for short-term mass production of KFi.

他方、マルテンサイト系ステンレス鋼の熱間加工後の冷
却過程及びそれに続く過程での低温割れ防止法として、
恒温変態を利用して軟化させる方法がある。即ち、高温
加熱して加工したマルテンサイト系ステンレス鋼を、そ
の高温林態からパーライト変態温度域、望ましくは恒温
変態曲線(以下T、T、T、曲線という)のノーズ部近
傍の温[tで降温させ、該温度に長時間保持して恒温パ
ーライト変態を生じさせる方法である。
On the other hand, as a method to prevent cold cracking during the cooling process after hot working of martensitic stainless steel and the subsequent process,
There is a method of softening using constant temperature transformation. That is, martensitic stainless steel processed by high temperature heating is processed in the temperature range from its high-temperature forest state to pearlite transformation, preferably at the temperature near the nose of the isothermal transformation curve (hereinafter referred to as T, T, T, curve). This is a method in which the temperature is lowered and kept at that temperature for a long time to cause isothermal pearlite transformation.

しかしながらこの方法も、高温状態のものを適正温度ま
で直接冷却すること、っt、b高温域冷却途中の特定温
度を最適温度として、冷却中の対象貴の温度をこの温度
に収束せしめて恒温変態を行なわしめることは、温度コ
ントロールに高度の技術を要するのみならず、実際にけ
、特に中、高炭素!ルチンサイト系クロムステンレス@
においては、 T、T、T、曲線のノーズ部近傍の温度
域に保持しても、変態の終了までには少なくとも26〜
8時間以上を必要とし、軟化のためには長時間を要して
、短時間大量生産KFi不適当であると結論せざるを得
ないものであった。
However, this method also involves directly cooling a high-temperature object to an appropriate temperature, and setting a specific temperature during cooling of the high-temperature region as the optimum temperature, converging the temperature of the object during cooling to this temperature and performing isothermal transformation. Not only does it require advanced technology to control the temperature, but it also requires practical use, especially in medium and high carbon temperatures! Rutinsite chromium stainless steel @
T, T, T, even if the temperature is maintained in the vicinity of the nose of the curve, at least 26 to
It took more than 8 hours to soften, and it took a long time for softening, so we had no choice but to conclude that KFi is not suitable for mass production in a short period of time.

本発明者らは、上述の如き状況K11iiみ、迅速にし
て安定的、かつ確実に、マルテンサイト系ステンレス鋼
の熱間加工後の低温割れを防止し、マルテンサイト系ス
テンレス鋼製品を歩留り良く量産し得る方法を見出すぺ
〈検討を行なった。その結果マルテンサイト系ステンレ
ス鋼は、熱間加工後の高温状態にあるオーステナイトを
適冷して、一旦Ms点+160℃以下の低温#iILま
で冷却して所定時間保持した後に、パーライト変態温度
域まで再昇温して保持した場合、適冷、低温域での保持
、その後の昇温中に発生、生長したカーバイドを核とし
て、通常の恒温変態処理よりも速やかに、即ち高温状態
から直接にパーライト変態温度域まで降温させて該温度
に保持してパーライト変態を生じさせる方法よりも速や
かにパーライト変態が開始、終了し、また一部形成され
たマルテンサイトが焼戻されて、軟化が迅速に終了し、
さらにこのような適冷、保持、再昇温によりである程度
のパーライト変態を生じさせれば、未変態オーステナイ
トは低炭素化し、Ms点が上がり、その後の常温までの
冷却過程で生成するマルテンサイトは、セルフテンパー
されて軟化するために低温割れの発生が抑えられるとい
う知見を得るに至りたのである。
In view of the above-mentioned situation K11ii, the present inventors quickly, stably, and reliably prevent low-temperature cracking after hot working of martensitic stainless steel, and mass-produce martensitic stainless steel products with high yield. We have considered ways to find a way to do so. As a result, martensitic stainless steel is produced by appropriately cooling the austenite that is in a high temperature state after hot working, once cooling it to a low temperature #iIL below the Ms point + 160°C, and holding it for a predetermined period of time, until it reaches the pearlite transformation temperature range. When the temperature is raised again and held, the carbide generated and grown during proper cooling, holding in a low temperature range, and subsequent heating is used as a core to form pearlite more quickly than in normal constant temperature transformation treatment, that is, directly from the high temperature state. Pearlite transformation starts and ends more quickly than the method of lowering the temperature to the transformation temperature range and holding it at that temperature to cause pearlite transformation, and partially formed martensite is tempered, so softening ends quickly. death,
Furthermore, if a certain degree of pearlite transformation is caused by such appropriate cooling, holding, and reheating, the untransformed austenite becomes lower in carbon, the Ms point increases, and the martensite generated in the subsequent cooling process to room temperature becomes They came to the knowledge that the occurrence of low-temperature cracking can be suppressed due to self-tempering and softening.

従って、本発明はこのような知見に基づいてなされ九も
ので、熱間加工後のマルテンサイト系ステンレス鋼を、
その高温状態から連続冷却、変態曲線におけるパーライ
ト変態のノーズ部にかからない冷却速度で、上限がMs
m点150℃、下限がMf点かあるいFi100℃かの
いずれか高い方の温度である温度域の温度Tまで冷却し
た後、その温度域に少なくとも次式によって規定される
時間t(分): (1)  T ′2MmのとI を日1/10(T−M
s)(1)  T<Msのとき 1−0 (但しt:分 T:”CM農:℃) 保持し、ついで咳ステンレス鋼をAe1点以下の所定温
度まで再昇温せしめて、その温度に少なくと41分間以
上保持し、変態生成したマルテンサイトの焼戻しおよび
/または未変態オーステナイトのパーライト化を行ない
、続いて該ステンレス鋼を常温まで冷却することによシ
、低炭素化した未変態オーステナイトから変態生成する
Ma点の高いマルテンサイトをセルフチ/パーせしめて
軟化することKよシ、熱間加工後のマルテンサイト系ス
テンレス鋼を短時間に冷却軟化して、低温での遅れ割れ
や、焼割れ等の低温割れを防止することに%徴を有する
ものである。
Therefore, the present invention was made based on this knowledge, and the present invention is based on the above findings.
Continuous cooling from the high temperature state, cooling rate that does not affect the nose of pearlite transformation in the transformation curve, and the upper limit is Ms
After cooling to a temperature T in a temperature range where the m point is 150°C and the lower limit is the higher of the Mf point or Fi 100°C, the time t (minutes) specified by the following formula at least is maintained in that temperature range. : (1) T '2Mm and I on 1/10 (T-M
s) (1) When T<Ms, 1-0 (however, t: minutes T: "CM: °C)" is held, and then the stainless steel is heated again to a predetermined temperature below Ae1 point, and then heated to that temperature. By holding the stainless steel for at least 41 minutes, tempering the martensite that has been transformed and/or pearlitizing the untransformed austenite, and then cooling the stainless steel to room temperature, the untransformed austenite that has been reduced in carbon can be heated. In order to soften martensite with a high Ma point that is generated through transformation, it is possible to cool and soften martensitic stainless steel in a short time after hot working, thereby preventing delayed cracking or quenching cracking at low temperatures. It has a certain characteristic in preventing low temperature cracking such as.

即ち、本発明の方法においては、まず迅速にマルテンサ
イト系ステンレス鋼製品を大量生産するために1熱間加
工後の高温状態から、連続冷却変態面lsKおけるパー
ライト変態のノーズ部Kかからない冷却速度で冷却する
工程を有するもので、かかる冷却の途中にマルテンサイ
ト変態が起っても良いことは勿論である。この冷却速度
は一般には20℃/min以上である。たとえマルテン
サイト変態が生じても、Mf点かあるいは100℃のい
ずれか高い方の温度までで冷却をストップし再昇温させ
れば、高温状態のマルテンサイトは塑性能 変形線を有するため焼割れを生じず、また再昇温してA
c1点以下の温度に少なくとも1分間保持することによ
り、変態生成したマルテンサイトは焼戻し処理を受ける
ことになり軟化する。
That is, in the method of the present invention, in order to rapidly mass-produce martensitic stainless steel products, the high temperature state after one hot working is continuously cooled at a cooling rate that does not affect the nose part K of pearlite transformation on the transformation surface IsK. Since it has a cooling step, it goes without saying that martensitic transformation may occur during the cooling. This cooling rate is generally 20° C./min or more. Even if martensitic transformation occurs, if cooling is stopped at the Mf point or 100°C, whichever is higher, and the temperature is raised again, martensite in the high temperature state has a plastic performance deformation line and will crack due to quenching. The temperature was raised again without causing A.
By maintaining the temperature at the c1 point or lower for at least 1 minute, the martensite produced through transformation undergoes a tempering treatment and is softened.

一方、冷却過程でマルテンサイト変態せずに残り九部分
、即ち未変態オーステナイト中には、冷却、低温温度域
での保持、再昇温中に発生、生長したカーバイドを核と
してS AJ点以下の温度に保持されることKよりパー
ライト変態が速やかに起る。なお、パーライト変態を完
了させることは必須の条件ではないが、ある程度のバー
ライ)!5態を起して未変態オーステナイトを低炭素化
することは必要である。何故なら、次の常温まで冷却す
る過程で、パーライト変動しないで残った未変態のオー
ステナイトはマルテンサイト化するが、このマルテンサ
イト変態の開始点、即ちMa点を十分圧高温側に上げ、
かくして十分高温側で生成し九マルテンサイトがさらに
冷却される過程でセルフテンパーによって軟化し得るよ
うにするためには、低炭素化が必要であるからである。
On the other hand, the remaining nine portions of untransformed austenite that did not undergo martensitic transformation during the cooling process contain carbides generated and grown during cooling, holding in a low temperature range, and reheating as nuclei below the S AJ point. Pearlite transformation occurs more quickly when the temperature is maintained at K. Although it is not a necessary condition to complete pearlite transformation, it is necessary to complete pearlite transformation to some extent)! It is necessary to lower the carbon content of untransformed austenite by inducing the 5-state. This is because during the next cooling process to room temperature, the untransformed austenite that remains without pearlite change becomes martensite, but the starting point of this martensitic transformation, that is, the Ma point, is raised to a sufficiently high pressure and high temperature side.
This is because carbon reduction is necessary in order for the nine-martensite produced at a sufficiently high temperature to be softened by self-tempering during the further cooling process.

このように1本発明の方法における再昇温は、好ましく
Fi600℃以上、理想的に#iT、T、T、曲線のノ
ーズ部近傍の温度まで行なうのが良い。そしてこの場合
、ステンにス鋼片は、一旦冷却されているため、これを
再昇温してT、 T、 T、曲線のノーズ部近傍の温度
に保持することは極めて容易なことであるatた、Ms
点+160℃以下の温度まで冷却して所定時間保持した
のちの再昇温によってパーライト変態が大いに促進され
る念め、再昇温設定温度で少なくとも1分間、好ましく
Fi5分以上保持すれば十分であって、この処理によっ
て、熱間加工後の高温状態からの冷却途中に生成したマ
ルテンサイトの焼戻しがなされ、または未変態オーステ
ナイトのパーライト化がなされ、あるいはこの両者が同
時に進行して軟化がすすむ。一方、残留せる未変態オル
ステナイトは低炭素化される。
As described above, the re-heating in the method of the present invention is preferably carried out to Fi600° C. or higher, ideally to #iT, T, T, a temperature near the nose of the curve. In this case, since the stainless steel piece has been cooled once, it is extremely easy to raise the temperature again and maintain it at a temperature near the nose of the curve. Ms.
To be sure that the pearlite transformation is greatly promoted by re-heating after cooling to a temperature below +160°C and holding it for a predetermined time, it is sufficient to hold the temperature at the re-heating set temperature for at least 1 minute, preferably Fi 5 minutes or more. Through this treatment, martensite generated during cooling from a high temperature state after hot working is tempered, or untransformed austenite is turned into pearlite, or both of these occur simultaneously to advance softening. On the other hand, the remaining untransformed orstenite is reduced in carbon.

従って、再昇温、保持後の常温までの冷却過程で変態す
る1ルチンサイトは、低炭素であるゆえに焼入れ11の
硬度が低く、加えてMa点が高いために変m*の冷却過
程でセルフテンパーされて十分軟化するものである。
Therefore, rutinsite, which transforms during the cooling process to room temperature after re-heating and holding, has low hardness in quenching 11 because of its low carbon content, and also has a high Ma point, so it self-transforms during the cooling process of modified m*. It is tempered and becomes sufficiently soft.

さて仁ζで、Ms点+150℃以下の低温の温度でのス
テンレス鋼片の保持は、かかる温度域での冷却曲線の傾
斜が緩やかであるため極めて容易であることは明らかで
あり、特に%Ms点以上の温度T(’C)での時間t 
−1/10(T−Ma) (分)だけの保持は次の再昇
温後の保持によるパーライト変態の核となるカーバイド
の発生・生長に対して有効な処理であって、この保持を
行なうことによって次の再昇温設定温度での保持により
、パーライト変態が大いに促進される本のである。
Now, it is clear that it is extremely easy to maintain a stainless steel piece at a low temperature below the Ms point +150°C because the slope of the cooling curve is gentle in this temperature range, especially when the %Ms Time t at temperature T ('C) above point
Holding for -1/10 (T-Ma) (minutes) is an effective treatment for the generation and growth of carbide, which becomes the core of pearlite transformation by holding after the next reheating, and this holding is carried out. This means that pearlite transformation is greatly promoted by holding the temperature at the next re-heating set temperature.

次に本発明の方法においてステンレス鋼を高温状態から
急冷する温度域の限定理由及びその適冷低温温度域及び
再昇温温度での保持時間の限定理由を再度まとめて説明
する。
Next, the reason for limiting the temperature range in which stainless steel is rapidly cooled from a high temperature state in the method of the present invention, and the reason for limiting the holding time in the appropriate cooling low temperature range and reheating temperature will be summarized again.

、先ず、急冷の目標温度域の上限をM1点+150℃の
温度としたのは、この温度を上まわると、パーライト変
態の核発生に有効なそこでの保持時間が極めて長くなυ
、また次の昇温保持におけるバー2イト変態時間が長く
なって迅速な処理が出来なくなるからであシ、一方、下
限をMf点か100℃かのいずれか高い方の温度とした
のは、この温度より低くなると生成するマルテンサイト
の塑性変形能が著しく低下して暁割れを生ずるおそれが
あるためである。fた、適冷低温の温度域の温度T(’
C)における保持時間を; T>Msのとき t −1/10 (T−Ms )T<
Meのとき9t=0 なる時間t(分)以上としたのは、特にMs点点上上温
度域で上記時間保持することによって、次の再昇温での
保持によるパーライト変態が促進されるためであって、
この時間t(分)未満ではその効果が小さい。一方、再
昇温温度域での保持時間を1分間以上と限定したのは、
その時間が1分間未満では未変態オーステナイトを低炭
素化するためのパーライト生成が所望の効果を奏するほ
どの量に達せず、また生成されたマルテンサイトの焼戻
しによる軟化が十分に行なわれない九めである。
First, the reason why we set the upper limit of the target temperature range for rapid cooling to M1 point + 150°C is because above this temperature, the holding time there, which is effective for the generation of nuclei for pearlite transformation, becomes extremely long υ
In addition, the bar-2ite transformation time in the next temperature increase and hold becomes longer, making it impossible to perform a rapid process.On the other hand, the lower limit was set to the higher of the Mf point or 100°C. This is because when the temperature is lower than this, the plastic deformability of the martensite produced is significantly reduced and there is a possibility that dawn cracking may occur. f, the temperature T('
The retention time in C); When T>Ms, t-1/10 (T-Ms)T<
The reason for setting the time to be longer than t (minutes) such that 9t=0 for Me is that holding the temperature in the temperature range above the Ms point for the above period promotes pearlite transformation during the holding at the next temperature increase. There it is,
If the time is less than t (minutes), the effect is small. On the other hand, the holding time in the reheating temperature range was limited to 1 minute or more because
If the time is less than 1 minute, the amount of pearlite produced to reduce the carbon content of untransformed austenite will not reach the desired level, and the martensite produced will not be softened sufficiently by tempering. be.

左 ついで本発明の実施例と比較例とKよって説明する。left Next, examples of the present invention, comparative examples, and K will be explained.

実施例L 024%C−042%5i−058X Mn−1a28
%Cr(@%″は重量%、以下同じ)のiルチンサイト
系ステンレス鋼の鋼片を1180℃に加熱して1016
■(直径)×20■(肉厚)の鋼管に圧延し、圧延終了
後的960℃から880℃まで80℃/min の冷却
速度で冷却した。この温度に20分保持したflkJI
C,再加熱炉に装入して700’CK昇温し、この温度
で80分保持してから抽出空冷した。常温まで冷却後、
屋外KIO日間放置し、超音波探傷したが割れはなかっ
た。硬度はHRc=2a8でありた。因みにこのステン
レス鋼のM1点は約210℃、Mf点は約70℃であり
た。
Example L 024%C-042%5i-058X Mn-1a28
A piece of i-rutinsite stainless steel with %Cr (@%″ is weight%, the same applies hereinafter) is heated to 1180°C to produce 1016
It was rolled into a steel pipe of 2 (diameter) x 20 (wall thickness), and after the rolling was completed, it was cooled from 960°C to 880°C at a cooling rate of 80°C/min. flkJI kept at this temperature for 20 minutes
C. The product was placed in a reheating furnace and heated to 700'CK, held at this temperature for 80 minutes, and then extracted and air cooled. After cooling to room temperature,
It was left outdoors for KIO days, and ultrasonic testing revealed no cracks. The hardness was HRc=2a8. Incidentally, the M1 point of this stainless steel was about 210°C, and the Mf point was about 70°C.

実施例2 実施例1と同一組成で同一サイズのマルテンサイト系ス
テンレス鋼管を、圧延終了後、約960℃から280℃
まで80℃/ m i nの冷却速度で冷却し、この温
度に6分保持してから再加熱炉に装入して700℃に昇
温し、その温度で16分間保持してから抽出空冷した。
Example 2 A martensitic stainless steel pipe with the same composition and size as in Example 1 was heated from about 960°C to 280°C after rolling.
The sample was cooled at a cooling rate of 80°C/min, held at this temperature for 6 minutes, then charged into a reheating furnace, heated to 700°C, held at that temperature for 16 minutes, and then extracted and air-cooled. .

常温まで冷却後、水中に10日間放置し、超音波探傷し
たが割れはなかった。硬度FiHBc=M2屯8であっ
た。
After cooling to room temperature, it was left in water for 10 days and subjected to ultrasonic flaw detection, but no cracks were found. Hardness FiHBc=M2 ton 8.

実施例8 実施例1と同一組成で同一サイズのマルテンサイト系ス
テンレス鋼管を、圧延終了後、約950℃から226℃
まで80℃/m i nの冷却速度で冷却し、この温度
に1分間保持してから再加熱炉に装入して700℃に昇
温し、この温度で5分間保持してから抽出空冷した。常
温まで冷却後lO日間放置し、超音波探傷したが割れは
なかりた。硬度はH肛寓2a2でありた。
Example 8 A martensitic stainless steel pipe with the same composition and size as in Example 1 was heated from about 950°C to 226°C after rolling.
The sample was cooled at a cooling rate of 80°C/min, held at this temperature for 1 minute, charged into a reheating furnace, heated to 700°C, held at this temperature for 5 minutes, and then extracted and air-cooled. . After cooling to room temperature, it was left for 10 days and subjected to ultrasonic flaw detection, but no cracks were found. The hardness was 2a2.

比較例1 実施例1と同一組成で同一サイズのマルテンサイト系ス
テンレス鋼管を、圧延終了後960℃から80℃/mi
nの冷却速度で450’Cまで冷却して20分保持し、
その後再加熱炉に装入して700℃に昇温し、この温度
で80分保持してから抽出空冷した。常温まで冷却vk
lO日関屋外に放置し、次の熱処理工程に移る前に超音
波探傷し友ところ。
Comparative Example 1 A martensitic stainless steel pipe of the same composition and size as in Example 1 was heated from 960°C to 80°C/mi after rolling.
Cool to 450'C at a cooling rate of n and hold for 20 minutes,
Thereafter, it was placed in a reheating furnace and heated to 700°C, held at this temperature for 80 minutes, and then extracted and air-cooled. Cool to room temperature vk
It was left outside at Nikkan and underwent ultrasonic flaw detection before moving on to the next heat treatment process.

割れが発見された。そこで硬度を測定したところH,C
w5α4であった。これは適冷温度域における460℃
という冷却温度が高く、従って700℃で80分間の恒
温変態では十分にバー2イト変態が起らず、マルテンサ
イト変態による割れが発生したものと考えられる。
A crack was discovered. So we measured the hardness and found that it was H,C.
It was w5α4. This is 460℃ in the appropriate cooling temperature range.
It is considered that the cooling temperature was high, and therefore, the isothermal transformation at 700° C. for 80 minutes did not sufficiently cause bar2ite transformation, and cracks occurred due to martensitic transformation.

比較例2 実施例1と同一組成、同一サイズのマルテンサイト系ス
テンレス鋼管を、圧延終了後、約950℃から水冷して
常温まで冷却し、5時間水中に放置し九。その後再加熱
炉に装入して700℃に昇温し、この温度で80分間保
持してから抽出空冷した。常温まで冷却後硬度を測定し
たところHmc−2a2であったが、超音波探傷で割れ
が発見され九。組織は焼戻しマルテンサイトであったた
め、水冷時のマルテンサイト変態による割れか、遅れ割
れが生じ友ものと考えられる。
Comparative Example 2 After rolling, a martensitic stainless steel pipe having the same composition and size as in Example 1 was water-cooled from about 950°C to room temperature, and left in water for 5 hours. Thereafter, it was placed in a reheating furnace and heated to 700°C, held at this temperature for 80 minutes, and then extracted and air-cooled. After cooling to room temperature, the hardness was measured to be Hmc-2a2, but cracks were discovered by ultrasonic testing. Since the structure was tempered martensite, it is thought that cracking was caused by martensitic transformation during water cooling, or delayed cracking occurred.

比較例8 実施例1と同一組成、同一サイズのマルテンサイト系ス
テンレお鋼管を圧延後約900℃から炉に装入し46℃
/hrの冷却速度で制御冷却して、はぼ20時間かけて
常温まで冷却910日間放置した。これを超音波探傷し
たが割れはなかった。
Comparative Example 8 A martensitic stainless steel pipe with the same composition and size as in Example 1 was rolled and then charged into a furnace from about 900°C and heated to 46°C.
Controlled cooling was performed at a cooling rate of /hr, and the mixture was cooled to room temperature over approximately 20 hours and left for 910 days. This was subjected to ultrasonic testing, but no cracks were found.

硬変はHmcz2α8であシ、十分にパーライト変態し
ていた。
Cirrhosis was Hmcz2α8, and there was sufficient pearlite transformation.

実施例4 α41%C−(L28%St−α25% Mn−142
2%Crのマルテンサイト系ステンレス鋼の鋼片を12
00’CK加熱して60箇直径XaOm肉厚の鋼管に圧
延し、圧延終了後、約950℃から22(Itで大気中
放冷して10分間保持した後、再加熱炉に装入し、72
0℃に昇温して、その温度に80分間保持してから抽出
し、空冷し念、冷却後、5日間水中に放置してから超音
波探傷し九が割れはなかつた。また、この場合の硬[は
Hmctxx22.9であり、組織はパーライトであり
た。ちなみにこのステンレス鋼のM1点は約160℃、
Mf点は常温以下であり九。
Example 4 α41%C-(L28%St-α25%Mn-142
12 pieces of 2% Cr martensitic stainless steel
It was heated to 00'CK and rolled into a steel pipe with a diameter of 60 mm and a wall thickness of XaOm, and after the rolling was completed, it was cooled in the atmosphere from about 950 °C to 22 (It) and held for 10 minutes, and then charged into a reheating furnace. 72
The sample was heated to 0°C, held at that temperature for 80 minutes, extracted, cooled in the air, left in water for 5 days, and then subjected to ultrasonic testing. No cracks were found. Further, the hardness in this case was Hmctxx22.9, and the structure was pearlite. By the way, the M1 point of this stainless steel is approximately 160℃.
The Mf point is below room temperature.

実施例6 実施例4と同一組成、同一サイズのマルテンサイト系ス
テンレス鋼管を、圧延終了後、約900℃から150℃
まで大気中放冷し、1分間保持してから再加熱炉に装入
し710℃に昇温後その温度に15分間保持してから抽
出し空冷した。冷却後直ちに超音波探傷したが、割れは
なかった。なおこの場合の硬度ijHRcm2&8であ
シ、組織は焼戻しマルテンサイトとパーライトの混合組
織でありた。
Example 6 A martensitic stainless steel pipe with the same composition and size as in Example 4 was heated from about 900°C to 150°C after rolling.
The mixture was left to cool in the air until the temperature reached 710° C., held for 1 minute, charged into a reheating furnace, heated to 710° C., held at that temperature for 15 minutes, and then extracted and cooled in air. Ultrasonic flaw detection was performed immediately after cooling, but no cracks were found. In this case, the hardness was ijHRcm2&8, and the structure was a mixed structure of tempered martensite and pearlite.

比較例4 実施例4と同一組成、同一サイズのマルテンサイト系ス
テンレス鋼管を、圧延終了後、約920℃から880℃
まで大気中放冷し、そのfIk20分間保持してから7
00℃に昇温し46分保持してから抽出し空冷し九。冷
却vk5日間水中に放置してから超音波探傷したところ
割れが発見された。
Comparative Example 4 A martensitic stainless steel pipe with the same composition and size as in Example 4 was heated from about 920°C to 880°C after rolling.
Leave to cool in the air until the fIk is 20 minutes, then
Raise the temperature to 00℃ and hold for 46 minutes, then extract and air cool.9. After cooling VK in water for 5 days, ultrasonic testing revealed cracks.

硬度はHacm4117でありた。これは適冷温度域に
おける880℃という冷却温度が高く、従って700℃
で46分の恒温変態では十分くパー2イト変態が起らず
、そのためマルテンサイト変態による割れか遅れ割れが
発生したものと考えられる。
The hardness was Hacm4117. This has a high cooling temperature of 880℃ in the suitable cooling temperature range, so 700℃
It is considered that the isothermal transformation for 46 minutes did not sufficiently cause the per2ite transformation, and therefore cracking due to martensitic transformation or delayed cracking occurred.

以上の実施例及び比較例からも本発明方法によってマル
テンサイト系ステンレス鋼の熱間加工後の低温割れが、
迅速にして確実に防止できることが判る。
From the above Examples and Comparative Examples, the method of the present invention can reduce cold cracking after hot working of martensitic stainless steel.
It turns out that it can be prevented quickly and reliably.

上述の如く、本発明によれば、簡単な操作によってマル
テンサイト系ステンレス鋼の熱間加工後の低温割れを防
止でき、歩留シ良く、安定確実に、且つ迅速にマルテン
サイト系ステンレス鋼製品の大量生産が行なえ、工業上
有用な効果がもたらされるものである。
As described above, according to the present invention, cold cracking after hot working of martensitic stainless steel can be prevented by simple operations, and martensitic stainless steel products can be produced stably, reliably, and quickly with good yield. It can be mass-produced and provides industrially useful effects.

9999

Claims (1)

【特許請求の範囲】 熱間加工後のマルテンサイト系ステンレス鋼ヲ、その高
温状態から連続冷却変態曲線におけるパーライト変態の
ノーズ部Kかからない冷却速度で、上限がMa点+16
0℃、下限がMf点か100℃かのいずれか高い方の温
度である温度域の温度Tまで冷却した後、その温度域に
少なく七も次式によって規定される時間t(分): (1)  ’r〉Mjのとき t=1/10(T−Ml
)(−)  T<Msのとき 1.0 (但しt:分、T!’C,Ms!’C)保持し、ついで
該ステンレス鋼をAC1点以下の所定温度まで再昇温せ
しめてその温度に少なくとも1分間以上保持し、変態生
成したマルテンサイトの焼戻しおよび/または未変態オ
ーステナイトの4 )Z−?イト化を行ない、続いて該
ステンレス−を常温まで冷却することを特徴とする、マ
ルテンサイト系ステンレス鋼の熱間加工後の低温割れ防
止法。
[Claims] For martensitic stainless steel after hot working, the cooling rate does not affect the nose part of pearlite transformation in the continuous cooling transformation curve from its high temperature state, and the upper limit is Ma point +16
After cooling to a temperature T in a temperature range where the lower limit is the higher of the Mf point or 100°C, the time t (minutes) specified by the following formula: 1) When 'r>Mj, t=1/10(T-Ml
) (-) When T<Ms 1.0 (however, t: minutes, T!'C, Ms!'C) is held, and then the stainless steel is heated again to a predetermined temperature below 1 AC point, and the temperature is 4) Z-? 1. A method for preventing cold cracking of martensitic stainless steel after hot working, the method comprising converting the stainless steel into a metal and then cooling the stainless steel to room temperature.
JP12293081A 1981-08-07 1981-08-07 Preventing method for low-temperature cracking of martensitic stainless steel Granted JPS5825419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12293081A JPS5825419A (en) 1981-08-07 1981-08-07 Preventing method for low-temperature cracking of martensitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12293081A JPS5825419A (en) 1981-08-07 1981-08-07 Preventing method for low-temperature cracking of martensitic stainless steel

Publications (2)

Publication Number Publication Date
JPS5825419A true JPS5825419A (en) 1983-02-15
JPH0144768B2 JPH0144768B2 (en) 1989-09-29

Family

ID=14848123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12293081A Granted JPS5825419A (en) 1981-08-07 1981-08-07 Preventing method for low-temperature cracking of martensitic stainless steel

Country Status (1)

Country Link
JP (1) JPS5825419A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106650A1 (en) * 2005-03-30 2006-10-12 Sumitomo Metal Industries, Ltd. Method for producing martensitic stainless steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551497A (en) * 1978-10-09 1980-04-15 Hitachi Zosen Corp Continuous dredge treatment equipment
JPS57161026A (en) * 1981-03-30 1982-10-04 Sumitomo Metal Ind Ltd Preventing method for low temperature cracking of martensitic stainless steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551497A (en) * 1978-10-09 1980-04-15 Hitachi Zosen Corp Continuous dredge treatment equipment
JPS57161026A (en) * 1981-03-30 1982-10-04 Sumitomo Metal Ind Ltd Preventing method for low temperature cracking of martensitic stainless steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106650A1 (en) * 2005-03-30 2006-10-12 Sumitomo Metal Industries, Ltd. Method for producing martensitic stainless steel
JPWO2006106650A1 (en) * 2005-03-30 2008-09-11 住友金属工業株式会社 Method for producing martensitic stainless steel
US7905967B2 (en) 2005-03-30 2011-03-15 Sumitomo Metal Industries, Ltd. Method of manufacturing martensitic stainless steel
JP4992711B2 (en) * 2005-03-30 2012-08-08 住友金属工業株式会社 Method for producing martensitic stainless steel

Also Published As

Publication number Publication date
JPH0144768B2 (en) 1989-09-29

Similar Documents

Publication Publication Date Title
WO2010014269A1 (en) Thermal mechanical treatment of ferrous alloys, and related alloys and articles
CN103589839A (en) Heat treatment technique of high-carbon high-chromium stainless steel
CN112280942A (en) Martensitic stainless steel 2Cr13 wire annealing process
JPS5825419A (en) Preventing method for low-temperature cracking of martensitic stainless steel
JPS58141333A (en) Heat treatment of forging
US3223562A (en) Heat treating process for martensitic transformation alloys
US3459599A (en) Method of thermomechanically annealing steel
JPH0576524B2 (en)
JPH0143815B2 (en)
US3094442A (en) Methods of producing extreme flatness in heat treated stainless steel and the like
CN105925773A (en) Heat treatment method for steel
US3567527A (en) Metallurgical process and product
US5122198A (en) Method of improving the resistance of articles of steel to H-induced stress-corrosion cracking
CN111304416A (en) Softening annealing heat treatment method for 2Cr13 stainless steel
CN114737028B (en) Annealing method of precipitation hardening stainless steel
JPH0447008B2 (en)
US3009843A (en) Steel products and method for producing same
JPS5913024A (en) Manufacture of directly spheroidized steel material
Alisherovich et al. IMPROVEMENT OF MECHANICAL PROPERTIES OF STEEL WIRE BY THERMAL PROCESSING
JPS6343446B2 (en)
JP2024066935A (en) Production method of heat-resistant steel
JPH08311536A (en) Method for annealing martensitic stainless steel
CN116397163A (en) Solution heat treatment method for preventing quenching cracking of heat-resistant steel 05Cr17Ni4Cu4Nb for fastener
Cherepanova Some problems of recrystallization of austenite during high-temperature thermomechanical treatment of chromium steels
US1086459A (en) Process for the manufacture of armor-plates.