JPS582454B2 - semiconductor equipment - Google Patents

semiconductor equipment

Info

Publication number
JPS582454B2
JPS582454B2 JP49086252A JP8625274A JPS582454B2 JP S582454 B2 JPS582454 B2 JP S582454B2 JP 49086252 A JP49086252 A JP 49086252A JP 8625274 A JP8625274 A JP 8625274A JP S582454 B2 JPS582454 B2 JP S582454B2
Authority
JP
Japan
Prior art keywords
semiconductor
stud
insulating substrate
semiconductor element
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49086252A
Other languages
Japanese (ja)
Other versions
JPS5114271A (en
Inventor
穴沢信造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP49086252A priority Critical patent/JPS582454B2/en
Publication of JPS5114271A publication Critical patent/JPS5114271A/en
Publication of JPS582454B2 publication Critical patent/JPS582454B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Die Bonding (AREA)

Description

【発明の詳細な説明】 本発明は半導体容器の構造に関するもので、特に超高周
波帯の半導体装置に適用して好適ならしめたものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a semiconductor container, and is particularly suitable for application to semiconductor devices in ultra-high frequency bands.

一般に周知の如く超高周波帯において使用される半導体
素子を収納する半導体容器を有する半導体装置の構成は
半導体装置の電気的特性に重大な影響を与える、特に半
導体素子を固定し、半導体素子の電極と半導体容器の電
極とを電気的に接続する際に関与する部分の構成が極め
て重要である。
As is generally known, the structure of a semiconductor device having a semiconductor container that houses a semiconductor element used in an ultra-high frequency band has a significant influence on the electrical characteristics of the semiconductor device. The configuration of the parts involved in electrically connecting the electrodes of the semiconductor container is extremely important.

例えば半導体容器の異種電極間の浮遊静電容量や半導体
素子と半導体容器との間を電気的に接続するポンデング
線のインダクタンス等の寄生リアクタンス成分があげら
れる。
Examples include parasitic reactance components such as stray capacitance between different electrodes of a semiconductor container and inductance of a bonding wire that electrically connects the semiconductor element and the semiconductor container.

つまり、半導体素子が載置されて超高周波帯に使用され
る半導体容器の設計において特に留意すべき点は、半導
体容器を構成する材料の選択と幾何学的配列である。
In other words, when designing a semiconductor container on which a semiconductor element is placed and used in an ultra-high frequency band, particular attention should be paid to the selection and geometrical arrangement of the materials constituting the semiconductor container.

具体的には半導体容器の構成材料として誘電率が低く、
誘電体損失の少ない材質を採用し、半導体素子と半導体
容器間を電気的に接続する金属細線や金属テープはでき
るだけ抵抗分の小さい材質を用い、且つその長さを短か
くする事、又各々の異種電極間を何らかの方法で遮蔽せ
しめる事である。
Specifically, it has a low dielectric constant as a constituent material for semiconductor containers.
Use materials with low dielectric loss, use materials with as low resistance as possible for thin metal wires and metal tapes that electrically connect semiconductor elements and semiconductor containers, and keep their lengths short. The goal is to shield different types of electrodes in some way.

現在最も推奨される容器の構成は接地部以外の異種電極
間に誘電率の低い空気を介在させるかまたはできる限り
電極間距離を離し、且つ異種電極間を金属で遮蔽せしめ
るものである。
Currently, the most recommended container configuration is one in which air with a low dielectric constant is interposed between different types of electrodes other than the grounding part, or the distance between the electrodes is kept as far as possible, and the different types of electrodes are shielded with metal.

しかしながら前述の如く半導体素子の電極と容器の電極
間はできる限り短距離にしなければならないので静電浮
遊容量とインダクタンスの値を減少せしめるには容器の
構成は複雑となり、従って極めて高度の製造技術が要求
される。
However, as mentioned above, the distance between the electrodes of the semiconductor element and the electrodes of the container must be kept as short as possible, so the structure of the container becomes complex in order to reduce the values of electrostatic stray capacitance and inductance, and therefore extremely advanced manufacturing technology is required. required.

例えば第1図及び第2図に示すように従来例としては異
種電極間に空気を介在させ、これら間の静電浮遊容量を
小さくするようにしたものがある。
For example, as shown in FIGS. 1 and 2, there is a conventional method in which air is interposed between different types of electrodes to reduce the electrostatic stray capacitance between them.

Gはその異種電極間に介在された空隙である。G is a gap interposed between the different types of electrodes.

この空隙Gは金属スタツド1の凸部1aの囲面と、この
凸部1aを囲む絶縁外囲9の内周面との間において形成
され、この空隙Gによって電極層4及び金属スタツド1
と各電極層5,6,7.8間のそれぞれの静電容量値を
小さくするようにしたものである。
This gap G is formed between the surrounding surface of the convex portion 1a of the metal stud 1 and the inner circumferential surface of the insulating envelope 9 surrounding the convex portion 1a.
The capacitance values between the electrode layers 5, 6, and 7.8 are reduced.

即ちこの例では半導体素子2としてはそのチップの裏面
にコレクタ電極が導出されている所謂バイポーラトラン
ジスタの場合を示し、半導体素子2の取付面のメタライ
ズ層4はコレクタと電気的に接続される。
That is, in this example, the semiconductor element 2 is a so-called bipolar transistor whose collector electrode is led out from the back surface of the chip, and the metallized layer 4 on the mounting surface of the semiconductor element 2 is electrically connected to the collector.

従って放熱用スタツド1には絶縁層3を介して取付けら
れる。
Therefore, it is attached to the heat dissipation stud 1 via the insulating layer 3.

そしてコレクタは絶縁外囲9の上面に形成したメタライ
ズ層の一つ例えば6にポンデング線10aにて接続し、
半導体素子2の他の電極例えばベースはホンデング線1
0bにてメタライズ層5,7に接続し、エミツタはポン
デング線10cにてメタライズ層8に接続する。
The collector is connected to one of the metallized layers formed on the upper surface of the insulating envelope 9, for example 6, by a bonding wire 10a.
Other electrodes of the semiconductor element 2, such as the base, are connected to the Hong Kong wire 1.
The emitter is connected to the metallized layers 5 and 7 through a bonding line 10c, and the emitter is connected to the metallized layer 8 through a bonding line 10c.

従って絶縁外囲9上に形成したメタライズ層5,7はベ
ース電極となり、メタライズ層6はコレクタ電極となり
、8はエミツタ電極となる。
Therefore, the metallized layers 5 and 7 formed on the insulating envelope 9 become base electrodes, the metallized layer 6 becomes a collector electrode, and the metallized layer 8 becomes an emitter electrode.

ところで絶縁基板3と絶縁外囲9はそれぞれメタライズ
層4′と11を介してスタツド1に例えばロー付される
The insulating substrate 3 and the insulating envelope 9 are, for example, soldered to the stud 1 via metallized layers 4' and 11, respectively.

このロー付作業時に絶縁基板3及び絶縁外囲9が移動し
易く、例えば絶縁外囲9が左方向に移動してしまい、そ
の内側面がスタツド1の凸部1aの外側に接触した状態
で固定されてしまったとすると、エミツク電極8とコレ
クタに接続されたメタライズ層4との間には空隙Gが無
くなり、この間の静電浮遊容量が大きくなってしまう。
During this brazing work, the insulating substrate 3 and the insulating envelope 9 tend to move, for example, the insulating envelope 9 moves to the left and is fixed with its inner surface in contact with the outside of the protrusion 1a of the stud 1. If this happens, there will be no gap G between the emitter electrode 8 and the metallized layer 4 connected to the collector, and the electrostatic stray capacitance between this gap will increase.

即ち空気の誘電率をε−1、絶縁外囲9の材質の誘電率
をε=4〜5とすれば空隙Gが無くなったことによりこ
れと対向する電極この例では8と4との間の静電容量は
4〜5倍となる。
In other words, if the permittivity of air is ε-1 and the permittivity of the material of the insulating envelope 9 is ε=4 to 5, then since the gap G is eliminated, the gap between the opposing electrodes 8 and 4 in this example is The capacitance is increased by 4 to 5 times.

また絶縁基板3だけが移動し絶縁外囲9の内周面に衝合
したとしても同様に静電容量の増加がみられる。
Further, even if only the insulating substrate 3 moves and collides with the inner circumferential surface of the insulating envelope 9, an increase in capacitance is observed in the same way.

然も絶縁基板3の周縁が絶縁外囲9の内側面に衝合した
状態でロー付作業が進行すると、溶けたロー材が絶縁基
板3と絶縁外囲9との間を毛細管現象により這い上がり
上面に形成したメクライズ層4を金属スタツド1に電気
的に短絡させてしまうような事故も起き易い。
However, if the brazing work proceeds with the peripheral edge of the insulating substrate 3 abutting the inner surface of the insulating envelope 9, the melted brazing material will creep up between the insulating substrate 3 and the insulating envelope 9 due to capillary action. Accidents such as electrically shorting the mekrise layer 4 formed on the top surface to the metal stud 1 are also likely to occur.

このため第3図及び第4図に示す如く、スタツド1に凹
部12を形成し、この凹部12の底面に絶縁基板3を装
着し、絶縁基板3を位置決めし、絶縁基板3と絶縁外囲
9との間に金属スタツド1の一部を介在させ、この間の
誘電率を低く保つ方法が考えられている。
For this purpose, as shown in FIGS. 3 and 4, a recess 12 is formed in the stud 1, an insulating substrate 3 is mounted on the bottom of the recess 12, the insulating substrate 3 is positioned, and the insulating substrate 3 and the insulating envelope 9 are connected to each other. A method has been considered in which a part of the metal stud 1 is interposed between the two and the dielectric constant between the two is kept low.

しかしながら第3図の如き構造のものは極めて短距離に
段階的凹部を設ける事は機械的な製造方法において極め
て高度の技術を要する事、又周知の如く膨張率の大きい
金属スタツド1(ヒートシンクの能力の大きい材料は膨
張率が大きい)に部分的に凹凸を設けるとソリが太き《
なり、スタツド1に搭載する絶縁基板3に著しい歪がか
かりクラツクを生じせしめる。
However, with the structure shown in Fig. 3, it is necessary to have extremely advanced mechanical manufacturing techniques to provide stepwise recesses over extremely short distances. (Materials with a large coefficient of expansion have a large coefficient of expansion).
As a result, a significant strain is applied to the insulating substrate 3 mounted on the stud 1, causing a crack.

又、第4図の如く絶縁基板3に凸部13aを設けると基
板3とスタツド1とを固着するためのメタライズ層4′
を施す際、突起部13aがじゃまになるためにスクリー
ン印刷法等の量産技術を施行する事が不町能となり手工
業的技術に頼らざるを得ないので経済的でない。
Furthermore, if a convex portion 13a is provided on the insulating substrate 3 as shown in FIG.
When performing this process, since the protrusion 13a becomes an obstruction, it becomes impossible to use mass production techniques such as screen printing, and manual techniques have to be resorted to, which is not economical.

例え絶縁基板3の凸部13aとスタツド1の凹部13b
を逆にしたところで第3図において説明した諸問題が生
じるし、いずれに凹凸部を設けてもインピーダンスの変
動をまぬかれず半導体装置としての特性を損なわしめる
For example, the convex portion 13a of the insulating substrate 3 and the concave portion 13b of the stud 1
If it is reversed, the problems explained in FIG. 3 will occur, and no matter where the uneven portion is provided, impedance fluctuations will not be avoided and the characteristics of the semiconductor device will be impaired.

又、第3図の如き構造はスクツド1と絶縁基板3を固定
するロー材の這い上がりによるスタツド1と絶縁基板3
のメタライズ層4とが電気的にショートする危険や電気
的に絶縁されていても両者間の距離が著しく短かくなり
浮遊容量を増加せしめたりする。
In addition, the structure as shown in FIG.
There is a risk of electrical short-circuiting between the metallized layer 4 and the metallized layer 4, and even if they are electrically insulated, the distance between them becomes extremely short, increasing stray capacitance.

又、第4図の如き構造は凹凸部13a,13bにロー付
時に空孔を生じ易くヒートシンク効果を著しく損わしめ
る危険性を保有する。
Furthermore, the structure as shown in FIG. 4 has the risk of significantly impairing the heat sink effect since holes are likely to be formed in the uneven portions 13a and 13b during brazing.

本発明の目的はこれ等の諸欠点を除去せしめる事にあり
、且つ量産性を保有し、経済的な半導体容器を得る事に
ある。
The purpose of the present invention is to eliminate these various drawbacks, and to obtain an economical semiconductor container that can be mass-produced.

この発明では第1図及び第2図にて示した如く、絶縁体
外囲にて囲まれた領域内に第3図及び第4図にて示した
如く、導電体のスタツドを配設し、このスタツドの導電
体にて囲まれた凹部内に絶縁基板3を装着し、この基台
上に半導体素子2を保持するようにした半導体容器を有
する半導体装置において基台の半導体素子保持面の面積
はそれより下部のスクツドの凹部底面側の断面積より小
さく選定し、基台を囲むスクツドの凹部の外囲との対向
間隙が半導体素子保持面に向って大となるようにするも
のである。
In this invention, as shown in FIGS. 1 and 2, conductive studs are disposed within the area surrounded by the insulator outer envelope as shown in FIGS. 3 and 4, and In a semiconductor device having a semiconductor container in which an insulating substrate 3 is mounted in a recess surrounded by a conductor of a stud and a semiconductor element 2 is held on this base, the area of the semiconductor element holding surface of the base is The cross-sectional area of the lower scud is selected to be smaller than that of the bottom surface of the recess, so that the facing gap with the outer circumference of the recess of the scud surrounding the base becomes larger toward the semiconductor element holding surface.

第5図はその一実施例を示し、第1図乃至第4図と対応
する部分には同一符号を附しその重複説明は省略するも
、この例では半導体素子2を保持する基台として絶縁基
板3を用いた場合を示す。
FIG. 5 shows an example of this, and parts corresponding to those in FIGS. 1 to 4 are given the same reference numerals and redundant explanation will be omitted. A case where substrate 3 is used is shown.

即ち絶縁基板3はメタライズ層4を附した半導体素子取
付面の面積より下部のスクツドの凹部底面側の断面積を
大となしたもので、この例では第6図に示す如く段状に
形成し、半導体素子取付面より底面の面積を大とし、下
部の大なる面積の部分で金属スタッド1の凹部12に対
する位置決めをなし、上部においては絶縁基板3の側面
とこれを囲む金属スタツド1の内側面との間の間隙が大
となるようにしたものである。
That is, the insulating substrate 3 has a cross-sectional area on the bottom side of the concave portion of the lower scud that is larger than the area of the semiconductor element mounting surface on which the metallized layer 4 is attached, and in this example, it is formed in a stepped shape as shown in FIG. , the area of the bottom surface is larger than that of the semiconductor element mounting surface, and the larger area of the lower part positions the metal stud 1 in the recess 12, and the upper part is the side surface of the insulating substrate 3 and the inner surface of the metal stud 1 surrounding it. The gap between the two is made larger.

このように構成することによって絶縁基板3の位置がロ
ー付時に多少移動して金属スタツド1の内側面と衝合し
ても、絶縁基板3に形成した段部によってメタライズ層
4が直接スタツド1の内側面に触れたり、又は接近する
ことがないからメクライズ層4とスタツド間の静電容量
を極く小さくでき、よって絶縁基板3の下部によって位
置規制ができる。
With this structure, even if the position of the insulating substrate 3 moves a little during brazing and comes into contact with the inner surface of the metal stud 1, the stepped portion formed on the insulating substrate 3 allows the metallized layer 4 to be directly attached to the stud 1. Since the inner surface is not touched or approached, the capacitance between the mekrise layer 4 and the stud can be minimized, and the position can be controlled by the lower part of the insulating substrate 3.

然もメクライズ層4の周囲には絶縁基板3の段部による
空隙が形成されるからロー材が這い上がるのを阻止でき
、ストリップラインの短絡事故が起きる如きおそれは全
くない。
Moreover, since a gap is formed around the mekrise layer 4 by the stepped portion of the insulating substrate 3, it is possible to prevent the brazing material from creeping up, and there is no risk of short-circuiting of the strip line.

なお図においてはカバー14を設け半導体素子2の取付
部を気密に封着するようにした場合を示し、絶縁外囲9
上に形成したメタライズ層には例えばコバーにて形成し
た引出リード線15a,15bを取付け、半導体素子2
の例えばコレクタはポンデング線にてスタツド1に接続
し、スタツド1を通じてコレクタ電極を外部に導出する
ようにしている。
The figure shows a case where a cover 14 is provided to airtightly seal the mounting portion of the semiconductor element 2.
The lead wires 15a and 15b made of, for example, Covar are attached to the metallized layer formed above, and the semiconductor element 2
For example, the collector is connected to the stud 1 by a wire, and the collector electrode is led out through the stud 1.

なおまた基台の他の実施例としては例えば第7図に示す
如く絶縁基板3の4周面に底面より半導体素子取付面に
向ってテーパ面を形成し、これによって絶縁基板3の周
面とスタツド1との内周面に生ずる間隙の巾を上に向う
に伴なって漸次大となるようにし、下部底面にて位置規
制をなし、上部の間隙大なる部分においてロー材の這い
上がりを阻止すると共に下部の面積が大なる部分によっ
てメタライズ層4とスタツド1との近接を阻止し、この
間の静電容量が大となるのを防止するようにし、メタラ
イズ層4とスタツド1とで構成するストリップラインの
インピーダンスを所定値に保持するように構成すること
もできる。
Furthermore, as another embodiment of the base, for example, as shown in FIG. The width of the gap created on the inner peripheral surface with the stud 1 is made to gradually increase as it goes upward, and the position is regulated at the bottom of the lower part, and the brazing material is prevented from creeping up in the large part of the upper gap. At the same time, the larger area of the lower part prevents the metallized layer 4 and the stud 1 from coming close to each other, thereby preventing the electrostatic capacitance between them from increasing. It is also possible to configure the impedance of the line to be maintained at a predetermined value.

またこのようにテーパ面を形成することによって絶縁基
板3を加圧成形する場合に型から抜け易くなり、従って
絶縁基板3の製造歩留を向上でき、また信頼性も向上で
きる利点もある。
Further, by forming the tapered surface in this way, when the insulating substrate 3 is pressure-molded, it becomes easier to come out of the mold, so that there is an advantage that the manufacturing yield of the insulating substrate 3 can be improved and the reliability can also be improved.

また第8図に示す如く、絶縁基板3を樽状に形成し、中
央部の突出部にて位置規制をなすようにしてもよい。
Alternatively, as shown in FIG. 8, the insulating substrate 3 may be formed into a barrel shape, and its position may be regulated by a protrusion at the center.

以上説明した如く、この発明によれば半導体素子2を保
持する基台の形状を半導体素子取付面の面積より下部の
断面積を大とすることによってこの断面積の大なる部分
において位置規制が行なわれ、然も半導体素子取付面の
周囲は取付面の面積が小であるを以ってこれを取囲むス
タツド1または絶縁外囲9に半導体取付面の側縁が接近
することがなく、よって半導体素子取付面に形成したメ
タライズ層4とスタツド1或は絶縁外囲9の上面に形成
した電極との間の静電容易を小さい値に保持することが
でき、特に超高周波用半導体装置として好適なものであ
る。
As explained above, according to the present invention, the shape of the base that holds the semiconductor element 2 is made so that the lower cross-sectional area is larger than the area of the semiconductor element mounting surface, so that positional regulation is performed in a large part of this cross-sectional area. However, since the area of the mounting surface around the semiconductor element mounting surface is small, the side edges of the semiconductor mounting surface do not come close to the surrounding studs 1 or the insulating envelope 9. The electrostatic charge between the metallized layer 4 formed on the element mounting surface and the electrode formed on the stud 1 or the upper surface of the insulating envelope 9 can be kept to a small value, making it particularly suitable for ultra-high frequency semiconductor devices. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高周波用半導体容器の一例を示す平面図
、第2図はその断面図、第3図及び第4図は従来例の他
の例を示す断面図、第5図はこの発明の一実施例を示す
断面図、第6図はこの発明の要部の−例を示す斜視図、
第7図及び第8図はこの発明の他の実施例を示す断面図
である。 1:金属スタツド、2:半導体素子、3,16二基台、
9:絶縁外囲。
FIG. 1 is a plan view showing an example of a conventional semiconductor container for high frequency, FIG. 2 is a sectional view thereof, FIGS. 3 and 4 are sectional views showing other examples of the conventional example, and FIG. 5 is a sectional view of the present invention. FIG. 6 is a sectional view showing an embodiment of the invention; FIG. 6 is a perspective view showing an example of the main part of the invention;
FIGS. 7 and 8 are sectional views showing other embodiments of the present invention. 1: Metal stud, 2: Semiconductor element, 3,16 two bases,
9: Insulating envelope.

Claims (1)

【特許請求の範囲】[Claims] 1 導電体にて囲まれた凹部内に絶縁基台を装着し、該
基台上に半導体素子を載置した半導体装置において、上
記絶縁基台の半導体素子取付面の面積はこれより下部の
断面積より小さく形成したことを特徴とする半導体装置
1. In a semiconductor device in which an insulating base is mounted in a recess surrounded by a conductor and a semiconductor element is mounted on the base, the area of the semiconductor element mounting surface of the insulating base is equal to the cross section below this. A semiconductor device characterized in that it is formed smaller than its area.
JP49086252A 1974-07-26 1974-07-26 semiconductor equipment Expired JPS582454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49086252A JPS582454B2 (en) 1974-07-26 1974-07-26 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49086252A JPS582454B2 (en) 1974-07-26 1974-07-26 semiconductor equipment

Publications (2)

Publication Number Publication Date
JPS5114271A JPS5114271A (en) 1976-02-04
JPS582454B2 true JPS582454B2 (en) 1983-01-17

Family

ID=13881617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49086252A Expired JPS582454B2 (en) 1974-07-26 1974-07-26 semiconductor equipment

Country Status (1)

Country Link
JP (1) JPS582454B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149171A (en) * 1976-06-04 1977-12-12 Tokyo Optical Device for applying pressure to frictional measurement wheel
JPS582060Y2 (en) * 1977-08-30 1983-01-13 日本電気株式会社 Ultra high frequency transistor device
JPS57111050A (en) * 1980-12-26 1982-07-10 Fujitsu Ltd Semiconductor device

Also Published As

Publication number Publication date
JPS5114271A (en) 1976-02-04

Similar Documents

Publication Publication Date Title
KR100328143B1 (en) Lead frame with layered conductive plane
JP2673993B2 (en) Surface acoustic wave device
US5656857A (en) Semiconductor device with insulating resin layer and substrate having low sheet resistance
US3946428A (en) Encapsulation package for a semiconductor element
US4172261A (en) Semiconductor device having a highly air-tight package
JP2598129B2 (en) Semiconductor device
US5334803A (en) Semiconductor device and method of producing the same
EP0180219A3 (en) Capacitor built-in integrated circuit packaged unit and process of fabrication thereof
US4839713A (en) Package structure for semiconductor device
US3489956A (en) Semiconductor device container
US4266239A (en) Semiconductor device having improved high frequency characteristics
US4150393A (en) High frequency semiconductor package
US4067040A (en) Semiconductor device
US3641398A (en) High-frequency semiconductor device
JPH0750753B2 (en) Transistor device
JPS582454B2 (en) semiconductor equipment
JPH11251508A (en) Insulating substance sealed electronic device and manufacture thereof
US3710202A (en) High frequency power transistor support
US4340901A (en) Lead connecting structure for a semiconductor device
JPS6020942Y2 (en) semiconductor equipment
US20230005800A1 (en) Semiconductor device and package
JPH0119269B2 (en)
JPS6146049A (en) Semiconductor device
JPS5840339B2 (en) high frequency transistor
JPS6035247Y2 (en) semiconductor equipment