JPS5823859B2 - 2↓-ta↓-shari↓-method for producing alkyl-substituted anthraquinone - Google Patents

2↓-ta↓-shari↓-method for producing alkyl-substituted anthraquinone

Info

Publication number
JPS5823859B2
JPS5823859B2 JP54027001A JP2700179A JPS5823859B2 JP S5823859 B2 JPS5823859 B2 JP S5823859B2 JP 54027001 A JP54027001 A JP 54027001A JP 2700179 A JP2700179 A JP 2700179A JP S5823859 B2 JPS5823859 B2 JP S5823859B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
amyl
vanadium
benzyltoluene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54027001A
Other languages
Japanese (ja)
Other versions
JPS55118436A (en
Inventor
伊藤宗男
杉尾彰俊
西沢千春
東郷静雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP54027001A priority Critical patent/JPS5823859B2/en
Priority to US06/124,223 priority patent/US4305879A/en
Priority to DE3008870A priority patent/DE3008870C2/en
Priority to FR8005245A priority patent/FR2450800A1/en
Publication of JPS55118436A publication Critical patent/JPS55118436A/en
Publication of JPS5823859B2 publication Critical patent/JPS5823859B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C46/00Preparation of quinones
    • C07C46/02Preparation of quinones by oxidation giving rise to quinoid structures

Description

【発明の詳細な説明】 本発明は、2−ターシャリ−アルキル置換アンスラキノ
ンの製造方法にかかわる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for making 2-tertiary-alkyl substituted anthraquinones.

一般式 〔式中、R1、R2は水素原子または第三級アルキル基
を示し、一方が第三級アルキル基であるときは、他方は
水素原子であり、そしてR3は炭素数1ないし3のアル
キル基を示す。
General formula [wherein R1 and R2 represent a hydrogen atom or a tertiary alkyl group; when one is a tertiary alkyl group, the other is a hydrogen atom; and R3 is an alkyl group having 1 to 3 carbon atoms. Indicates the group.

〕で表わされるジフェニルメタン型化合物を、バナジウ
ム化合物を含有する触媒の存在下に気相接触酸化して、
2−ターシャリ−アルキル置換アンスラキノンを製造す
る方法が、特開昭52−3047号公報に示されている
] A diphenylmethane type compound represented by is oxidized in gas phase in the presence of a catalyst containing a vanadium compound,
A method for producing 2-tert-alkyl-substituted anthraquinones is shown in Japanese Patent Application Laid-Open No. 52-3047.

本発明者らは、この方法において使用されているバナジ
ウム系触媒についてさらに鋭意検討し、すぐれた活性と
寿命を有する新しいバナジウム系触媒を見出して本発明
に到達した。
The present inventors further studied the vanadium-based catalyst used in this method, discovered a new vanadium-based catalyst with excellent activity and life, and arrived at the present invention.

すなわち、特開昭52−3047号公報にはベンジルベ
ンズアルデヒド型化合物の生成を殆んど伴うことな(、
収率よく目的とする2−ターシャリ−アルキル置換アン
スラキノンが得られることが開示されており、気相酸化
触媒として酸化バナジウム単独またはこれと他の金属含
有化合物とを組合せたバナジウム系触媒を教示している
That is, in JP-A-52-3047, there is almost no formation of benzylbenzaldehyde type compounds (
It is disclosed that the desired 2-tertiary-alkyl-substituted anthraquinone can be obtained in good yield, and a vanadium-based catalyst consisting of vanadium oxide alone or in combination with another metal-containing compound is taught as a gas-phase oxidation catalyst. ing.

本発明者らは、このバナジウム系触媒についてさらに検
討をすすめた結果、バナジウムにセリウムを組合せてな
る触媒が上記気相酸化をさらに好適に進めて高い収率で
目的物を与えるばかりでなく、触媒の活性が長期に亘っ
て安定して持続することを見出した。
As a result of further studies on this vanadium-based catalyst, the present inventors found that a catalyst consisting of a combination of vanadium and cerium not only promotes the gas phase oxidation more suitably and provides the target product in a high yield, but also catalyzes It has been found that the activity of the compound remains stable over a long period of time.

したがって、本発明は、触媒換装を長期に亘って行なわ
ず、かつ高い収率で2−ターシヤリ−アルキル置換アン
スラキノンを製造する極めて実用的な方法を提供する。
Therefore, the present invention provides a highly practical method for producing 2-tertiary-alkyl-substituted anthraquinones in high yields without catalyst replacement over long periods of time.

本発明の方法を実施するに当って、使用する触媒は、バ
ナジウムとセリウム元素とを含有することを必須とし、
通常、バナジウムおよびセリウムは酸化物の形で触媒成
分として用いられる。
In carrying out the method of the present invention, the catalyst used must contain vanadium and cerium elements,
Vanadium and cerium are usually used as catalyst components in the form of oxides.

バナジウムとセリウムとの組成比は、原子比でV:Ce
−10〇二2〜60、好ましくは100:6〜40の範
囲で選ばれるとよい。
The composition ratio of vanadium and cerium is V:Ce in atomic ratio.
-100:22 to 60, preferably 100:6 to 40.

これらの触媒成分は、そのまX成型して触媒として使用
してもよいが、通常は、電融アルミナ、シリコンカーバ
イド、アルミニウムスポンジなどで例示される不活性担
体に担持させて用いるのが好ましい。
Although these catalyst components may be used as a catalyst by X-molding as they are, it is usually preferable to support them on an inert carrier such as fused alumina, silicon carbide, or aluminum sponge.

本発明の方法において、原料として用い得るジフェニル
メタン型化合物は、前記一般式で表わされるが、具体的
には、4−t−ブチル−2−ベンジルトルエン、5−t
−7”チル−2−ベンジルトルエン、4−t−アミル−
2−ベンジルトルエン、5−t−アミル−2−ベンジル
トルエン、4−t−フチルー2−ベンジルエチルベンゼ
ン、5−を−ブチル−2−ベンジルエチルベンゼン、4
−t−アミル−2−ベンジル−エチルベンゼン、5−t
−アミル−2−ベンジルエチルベンゼン、4−t−ブチ
ル−2−ベンジルクメン、5−t−ブチル−2−ベンジ
ルクメン、4−t−アミル−2−ベンジルクメン、5−
t−アミル−2−ベンジルクメン等があげられる。
In the method of the present invention, the diphenylmethane type compound that can be used as a raw material is represented by the above general formula, and specifically, 4-t-butyl-2-benzyltoluene, 5-t-butyl-2-benzyltoluene, 5-t-
-7” thyl-2-benzyltoluene, 4-t-amyl-
2-benzyltoluene, 5-t-amyl-2-benzyltoluene, 4-t-phthyl-2-benzylethylbenzene, 5-butyl-2-benzylethylbenzene, 4
-t-amyl-2-benzyl-ethylbenzene, 5-t
-Amyl-2-benzylethylbenzene, 4-t-butyl-2-benzylcumene, 5-t-butyl-2-benzylcumene, 4-t-amyl-2-benzylcumene, 5-
Examples include t-amyl-2-benzylcumene.

原料である前記ジフェニルメタン型化合物は、気化させ
た上で空気と混合し、前記バナジウム−セリウム系触媒
を充填した反応器に導いて酸化される。
The diphenylmethane type compound, which is a raw material, is vaporized, mixed with air, and introduced into a reactor filled with the vanadium-cerium catalyst to be oxidized.

触媒層に導かれる供給ガス中には、原料化合物が0.1
〜2モル%に相当する濃度で含まれる様に空気と混合さ
れるべきである。
The raw material compound is contained in the feed gas introduced to the catalyst layer at a concentration of 0.1
It should be mixed with air to contain a concentration corresponding to ~2 mol%.

原料含有ガスは、空間速度2000〜15000Hr
’、好ましくは3000〜10000Hr−1の範囲
で触媒層に供給する。
The gas containing the raw material has a space velocity of 2000 to 15000 Hr.
', preferably in the range of 3,000 to 10,000 Hr-1.

反応温度は350〜450℃に保たれる様制御する。The reaction temperature is controlled to be maintained at 350-450°C.

本発明の方法にか\る反応は、常圧下、加圧下、あるい
は減圧下のいずれの条件下においても支障なく行われる
The reaction according to the method of the present invention can be carried out without any problem under normal pressure, increased pressure, or reduced pressure.

接触酸化反応後の反応生成物は、そのまX凝縮させるか
、あるいは有機溶剤に吸収させ、しかるのち、蒸留ある
いは晶析などの公知の手段によって反応生成物から目的
物を分離、取得する。
The reaction product after the catalytic oxidation reaction is directly condensed with X or absorbed in an organic solvent, and then the target product is separated and obtained from the reaction product by known means such as distillation or crystallization.

次に本発明の詳細を実施例によって説明する。Next, the details of the present invention will be explained with reference to examples.

比較例 1 特開昭52−3047号公報実施例2に示されているV
−T i −Csを含む触媒について寿命試験を実施
した。
Comparative Example 1 V shown in Example 2 of JP-A-52-3047
A life test was conducted on a catalyst containing -T i -Cs.

触媒は、当該実施例に準じて、次のように調製した。The catalyst was prepared as follows according to the example.

メタバナジン酸アンモニウム 12.87Pを水150
m1に懸濁させ、これに蓚酸三水和物26グを加えて8
0〜100℃に加熱し、青色の溶液を得た。
Ammonium metavanadate 12.87P to water 150P
ml, add 26 g of oxalic acid trihydrate to 8
Heated to 0-100°C to obtain a blue solution.

これに四塩化チタン 1.0(1、塩化セシウム 0.
355′?を加えてよ(かきまぜ、さらに電融アルミナ
(平均径3mmφ) 50M’を加えて水浴上で蒸発
乾固させ、触媒成分をアルミナに付着させた。
To this, titanium tetrachloride 1.0 (1, cesium chloride 0.
355′? (stir), then add 50 M' of fused alumina (average diameter: 3 mm) and evaporate to dryness on a water bath to adhere the catalyst component to the alumina.

これを180°Cで10時間予備乾燥した後、ステンレ
ス製焼成管に充填し、空気流通下500℃、3時間焼成
した。
After pre-drying this at 180°C for 10 hours, it was filled into a stainless steel firing tube and fired at 500°C for 3 hours under air circulation.

得られたアルミナ担持触媒の有効成分組成はV:Ti:
Cs(原子比)−100:5:2であった。
The active component composition of the obtained alumina supported catalyst was V:Ti:
Cs (atomic ratio) was -100:5:2.

この触媒をステンレス製反応管に充填し、4−t−アミ
ル−2−ベンジルトルエン(90モル%)と5−t−ア
ミル−2−ベンジルトルエン(10モル%)の原料混合
物を気化させて空気と混合し、これを5V3000hr
’、酸化原料濃度0.2モル%で触媒層を通過させ、反
応を継続して行なった。
This catalyst was packed into a stainless steel reaction tube, and a raw material mixture of 4-t-amyl-2-benzyltoluene (90 mol%) and 5-t-amyl-2-benzyltoluene (10 mol%) was vaporized into air. Mix this with 5V3000hr
', the reaction was continued by passing through the catalyst layer at an oxidizing raw material concentration of 0.2 mol%.

表1に反応時間と2−t−アミルアンスラキノン収率の
関係を示した。
Table 1 shows the relationship between reaction time and 2-t-amyl anthraquinone yield.

表1中に示された反応温度は、その反応時間での最適温
度を示している。
The reaction temperatures shown in Table 1 indicate the optimum temperatures for the corresponding reaction times.

この表から、10時間後には触媒の活性が若干低下する
ことが判る。
From this table, it can be seen that the activity of the catalyst decreases slightly after 10 hours.

実施例 1 五酸化バナジウム 10グに150m1の塩酸を加え、
60〜80℃に加熱し、暗緑色の溶液を得た。
Example 1 Add 150ml of hydrochloric acid to 10g of vanadium pentoxide,
Heating to 60-80°C gave a dark green solution.

これに硝酸第一セリウム六水塩 3.85S’を加えて
かきませ、均一溶液とした。
To this was added 3.85 S' of cerous nitrate hexahydrate and stirred to obtain a homogeneous solution.

この溶液を180℃に加熱した電融アルミナ 500グ
に霧状にふきつげ、触媒成分を担体表面に均一に付着さ
せた。
This solution was sprayed onto 500 g of fused alumina heated to 180° C. to uniformly adhere the catalyst component to the surface of the carrier.

得られた触媒をステンレス製の管につめ、空気流通下5
00°Cで3時間焼成した。
The obtained catalyst was packed in a stainless steel tube and placed under air circulation for 5 minutes.
It was baked at 00°C for 3 hours.

得られたアルミナ担持触媒の有効成分組成比はV:Ce
−100:12(原子比)であった。
The effective component composition ratio of the obtained alumina supported catalyst was V:Ce
-100:12 (atomic ratio).

この触媒をステンレス製反応管に充填し、4−t−アミ
ル−2−ベンジルトルエン(90モル%)と5−t−ア
ミル−2−ベンジルトルエン(10モル%)の原料混合
物を気化させ、空気と混合し、下記の反応条件下で触媒
層に通過させ、次の反応結果を得た。
This catalyst was packed into a stainless steel reaction tube, a raw material mixture of 4-t-amyl-2-benzyltoluene (90 mol%) and 5-t-amyl-2-benzyltoluene (10 mol%) was vaporized, and air and passed through the catalyst bed under the following reaction conditions to obtain the following reaction results.

反応条件: 反応速度 420 ℃ 空間速度(SV) 3000 hr ’
原料濃度 0.2モル%反応結果
(反応開始後5 hrsの反応成績):原料転化率
98.7% 2−t−アミ″アンスラ 54.6%(や7.)キノン
収率 実施例 2 実施例1で使用した触媒について、そのまX反シ応を2
000時間継続して触媒寿命試験を実施し、表2の結果
を得た。
Reaction conditions: Reaction rate 420°C Space velocity (SV) 3000 hr'
Raw material concentration 0.2 mol% Reaction result (reaction result 5 hrs after the start of reaction): Raw material conversion rate
98.7% 2-t-aminoanthra 54.6% (or 7.) quinone yield Example 2 The catalyst used in Example 1 was directly subjected to the X reaction.
The catalyst life test was carried out continuously for 000 hours, and the results shown in Table 2 were obtained.

触媒活性が極めて長時間持続していることが判る。It can be seen that the catalytic activity lasts for an extremely long time.

実施例 3〜5 実施例1と同様にして調製した組成比の異なるV−Ce
アルミナ担持触媒を使用し、実施例1と同一反応条件下
で、4−t−アミル−2−ベンジルトルエン(88モル
%)と5−t−アミル−2−ベンジルトルエン(12モ
ル%)の原料混合物の酸化を行ない、表3の結果を得た
Examples 3 to 5 V-Ce with different composition ratios prepared in the same manner as Example 1
Raw materials of 4-t-amyl-2-benzyltoluene (88 mol%) and 5-t-amyl-2-benzyltoluene (12 mol%) were prepared using an alumina-supported catalyst under the same reaction conditions as in Example 1. The mixture was oxidized and the results shown in Table 3 were obtained.

Claims (1)

【特許請求の範囲】 1 一般式 〔式中、R1およびR2は水素原子または第三級アルキ
ル基を示し、一方が第三級アルキル基であるときは、他
方は水素原子であり、そして、R3は炭素数1なし・し
3のアルキル基を示す。 〕で表わされるジフェニルメタン型化合物を、バナジウ
ムとセリウムとを含む触媒の存在下に気相酸化すること
を特徴とする2−ターシャリ−アルキル置換アンスラキ
ノンの製造方法。
[Scope of Claims] 1 General formula [wherein R1 and R2 represent a hydrogen atom or a tertiary alkyl group, and when one is a tertiary alkyl group, the other is a hydrogen atom, and R3 represents an alkyl group having 1 to 3 carbon atoms. A method for producing a 2-tertiary-alkyl-substituted anthraquinone, which comprises gas-phase oxidation of a diphenylmethane compound represented by the following formula in the presence of a catalyst containing vanadium and cerium.
JP54027001A 1979-03-08 1979-03-08 2↓-ta↓-shari↓-method for producing alkyl-substituted anthraquinone Expired JPS5823859B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP54027001A JPS5823859B2 (en) 1979-03-08 1979-03-08 2↓-ta↓-shari↓-method for producing alkyl-substituted anthraquinone
US06/124,223 US4305879A (en) 1979-03-08 1980-02-25 Process for producing a 2-tertiary-alkyl substituted anthraquinones
DE3008870A DE3008870C2 (en) 1979-03-08 1980-03-07 Process for the preparation of a 2-tert-alkyl-substituted anthraquinone
FR8005245A FR2450800A1 (en) 1979-03-08 1980-03-07 PROCESS FOR THE PRODUCTION OF TERTIARY 2-ALKYL SUBSTITUTED ANTHRAQUINONES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54027001A JPS5823859B2 (en) 1979-03-08 1979-03-08 2↓-ta↓-shari↓-method for producing alkyl-substituted anthraquinone

Publications (2)

Publication Number Publication Date
JPS55118436A JPS55118436A (en) 1980-09-11
JPS5823859B2 true JPS5823859B2 (en) 1983-05-18

Family

ID=12208892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54027001A Expired JPS5823859B2 (en) 1979-03-08 1979-03-08 2↓-ta↓-shari↓-method for producing alkyl-substituted anthraquinone

Country Status (4)

Country Link
US (1) US4305879A (en)
JP (1) JPS5823859B2 (en)
DE (1) DE3008870C2 (en)
FR (1) FR2450800A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4405523A (en) * 1982-03-24 1983-09-20 Standard Oil Company (Indiana) Process for preparation of benzophenone, anthraquinone and O-dibenzoylbenzene

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE349089C (en) * 1916-12-19 1922-02-23 Alfred Wohl Dr Process for the preparation of acids or other carbonyl compounds
GB228771A (en) * 1924-06-04 1925-02-12 Edward Bradford Maxted Oxidation of aromatic hydrocarbons
US4151182A (en) * 1971-05-24 1979-04-24 Badische Anilin- & Soda-Fabrik Aktiengesellschaft Production of anthraquinone
DE2430567C2 (en) * 1974-06-26 1983-01-27 Basf Ag, 6700 Ludwigshafen Process for the production of anthraquinone
DE2442911C2 (en) * 1974-09-07 1983-08-25 Basf Ag, 6700 Ludwigshafen Process for the production of anthraquinone
JPS523047A (en) * 1975-06-25 1977-01-11 Mitsubishi Gas Chem Co Inc Preparation of di-(t-alkyl) anthraquinones
DE2547655A1 (en) * 1975-10-24 1977-04-28 Basf Ag Halo-substd. anthraquinones prepn. - by catalytic oxidn. of diphenyl methane cpds. in gas phase
DE2633458A1 (en) * 1976-07-24 1978-01-26 Bayer Ag (substd.) anthraquinone prodn. from phthalic anhydride cpds. - as sole reactant, by vapour phase reaction over solid catalyst
US4215063A (en) * 1979-05-03 1980-07-29 American Cyanamid Company Oxidation catalyst and use in the production of anthraquinone

Also Published As

Publication number Publication date
DE3008870C2 (en) 1983-08-11
DE3008870A1 (en) 1980-10-09
JPS55118436A (en) 1980-09-11
FR2450800A1 (en) 1980-10-03
US4305879A (en) 1981-12-15
FR2450800B1 (en) 1984-06-08

Similar Documents

Publication Publication Date Title
US3509179A (en) Process for the production of phthalic anhydride
JPH0515711B2 (en)
JP2834481B2 (en) Ketone manufacturing method
US3954855A (en) Process for preparing acrylic acid
JP4081824B2 (en) Acrylic acid production method
US4292201A (en) Preparation of vanadium(IV)bis(metaphosphate) hydrocarbon oxidation catalyst containing an actinide or lanthanide series metal
US4552978A (en) Oxidation of unsaturated aldehydes
JP2587488B2 (en) Method for regenerating catalyst for oxidative dehydrogenation of isobutyric acid
US4148822A (en) Process for the manufacture of methacrylic or acrylic acid
JPS6048496B2 (en) Method for producing methacrylic acid
JPS5823859B2 (en) 2↓-ta↓-shari↓-method for producing alkyl-substituted anthraquinone
US4054607A (en) Process for preparing anisaldehyde
JPS58131933A (en) Manufacture of anthraquinone
JPS60224652A (en) Production of 3-methyl-2-buten-1-al
US4215063A (en) Oxidation catalyst and use in the production of anthraquinone
US4560673A (en) Catalyst for the oxidation of unsaturated aldehydes
KR100266075B1 (en) Static condition process for the preparation of phosphorus/vanadium oxidation catalyst
US4036861A (en) Process for producing a 2-tertiary-alkyl substituted anthraquinone
JPH031059B2 (en)
US4319066A (en) Preparation of alkenyl aromatic compounds
JPH07206427A (en) Production of hydrocyanic acid
JPS5939413B2 (en) Method for producing methacrolein and methacrylic acid
JPH0415020B2 (en)
US3288724A (en) Process for preparing a silicon carbide supported vanadium-containing oxidation catalyst
JP2000001484A (en) Production of pyromellitic anhydride