JPS60224652A - Production of 3-methyl-2-buten-1-al - Google Patents

Production of 3-methyl-2-buten-1-al

Info

Publication number
JPS60224652A
JPS60224652A JP59082757A JP8275784A JPS60224652A JP S60224652 A JPS60224652 A JP S60224652A JP 59082757 A JP59082757 A JP 59082757A JP 8275784 A JP8275784 A JP 8275784A JP S60224652 A JPS60224652 A JP S60224652A
Authority
JP
Japan
Prior art keywords
reaction
catalyst
prenol
carrier
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59082757A
Other languages
Japanese (ja)
Inventor
Katsumi Komura
小村 勝美
Fumio Yamamoto
文夫 山本
Sunao Kyo
姜 砂男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP59082757A priority Critical patent/JPS60224652A/en
Publication of JPS60224652A publication Critical patent/JPS60224652A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the titled compound in high conversion and selectivity, with increased effective surface area of the catalyst, and in high reaction activity with small amount of the catalyst, by carrying out the catalytic reaction of prenol with molecular O2 in vapor phase at a specific temperature using a specific oxidative dehydrogenation catalyst. CONSTITUTION:The objective compound can be produced by the vapor-phase catalytic reaction of prenol (=3-methyl-2-buten-1-ol) with molecular O2 at 300- 600 deg.C, in the presence of a catalyst prepared by supporting silver and copper on a carrier having a specific surface area of <3m<2>/g, e.g. quartz, fused alumina, etc., and if necessary, in the presence of the nitrogen compound of formula (R<1>- R<3> are H or lower alkyl) as a side-reaction suppressing agent. The weight ratio of silver to copper supported on the carrier is 99:1-50:50. EFFECT:Effective to dissipate and removed the heat of reaction, to suppress the sintering of the metallic components of the catalyst caused by the local super- heating during the reaction and activation, and to stabilize the microscopic structure of the active part of the catalyst. The amount of the reaction gas can be varied over a wide range in this process.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は3−メチル−2−ブテン−1−アールの製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing 3-methyl-2-buten-1-al.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、3−メチルー2−ブテン−1−オール(以下、プ
レノールと称す)を気相で酸化脱水素触媒と接触させる
ことにより脱水素して3−メチル−2−ブテン−1−ア
ール(以下、セネシオアルデヒドと称す)を製造する方
法は知られている。例えば、特開昭53−137906
号明細書には、プレノールなどのアルテノールを酸素と
ともに触媒上を通して酸化脱水素することによりセネシ
オアルデヒドなどの3−アルキル−ブテン−1−アール
を製造するに際し、一定の全層厚を有する各々一定の重
電及び一定の大きさの粒径をもつ粒子の2つ又はそれ以
上の層より成る銀及び/又は鋼の粒子を有する多層触媒
を使用することt−特徴とする上記3−アルキル−グチ
/−1−アールの製造方法が記載さjしている。
Conventionally, 3-methyl-2-buten-1-ol (hereinafter referred to as prenol) is dehydrogenated by contacting it with an oxidative dehydrogenation catalyst in the gas phase to produce 3-methyl-2-buten-1-al (hereinafter referred to as prenol). Methods for producing senecioaldehyde (called senecioaldehyde) are known. For example, JP-A-53-137906
The specification describes that in the production of 3-alkyl-buten-1-al such as senecioaldehyde by oxidative dehydrogenation of altenol such as prenol by passing it over a catalyst with oxygen, each of The above-mentioned 3-alkyl-glucose catalyst is characterized in that it uses a multilayer catalyst with silver and/or steel particles consisting of two or more layers of particles with a particle size of a certain size. A method for producing /-1-R is described.

しかし、この方法で用いられる触媒は銀及び/又は鋼を
粒子状態で含み、しかも特殊な層構造を有しており、そ
の調製は工業的には容易ではない。
However, the catalyst used in this method contains silver and/or steel in the form of particles and has a special layer structure, so its preparation is not easy industrially.

また米国特許第2,042,220号明細書には、不飽
和脂肪族アルコールを酸化触媒の存在′ド高められた温
度で酸素で酸化することにより対応する不飽和脂肪族ア
ルデヒドを製造する方法が記載されている。この方法で
は活性化された酸化触媒を用いるのが適当でろるとされ
ており、例えば酸化銅線を水素雰囲気中、300℃で還
元して!ll製し皮調触媒;[1網をアマルガム化した
のち600℃で加熱することにより、水銀を除去するこ
とによOv4製した銀触媒などが使用されているが、こ
れら触媒は工業的には採用し難い。またドイツ特許第2
041976号gAIiBI書には、プレノールを気相
で150〜600℃の温度において鋼、銀、亜鉛などの
脱水素触媒の存在下、さらに核性の脂肪族有機着しくけ
芳香族有機の窒素化合物、リン化合物若しくは硫黄化合
物の存在下又はアンモニアガスの存在下及び/又は該脱
水素触媒の担体若しくは脱水素触媒への添加物としての
酸化バリウム、酸化カルシウム、酸化マグネシウムなど
の塩基性金属酸化物の存在下に脱水素させてセネシオア
ルデヒドを製造する方法が開示されている。この方法で
は酸素を共存させた場合、プレノールの酸化が進み過ぎ
”Cジメチルアクリル酸の生成量が増加し、セネシオア
ルデヒドの収率が著しく低下することが指摘されている
U.S. Pat. No. 2,042,220 also describes a method for producing the corresponding unsaturated aliphatic aldehydes by oxidizing unsaturated aliphatic alcohols with oxygen in the presence of an oxidation catalyst and at elevated temperatures. Are listed. In this method, it is said that it is appropriate to use an activated oxidation catalyst, such as reducing copper oxide wire at 300°C in a hydrogen atmosphere! Silver catalysts manufactured by Ov4 are used, such as those made by removing mercury by amalgamating the 1-mesh and heating it at 600°C, but these catalysts are not industrially suitable. Difficult to hire. Also, the second German patent
No. 041976gAIiBI describes that prenol is prepared in the gas phase at a temperature of 150 to 600°C in the presence of a dehydrogenation catalyst such as steel, silver, or zinc, and furthermore, a nuclear aliphatic organic nitrogen compound, an aromatic organic nitrogen compound, In the presence of a phosphorus compound or a sulfur compound or in the presence of ammonia gas and/or the presence of a basic metal oxide such as barium oxide, calcium oxide, magnesium oxide as a carrier for the dehydrogenation catalyst or as an additive to the dehydrogenation catalyst. A method for producing senecioaldehyde by dehydrogenation is disclosed below. It has been pointed out that in this method, when oxygen is present, the oxidation of prenol progresses too much and the amount of "C dimethylacrylic acid" produced increases, resulting in a significant decrease in the yield of senecioaldehyde.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記のごとき従来法の問題点を解決し
、プレノールを気相で酸素とともに酸化脱水素触媒と接
触させてセネシオアルデヒドを製造するための改良され
た製造方法を提供するにある。
An object of the present invention is to solve the problems of the conventional methods as described above and to provide an improved production method for producing senecioaldehyde by contacting prenol with an oxidative dehydrogenation catalyst in the gas phase together with oxygen. .

〔発明の構成〕[Structure of the invention]

本発明はプレノールを気相で300〜600℃の温度に
おいて分子状酸素とともに、比表面積が3−未満の担体
に銀及び鋼の2成分を担持してなる触媒と接触させるこ
とを特徴とするセネシオアルデヒドの製造方法に関する
The present invention is characterized in that prenol is brought into contact with molecular oxygen in a gas phase at a temperature of 300 to 600°C with a catalyst comprising two components, silver and steel, supported on a carrier having a specific surface area of less than 3. This invention relates to a method for producing aldehydes.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明方法で飲用する触媒は、LINT法で測定した比
表面積が312未満の担体に銀及び銅の2成分を担持し
7′cものでろる0 用いる担体の比表面積はセネシオアルデヒドを選択率よ
く得るために3Cv未満である必要がめり、特Vこ1 
nl/I禾満であることが好ましい。担体の比表面積が
大きいと一反応が起り、イソブチン、インプレンなどか
多量に副生ずるようになる。担体として上記のよシな小
さい比表面積を有する石英砂、溶融アルミナ、溶融シリ
カ、シリコンカーバイド、ヒドロキシアパタイト[Ca
2O(PO4)6(OH)2 ]、軽石などを用いる。
The catalyst to be consumed in the method of the present invention has two components, silver and copper, supported on a carrier with a specific surface area of less than 312 as measured by the LINT method. Must be less than 3Cv to obtain special V
It is preferable that nl/I is full. If the specific surface area of the carrier is large, a reaction will occur and a large amount of isobutyne, imprene, etc. will be produced as by-products. As a support, quartz sand with a small specific surface area as described above, fused alumina, fused silica, silicon carbide, hydroxyapatite [Ca
2O(PO4)6(OH)2], pumice, etc. are used.

このような担体音用いる仁とによって七不シオアルデヒ
ドへの選択率を同上させることができること以外に、担
体を使用しない場合に比べて触媒の有効表面積が増大し
、少ない触媒量で大きな活性が得られること、反応熱の
分散及び除去に有利であること、反応時及び賦活時の局
部過熱による触媒金属成分のシンタリングを抑制し、活
性部分の微細構造を安定化すること、反応ガス量の広範
囲な変化に対応し易いことなどの工業上の利点が生ずる
。また、担体として酸量が少ないものを用いる方、−セ
ネシオアルデヒドへの選択率を向上させる点で好ましく
、例えばアミン滴定法で測定した値で2 x 10 m
mot/f以下の酸量を有するものが適当である。
In addition to the fact that the selectivity to hepta-unthioaldehyde can be increased by using such a carrier, the effective surface area of the catalyst is increased compared to when no carrier is used, and a large activity can be obtained with a small amount of catalyst. be advantageous in dispersing and removing reaction heat, suppress sintering of the catalyst metal component due to local overheating during reaction and activation, stabilize the fine structure of the active part, and accommodate a wide range of reaction gas amounts. This brings about industrial advantages such as ease of responding to changes. In addition, it is preferable to use a carrier with a small amount of acid in order to improve the selectivity to -senecioaldehyde, for example, 2 x 10 m as measured by amine titration.
Those having an acid content of mot/f or less are suitable.

上記の担体に銀又は銅のどちらか一方のみを担持してな
る触媒を用いた場合に蝶、プレノールの転化率及びtネ
シオアルデヒドへの選択率はいずれも低下する。担体に
担持する銀と鋼の割合は重量比で99対1乃至50対5
0の範囲が好ましく、特に98対2乃至90対10の範
囲が好ましい。
When a catalyst in which only either silver or copper is supported on the above-mentioned carrier is used, both the conversion rate of prenol and the selectivity to nesioaldehyde decrease. The ratio of silver and steel supported on the carrier is 99:1 to 50:5 by weight.
A range of 0 is preferred, and a range of 98:2 to 90:10 is particularly preferred.

担体に担持する銀及び銅の合計重量は該担体に対して0
.1〜30重量%、好ましくは1〜15重量%である。
The total weight of silver and copper supported on the carrier is 0 relative to the carrier.
.. It is 1 to 30% by weight, preferably 1 to 15% by weight.

銀及び銅の担持量は少ない方が触媒コストを低減させる
上で好ましいが、その担持量が0.1重itチに洞穴な
い場合にはプレノールの転化車及びセネシオアルデヒド
への選択率が低下するので好ましくない。また、その担
持量が30重量SL−越える場合にはその超過量に見合
うだけの触媒効果が得られず、触媒コストの増大になる
だけでめり工菓上採用するのは好ましくない。
A smaller amount of silver and copper supported is preferable in terms of reducing catalyst cost, but if the amount supported is less than 0.1 weight it, the selectivity to prenol conversion vehicle and senecioaldehyde will decrease. So I don't like it. Furthermore, if the supported amount exceeds 30 weight SL-, a catalytic effect commensurate with the excess amount cannot be obtained, and the cost of the catalyst increases, so it is not preferable to use it in confectionery production.

本発明方法で使用する酸化脱水素触媒は、例えば所定量
の硝酸銀と硝酸鋼の水m液を前記の担体に含浸させたの
ち、約300〜400℃の温度において空気中で焼成し
、ついで約300〜500℃の温度に2いて水素で処理
することにより容易に調製することができる。本発明を
実施するに用いる触媒層は流動床又は多管式の固定床が
適当である。
The oxidative dehydrogenation catalyst used in the method of the present invention is prepared by impregnating the above-mentioned carrier with a predetermined amount of aqueous solution of silver nitrate and steel nitrate, and then calcining it in air at a temperature of about 300 to 400°C, and then baking it in air at a temperature of about 300 to 400°C. It can be easily prepared by treatment with hydrogen at a temperature of 300-500°C. The catalyst bed used in carrying out the present invention is suitably a fluidized bed or a multi-tubular fixed bed.

本発明における酸化脱水素反応は気相で300〜600
℃、好ましくは400〜500℃の温度範囲内で行なわ
れる。触媒層の温度中その最高温度がこの温度範囲内に
なるように設定する必要がある。
The oxidative dehydrogenation reaction in the present invention is carried out in the gas phase at 300 to 600
C, preferably within a temperature range of 400 to 500C. It is necessary to set the maximum temperature of the catalyst layer to be within this temperature range.

300℃より低い温度では触媒単位容量当9のセネシオ
アルデヒドの収量が小さくなり、また600℃を越える
温度では一1反応が顕著に起り、触媒の活性寿命が短か
くなる。この酸化脱水素反応は発熱反応であり、触媒層
の温度を上記の温度範囲内に維持するためには適当な方
法で除熱する必要がある。除熱方法としては、例えは反
応域(触媒層)を外部から4当な熱媒により冷却する方
法、原料プレノールのフィードガスと同時に該フィード
ガスに約して約0.5〜2倍容量の不活性ガスを反応域
に供給する方法又杖これらを併用する方法全採用するこ
とができる。用りる不活性ガスとしては原料プレノール
、触媒などに対して悪影響を与えない窒素、ヘリウム、
水蒸気などが適当である。
At temperatures lower than 300°C, the yield of senecioaldehyde per unit volume of the catalyst becomes small, and at temperatures above 600°C, the 11 reaction occurs significantly, shortening the active life of the catalyst. This oxidative dehydrogenation reaction is an exothermic reaction, and in order to maintain the temperature of the catalyst layer within the above temperature range, it is necessary to remove heat by an appropriate method. Heat removal methods include, for example, cooling the reaction zone (catalyst layer) from the outside with a suitable heating medium, and adding about 0.5 to 2 times the volume of the feed gas at the same time as the raw prenol feed gas. Either a method of supplying an inert gas to the reaction zone or a combination of these methods can be employed. The inert gases used include nitrogen, helium, and
Water vapor is suitable.

ま几、本発明方法で使用する触媒では、での伝熱面積を
増大させ除熱全容易にするために、触媒をガラス玉、石
英砂、溶融アルミナなどの不活性粒子で希釈することも
できる。
However, the catalyst used in the method of the present invention can also be diluted with inert particles such as glass beads, quartz sand, fused alumina, etc. to increase the heat transfer area and facilitate heat removal. .

本発明に2ける酸化脱水素反応で用いる分子状酸素は窒
素、アルゴン、ヘリウム、水蒸気などで希釈されていて
もよい。具体的には空気を用いるのが簡便である。分子
状酸素はプレノールに対して化学量論量より少ない食用
いるのが好ましく、具体的にはプレノール1モル肖り約
0.4モル以下%に0.2〜0.4モル使用するのが適
当でろる。分子状r11票のプレノールに対する使用割
合が大きい程グレノールの転化率が高くなるが、セネシ
オアルデヒドへの選択率が低下し、ま九反応熱の除去も
困難となる。
The molecular oxygen used in the oxidative dehydrogenation reaction in the second aspect of the present invention may be diluted with nitrogen, argon, helium, water vapor, or the like. Specifically, it is convenient to use air. It is preferable to use less than the stoichiometric amount of molecular oxygen relative to prenol, and specifically, it is appropriate to use 0.2 to 0.4 mol per 1 mol of prenol, approximately 0.4 mol or less. Deroru. As the ratio of molecular r11 to prenol increases, the conversion rate of glenol increases, but the selectivity to senecioaldehyde decreases and it becomes difficult to remove the heat of reaction.

プレノールの反応域への供給量は、LH8v(触媒単位
容量当り、1時間当り供給するプレノールの液体容量)
で約0.5〜60 hr の範囲が適当でらる。この範
囲内では分子状酸素との使用割合が同一の場合、LH8
Vが大きい程セネシオアルデヒドへの選択率は増大する
傾向にあるが、通常は除熱の観点から3〜20hr の
範囲内からLH8V’i選ぶのが好ましい。しかし、よ
り高い空時収率(STY)を得ようとする場合には高い
LHE3Vの値が採用できる。触媒上の反応ガスの滞留
時間は1秒以下が好ましい。
The amount of prenol supplied to the reaction zone is LH8v (liquid volume of prenol supplied per hour per unit volume of catalyst)
A suitable range is approximately 0.5 to 60 hr. Within this range, if the usage ratio with molecular oxygen is the same, LH8
The selectivity to senecioaldehyde tends to increase as V increases, but it is usually preferable to select LH8V'i from within the range of 3 to 20 hr from the viewpoint of heat removal. However, when trying to obtain a higher space-time yield (STY), a higher value of LHE3V can be adopted. The residence time of the reaction gas on the catalyst is preferably 1 second or less.

本発明方法では副反応を抑制するために、必要に応じて
一般式RIR”R3N (式中、R1、R2及びR3は
各々水素原子又は低級アルキル基を表わす)で示される
窒素化合物の存仕下に酸化脱水素反応を行なうのが好ま
しい。上記式中、R’、f及びR3は具体的には各々水
素原子;メチル基、エチル基、プロピル基などの低級ア
ルキル基である。窒素化合物としてはアンモニア、メチ
ルアミン、エチルアミン、ジメチルアミン、トリメチル
アミン、トリエチルアミンなどを用いることができるが
、取扱い易さ、入手の容易さ及び低価格の点からアンモ
ニアが最も好ましく、具体的にはアンモニア水を気化さ
せて用いることが便利でおる。窒素化合物はプレノール
に対して約0.05〜3重量%、好ましくは約0.1〜
1重量%の割合で用いられ、プレノールと一緒に触媒上
に供給される。
In the method of the present invention, in order to suppress side reactions, a nitrogen compound represented by the general formula RIR"R3N (wherein R1, R2 and R3 each represent a hydrogen atom or a lower alkyl group) is added as necessary. It is preferable to carry out an oxidative dehydrogenation reaction.In the above formula, R', f, and R3 are each specifically a hydrogen atom; a lower alkyl group such as a methyl group, an ethyl group, or a propyl group.As a nitrogen compound, Ammonia, methylamine, ethylamine, dimethylamine, trimethylamine, triethylamine, etc. can be used, but ammonia is most preferred from the viewpoint of ease of handling, availability, and low price. Specifically, ammonia water is vaporized. It is convenient to use the nitrogen compound in an amount of about 0.05 to 3% by weight, preferably about 0.1 to 3% by weight based on the prenol.
It is used in a proportion of 1% by weight and is fed onto the catalyst together with prenol.

反応生成カスからのセネシオアルデヒドの分離回収蝶1
例えば反応生成ガスを冷却し、凝縮液を蒸留することに
より容易に行なうことができる。
Separation and recovery of senecioaldehyde from reaction product residue 1
For example, this can be easily carried out by cooling the reaction product gas and distilling the condensate.

本発明方法により製造されるセネシオアルデヒドは例え
ばシトラール、β−ヨノン、菊酸などの合成中間体とし
て有用である。
The senecioaldehyde produced by the method of the present invention is useful as a synthetic intermediate for, for example, citral, β-ionone, chrysanthemum acid, and the like.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 /l、AoI(工 、丸多バト。 + H20電融アル
ミナ(ツートン社製、5A−5221,1/8“球状、
BET法で測定した比表面積0.05:M/2)の70
m金硝酸銀37.3重量%、硝酸第二銅・3水和物10
.0重量%及び水52.7重貴チから成る混合水溶液1
00TRIK浸漬し、デカンテーションにより過剰の混
合水溶液を除去したのち、減圧下に150℃で3時間乾
燥し7た。これを300〜350℃で300 d/mi
n の空気流通下に4時間焼成し、ついで350〜45
0℃で500罰/ ml nの水素流通下に5時間還元
した。このようにして調製した触媒における銀と銅の重
量比は9灼1であり、電融アルミナに対する銀及び鋼の
合計担持重量は10重量%であった。
Example 1 /l, AoI (engineering, Maruta Bato. + H20 fused alumina (manufactured by Twotone, 5A-5221, 1/8" spherical,
Specific surface area measured by BET method: 0.05: M/2) of 70
m Gold silver nitrate 37.3% by weight, cupric nitrate trihydrate 10
.. Mixed aqueous solution 1 consisting of 0% by weight and 52.7% water
After immersing in 0TRIK and removing excess mixed aqueous solution by decantation, it was dried at 150° C. for 3 hours under reduced pressure. This was heated at 300 to 350℃ at 300 d/mi.
Baked for 4 hours under air circulation of 350-45
Reduction was carried out at 0°C for 5 hours under a hydrogen flow of 500 n/ml. The weight ratio of silver to copper in the catalyst thus prepared was 9.1, and the total weight of silver and steel supported on fused alumina was 10% by weight.

調製した触媒101IIIを内径20−のガラス管に充
填し、300℃に加熱したのち、この触媒層に25俤ア
ンモニア水t−i、o重量%添加したプレノールをLH
8V13.Qhr で供給し、同時に空気を560xj
/minの速度で供給した。供給開始より4時間経過後
、反応が定常状態になった時点での触媒層の温度中、そ
の最高温度は460℃でめった。
The prepared catalyst 101III was packed into a glass tube with an inner diameter of 20°C and heated to 300°C, and prenol to which 25 ml of ammonia water was added in an amount of 25% by weight was added to the catalyst layer using LH.
8V13. Qhr and at the same time air 560xj
It was supplied at a rate of /min. Four hours after the start of supply, the maximum temperature of the catalyst layer reached 460° C. when the reaction reached a steady state.

反応開始より4時間経過後5時間鮭遇するまでの1時間
の間に得られた反応液を内部標準法で定量したところ、
プレノールの転化率は56.1%であり、セネシオアル
デヒドへの選択率は88.4モルチであった。セネシオ
アルデヒドの他にイソブチン、イソプレン、イソバレラ
ール及び3−メチル−3−ブテン−1−アールが微量副
生していた。
The reaction solution obtained during the 1 hour period from 4 hours after the start of the reaction until 5 hours of salmon feeding was quantified using an internal standard method.
The conversion rate of prenol was 56.1%, and the selectivity to senecioaldehyde was 88.4 mol. In addition to senecioaldehyde, trace amounts of isobutyne, isoprene, isovaleral, and 3-methyl-3-buten-1-al were produced as by-products.

実施例2〜5及び比較例1〜2 電融アルミナに対する銀及び/又は銅の合計担持重量を
10重量%の一定に保ち、該銀と銅の重量比を変化させ
几触媒を使用した以外は実施例1と同様の方法で反応を
行なつ九。実施例1と同様にして反応液の定量を行ない
、その反応成績を実施例1のものと一緒に第1表に示す
Examples 2 to 5 and Comparative Examples 1 to 2 The total supported weight of silver and/or copper on fused alumina was kept constant at 10% by weight, and the weight ratio of silver and copper was varied and a phosphorus catalyst was used. 9. The reaction was carried out in the same manner as in Example 1. The reaction solution was quantitatively determined in the same manner as in Example 1, and the reaction results are shown in Table 1 together with those in Example 1.

第1表 なお、比較例1及び2ではイソブチン及びイソプレンが
多量(選択率5〜15モルチ)副生じたが、実施例2〜
5ではイソブチン及びイソプレン蝶微量(選択率1〜2
モル%)副生じたにすぎなかった。
Table 1 Note that in Comparative Examples 1 and 2, a large amount of isobutyne and isoprene were produced as by-products (selectivity 5 to 15 mol), but in Examples 2 to
5, trace amounts of isobutyne and isoprene (selectivity 1-2
(mol%) was only a by-product.

実施例6 プレノールに対する25%アンモニア水の添加量を変化
させた以外は実施例1と同様の方法で反応を行なった。
Example 6 A reaction was carried out in the same manner as in Example 1 except that the amount of 25% ammonia water added to prenol was changed.

実施例1と同様にして反応液の定量を行ない、その反応
成績を実施例1のものと一緒に第2表に示す。
The reaction solution was quantitatively determined in the same manner as in Example 1, and the reaction results are shown in Table 2 together with those in Example 1.

第2表 実施例7〜8 実施例1において25%アンモニア水の代りに25条メ
チルアミン水溶液又はトリエチルアミンを用いる以外は
同様にして反応を行なった。実施例1と同様にして反応
液の定量を行ない、その反応成績を実施例1のものと一
緒に第3表に示す。
Table 2 Examples 7 to 8 The reaction was carried out in the same manner as in Example 1 except that 25% aqueous methylamine or triethylamine was used instead of 25% aqueous ammonia. The reaction solution was quantitatively determined in the same manner as in Example 1, and the reaction results are shown in Table 3 together with those in Example 1.

第3表 実施例9〜13及び比較例3 実施例1と同様にして調製した触媒70dを内径20m
のガラス製反応管に仕込み、これに25チアンモニア水
ヲ1.0重量%添加したプレノールt−LH8V 4.
1 hr で供給し、分子状酸素の供給量を変化させる
以外は実施例1と同様にして反応を行なった。実施例1
と同様にして反応液の定量を行ない、その反応成績を第
4表に示す。
Table 3 Examples 9 to 13 and Comparative Example 3 A catalyst 70d prepared in the same manner as in Example 1 was used with an inner diameter of 20 m.
Prenol t-LH8V was charged into a glass reaction tube, and 1.0% by weight of 25 thiammonia water was added thereto.4.
The reaction was carried out in the same manner as in Example 1 except that the molecular oxygen was supplied at a rate of 1 hr and the amount of molecular oxygen supplied was varied. Example 1
The reaction solution was quantified in the same manner as above, and the reaction results are shown in Table 4.

第4表 注1) イソプレンへの選択率が65.5モルチでめっ
た実施例14〜19及び比較例4〜5 種々の担体を用いて実施例1と同様にして調製した触媒
〔銀と銅の重量比:9対11担体に対する銀と銅の合計
担持重量=10重量%(実施例14及び実施例18の場
合を除< ) ) 1 (ltjを用い、この触媒上に
25チアンモニア水ヲ1.0重量%添加したプレノール
をLM SV 10.0 hr で供給し、咳プレノー
ルに対して0.35モル倍量の割合で分子状酸素を供給
して、450℃で反応を行なった。
Table 4 Note 1) Examples 14 to 19 and Comparative Examples 4 to 5 where the selectivity to isoprene was 65.5 mol. Catalysts prepared in the same manner as in Example 1 using various carriers [silver and copper Weight ratio: 9:11 Total supported weight of silver and copper on support = 10% by weight (excluding the case of Example 14 and Example 18) 1 0% by weight of prenol was supplied at LM SV 10.0 hr, molecular oxygen was supplied at a ratio of 0.35 molar amount to cough prenol, and the reaction was carried out at 450°C.

実施例1と同様にして反応液の定量を行ない、その反応
成績を第5表に示す。
The reaction solution was quantified in the same manner as in Example 1, and the reaction results are shown in Table 5.

実施例20〜29 実施例1と同様にして調製した触媒(銀と銅の重量比:
9対1、電融アルミナに対する銀と鋼の合計担持重量:
2重量%)301Llt−用い、この触媒上に25チア
ンモニア水t−1,0重量%添加したプレノールを種々
のLH8V(hr )で供給し、該プレノールに対して
0.2モル倍量の割合で分子状酸素を供給して、450
〜480℃で反応を行なった。
Examples 20 to 29 Catalysts prepared in the same manner as in Example 1 (weight ratio of silver and copper:
9:1, total loading weight of silver and steel to fused alumina:
2% by weight)) 301Llt- was used, and prenol with 1.0% by weight of 25 thiammonium water added on the catalyst was supplied at various LH8V (hr), and the ratio was 0.2 times the mole amount to the prenol. supplying molecular oxygen at 450
Reactions were carried out at ~480°C.

実施例1と同様にして反応液の定量を行ない、その反応
液1mを第6表に示す。
The reaction solution was quantitatively determined in the same manner as in Example 1, and 1 ml of the reaction solution is shown in Table 6.

実施例30〜33 実施例1と同様にして調製した触媒又はそれを4■φの
ガラス玉で希釈したものを使用し、これらの触媒上に2
5チアンモニア水ヲ1.0重量儂添加し次プレノールを
350d/hrで供給し、同時に該プレノールに対して
0.28モル倍量の分子状酸素を供給する以外は実施例
1と同様にして反応を行なつ九。実施例1と同様にして
反応液の定量を行ない、その反応成績を第7表に示す。
Examples 30 to 33 Using a catalyst prepared in the same manner as in Example 1 or diluting it with 4 φ glass beads, 2
Example 1 was carried out in the same manner as in Example 1, except that 1.0 wt. 9. Carry out the reaction. The reaction solution was quantified in the same manner as in Example 1, and the reaction results are shown in Table 7.

第7表 実施例34〜37 実施例1と同様にして調製した触媒70d′t−内径2
0−のガラス製反応管に仕込み、これに25チア/モニ
ア水を1.0重量%絵加したプレノール1L)isV5
.Ohr で供給し、該プレノールに対して0.3モル
倍量の割合で分子状酸素を供給し、さらに窒素を種々の
割合で供給する以外は実施例1と同様にして反応を行な
った0実施例1と同様にして反応液の定量を行ない、そ
の反応底M′fc第8表に示す。
Table 7 Examples 34 to 37 Catalyst 70d't-inner diameter 2 prepared in the same manner as in Example 1
1L of prenol added to a 0-glass reaction tube and 1.0% by weight of 25thia/monia water) isV5
.. The reaction was carried out in the same manner as in Example 1, except that molecular oxygen was supplied at a ratio of 0.3 molar amount to the prenol, and nitrogen was further supplied at various ratios. The reaction solution was quantitatively determined in the same manner as in Example 1, and the reaction bottom M'fc is shown in Table 8.

第8表 実施例38〜39 実施例14においてアンモニア水を添加していないプレ
ノールをLH8V10.Ohr で供給し、該プレノー
ルに対して0.35モル倍量の割合で分子状酸素を供給
し、かつ反応温度金変える以外は同様にして反応を行な
い、同様にして反応液の定量を行なった。その結果を第
9表に示す。
Table 8 Examples 38 to 39 Prenol to which no ammonia water was added in Example 14 was added to LH8V10. The reaction was carried out in the same manner except that molecular oxygen was supplied at a ratio of 0.35 molar amount to the prenol and the reaction temperature was changed, and the reaction solution was quantified in the same manner. . The results are shown in Table 9.

第9表 実施例40 実施例1において25チアンモニア水を1.0重量%添
加したプレノール會LH8V12.Ohr で供給し、
該プレノールに対して0.3モル倍量の割合で分子状酸
素を供給する以外は同様にして240時間反応を行なっ
た。第10表に示すとおり反応成績の低下はみら扛なか
った。
Table 9 Example 40 Prenol LH8V12.25 in Example 1 to which 1.0% by weight of ammonia water was added. supplied in Ohr;
The reaction was carried out in the same manner for 240 hours except that molecular oxygen was supplied at a ratio of 0.3 molar amount to the prenol. As shown in Table 10, there was no noticeable decrease in reaction results.

第10表 この連続反応で得られた反応液の一部25802にトリ
エタノールアミン1f及びハイドロキノン0.5Fk:
添加し、100mHfの減圧下で水抜きを行なったのち
、その混合物を減圧下に蒸留することにより、沸点63
℃/ 57 wm HPの留分としてセネシオアルデヒ
ド857.5rを得几。このものの純度は99.0%で
あり、その蒸留回収率は97.5慢であった。
Table 10 Part of the reaction solution obtained in this continuous reaction 25802 contains triethanolamine 1f and hydroquinone 0.5Fk:
After adding water and removing water under reduced pressure of 100 mHf, the mixture was distilled under reduced pressure to reduce the boiling point to 63.
℃/57 wm 857.5r of senecioaldehyde was obtained as a fraction of HP. The purity of this product was 99.0%, and the distillation recovery rate was 97.5%.

〔発明の効果〕〔Effect of the invention〕

本発明方法によf″Lは、プレノールから高選択率でセ
ネシオアルデヒドを得ることができる。本発明方法は上
記の実施例から明らかなとおりセネシオアルデヒドを工
業的に製造する際に採用できる優れた方法である。
By the method of the present invention, f″L can obtain senecioaldehyde from prenol with high selectivity. It's a method.

特許出願人 株式会社 り ラ し 代理人弁理士本多 感Patent applicant RiRashi Co., Ltd. Representative Patent Attorney Kan Honda

Claims (1)

【特許請求の範囲】 l 3−メチル−2−ブテン−1−オールを気相で30
0〜600℃の温度において分子状酸素とともに、比表
面積が3 t11/を未満の担体に銀及び銅の2成分を
担持してなる触媒と接触させること全特徴とする3−メ
チル−2−ブテン−1−アールの製造方法。 2、担体に担持する銀と鋼の割合が重量比で99対l乃
至50対50’″Cある特許請求の範囲第1項記載の製
造方法。 3、一般式R’R2R3N (式中、Hl 、 R2及
びR3は各々水素原子又は低級アルキル基を表わす)で
示される窒素化合物の存在下に反応を行なう特許請求の
範囲第1項又tri第2項記載の製造方法っ4、担体が
h英である特許請求の範囲第1〜3項記載の製造方法。 5、担体が溶融fルミナである特許請求の範囲第1〜3
項記載の製造方法。 6、担体が溶融シリカである特許請求の範囲第1〜3項
記載の製造方法。
[Claims] l 3-Methyl-2-buten-1-ol in the gas phase
3-Methyl-2-butene is brought into contact with molecular oxygen at a temperature of 0 to 600°C with a catalyst comprising two components, silver and copper, supported on a carrier having a specific surface area of less than 3 t11/. -1-A manufacturing method of R. 2. The manufacturing method according to claim 1, wherein the ratio of silver and steel supported on the carrier is 99:1 to 50:50'''C by weight. 3. General formula R'R2R3N (wherein, Hl , R2 and R3 each represent a hydrogen atom or a lower alkyl group. 5. The manufacturing method according to claims 1 to 3, wherein the carrier is fused flumina.
Manufacturing method described in section. 6. The manufacturing method according to claims 1 to 3, wherein the carrier is fused silica.
JP59082757A 1984-04-23 1984-04-23 Production of 3-methyl-2-buten-1-al Pending JPS60224652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59082757A JPS60224652A (en) 1984-04-23 1984-04-23 Production of 3-methyl-2-buten-1-al

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59082757A JPS60224652A (en) 1984-04-23 1984-04-23 Production of 3-methyl-2-buten-1-al

Publications (1)

Publication Number Publication Date
JPS60224652A true JPS60224652A (en) 1985-11-09

Family

ID=13783312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59082757A Pending JPS60224652A (en) 1984-04-23 1984-04-23 Production of 3-methyl-2-buten-1-al

Country Status (1)

Country Link
JP (1) JPS60224652A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515361A (en) * 2008-03-19 2011-05-19 ビーエーエスエフ ソシエタス・ヨーロピア Use of noble metal-containing supported catalysts for oxidative dehydrogenation.
WO2018003623A1 (en) 2016-06-28 2018-01-04 株式会社クラレ Composition for removing sulfur-containing compound
WO2018003624A1 (en) 2016-06-28 2018-01-04 株式会社クラレ Composition for removing iron sulfide
WO2018097108A1 (en) 2016-11-22 2018-05-31 株式会社クラレ Composition for removal of sulfur-containing compound
WO2019167752A1 (en) 2018-02-28 2019-09-06 株式会社クラレ Composition for removing sulfur-containing compound
CN114163315A (en) * 2021-11-18 2022-03-11 万华化学集团股份有限公司 Preparation method of 3-methyl-2-butene-1-aldehyde

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137906A (en) * 1977-04-05 1978-12-01 Basf Ag Process for preparing 33alkylbutenee11ol

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137906A (en) * 1977-04-05 1978-12-01 Basf Ag Process for preparing 33alkylbutenee11ol

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515361A (en) * 2008-03-19 2011-05-19 ビーエーエスエフ ソシエタス・ヨーロピア Use of noble metal-containing supported catalysts for oxidative dehydrogenation.
WO2018003623A1 (en) 2016-06-28 2018-01-04 株式会社クラレ Composition for removing sulfur-containing compound
WO2018003624A1 (en) 2016-06-28 2018-01-04 株式会社クラレ Composition for removing iron sulfide
WO2018097108A1 (en) 2016-11-22 2018-05-31 株式会社クラレ Composition for removal of sulfur-containing compound
WO2019167752A1 (en) 2018-02-28 2019-09-06 株式会社クラレ Composition for removing sulfur-containing compound
CN114163315A (en) * 2021-11-18 2022-03-11 万华化学集团股份有限公司 Preparation method of 3-methyl-2-butene-1-aldehyde
CN114163315B (en) * 2021-11-18 2023-05-30 万华化学集团股份有限公司 Preparation method of 3-methyl-2-butene-1-aldehyde

Similar Documents

Publication Publication Date Title
US3009943A (en) Manufacture of unsaturated nitrile
JP3287066B2 (en) Method for producing acrylic acid
JPH0242032A (en) Production of methacrylic acid and/or methacrolein
US3152170A (en) Production of unsaturated aliphatic nitriles
JPH02257A (en) Preparation of nitrile
US3671577A (en) Process for producing 1, 4-diacyloxy-2-butene
JP4081824B2 (en) Acrylic acid production method
JPS60224652A (en) Production of 3-methyl-2-buten-1-al
EP1165474B1 (en) Method for the preparation of 1,1,1,3,3-pentafluoropropene and 1,1,1,3,3-pentafluoropropane
US4541964A (en) Production of methacrylonitrile
JPH09124580A (en) Production of aromatic or heteroaromatic nitrile, supported catalyst therefor, and production of the catalyst
JPH0242033A (en) Production of methacrylic acid and/or methacrolein
JPS6048496B2 (en) Method for producing methacrylic acid
CA1336829C (en) Manufacture of alkyl glyoxylates with ferric phosphate catalyst
JPS60246340A (en) Preparation of 3-methyl-2-buten-1-ol
US6855662B2 (en) Catalyst for preparing fluorine-containing alcohol compound and a process for preparation of fluorine-containing alcohol compound
JPS6246538B2 (en)
JPH07206427A (en) Production of hydrocyanic acid
JP4294209B2 (en) Process for producing ortho-position alkylated hydroxyaromatic compounds
US3306915A (en) Oxidation of aromatic compounds
US3523135A (en) Process for producing pyromellitic acid
US5118652A (en) Ferric phosphate catalyst for use in the manufacture of alkyl glyoxylate
US3456002A (en) Oxidation of acrolein and methacrolein with oxygen and a vanadium oxide-antimony oxide catalyst
JP3543408B2 (en) Method for producing α-ketone acid ester
JP3519427B2 (en) Continuous production method of ortho-alkylated phenol compound