JPS60246340A - Preparation of 3-methyl-2-buten-1-ol - Google Patents

Preparation of 3-methyl-2-buten-1-ol

Info

Publication number
JPS60246340A
JPS60246340A JP59103520A JP10352084A JPS60246340A JP S60246340 A JPS60246340 A JP S60246340A JP 59103520 A JP59103520 A JP 59103520A JP 10352084 A JP10352084 A JP 10352084A JP S60246340 A JPS60246340 A JP S60246340A
Authority
JP
Japan
Prior art keywords
carrier
prenol
catalyst
buten
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59103520A
Other languages
Japanese (ja)
Inventor
Katsumi Komura
小村 勝美
Fumio Yamamoto
文夫 山本
Sunao Kyo
姜 砂男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP59103520A priority Critical patent/JPS60246340A/en
Publication of JPS60246340A publication Critical patent/JPS60246340A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound useful as an intermediate for citral, etc., by bringing prenol in the vapor phase into contact with O2 in the presence of a catalyst containing silver, copper and a basic metal oxide supported on a carrier having a specific surface area to carry out the oxidative dehydrogenation. CONSTITUTION:3-Methyl-2-buten-1-ol (prenol) in the vapor phase and molecular oxygen are subjected to oxidative dehydrogenation in the presence of a catalyst containing three components of silver, copper (preferably at 99:1-50:50 weight ratio) and a basic metal oxide (preferably 0.01-0.5wt% based on the carrier) supported on a carrier having <3m<2>/g specific surface area, preferably quartz, molten alumina or molten silica, at 300-600 deg.C, preferably 400-500 deg.C to give the aimed 3-methyl-2-buten-1-al (senecioaldehyde). USE:A synthetic intermediate for citral, beta-ionone and chrysanthemumic acid.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は3−メチル−2−ブテン−1−アールの製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing 3-methyl-2-buten-1-al.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、3−メチルー2−ブテン−1−オール(以下、プ
レノールと称す)を気相で酸化脱水素触媒と接触させる
ことKより脱水素して3−メチル−2−ブテン−1−ア
ール(以下、セネシオアルデヒドと称す)を製造する方
法は知られている。
Conventionally, 3-methyl-2-buten-1-ol (hereinafter referred to as prenol) is dehydrogenated from K by contacting it with an oxidative dehydrogenation catalyst in the gas phase to produce 3-methyl-2-buten-1-al (hereinafter referred to as prenol). , senecioaldehyde) is known.

例えば、特開昭53−137906号明細−には、プレ
ノールなどのアルケノールを酸素とともに触媒トを通し
て酸化脱水素することによりセネシオアルデヒドなどの
3−アルキル−ブテン−1−アールを製造するに際し、
一定の全層厚を廟する各々一定の重量及び一定の大きさ
の粒径をもつ粒子の2つ又はそれ以上の層より成る釦及
び/又は銅の粒子を有する多層触媒を使用することを特
徴とする上記3−アルキル−ブテン−1−アールの製造
方法が記載されている。しかし、この方法で用いられる
触媒は銀及び/又は銅を粒子状態で含み、しかも特殊な
層構造を有しており、そのPA製は工業的には容易では
ない。また米国特許第2,042,220号明糺書には
、不飽和脂肪族アルコールを酸化触媒の存在下高められ
たm度で酸素で酸化することにより対応する不飽和脂肪
族アルデヒドを製造する方法が記載されている。この方
法では活性化された酸化触媒を用いるのが適当であると
されており、例えば酸化銅線を水素雰囲気中、300℃
で還元して調製した銅触媒;銀線網をアマルガム化した
のち600℃で加熱することにより、水銀を除去するこ
とにより調製した銀触1sなどが使用されているが、こ
れら触媒は工業的には採用し難い。
For example, JP-A-53-137906 discloses that in producing 3-alkyl-buten-1-al such as senecioaldehyde by oxidative dehydrogenation of alkenol such as prenol through a catalyst with oxygen,
characterized by the use of a multilayer catalyst with button and/or copper particles consisting of two or more layers of particles each with a constant weight and a constant particle size having a constant total layer thickness; A method for producing the above 3-alkyl-buten-1-al is described. However, the catalyst used in this method contains silver and/or copper in the form of particles and has a special layer structure, so it is not easy to make it from PA on an industrial scale. U.S. Pat. No. 2,042,220 also describes a method for producing the corresponding unsaturated aliphatic aldehydes by oxidizing unsaturated aliphatic alcohols with oxygen at elevated temperatures in the presence of an oxidation catalyst. is listed. In this method, it is considered appropriate to use an activated oxidation catalyst. For example, a copper oxide wire is heated at 300°C in a hydrogen atmosphere.
Copper catalysts prepared by reducing the mercury at is difficult to employ.

またドイツ特許第2041976号明細誓には、プレノ
ールを気相で150〜600℃の温度において銅、銀、
亜鉛などの脱水素触媒の存在下、さらに核性の脂肪族有
機若しくは芳香族有機の窒素化合物、リン化も物着しく
け硫黄化合物の存在下又はアンモニアガスの存在下及び
/又は該脱水素触腺の担体看しくけ脱水素触媒への添加
物としての酸化バリウム、酸化カルシウム、酸化マグネ
シウムなどの塩基性金J!ji酸化物の存在下に脱水素
させ゛Cセネシオアルデヒドを製造する方法が開示され
ている。この方法では酸素を共存させた場合、プレノー
ルの酸化が進み過ぎてジメチルアクリル酸の生成量が増
加し、セネシオアルデヒドの収率が著しく低下すること
か指摘さfLでいる。
Furthermore, in the specification of German Patent No. 2041976, prenol is added to copper, silver, and
In the presence of a dehydrogenation catalyst such as zinc, and in the presence of a nuclear aliphatic or aromatic organic nitrogen compound, a sulfur compound for phosphination, or ammonia gas, and/or the dehydrogenation catalyst Basic golds such as barium oxide, calcium oxide, and magnesium oxide as additives to dehydrogenation catalysts as carriers of the glands J! A method for producing C senecioaldehyde by dehydrogenation in the presence of .ji oxide is disclosed. It has been pointed out that in this method, when oxygen is present, the oxidation of prenol proceeds too much and the amount of dimethylacrylic acid produced increases, resulting in a significant decrease in the yield of senecioaldehyde.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記のごとき従来法の問題点を解決し
、プレノールを気相で酸素とともに酸化脱水素触媒と接
触させてセネシオアルデヒドを製造するための改良され
た製造方法を提供するにある。
An object of the present invention is to solve the problems of the conventional methods as described above and to provide an improved production method for producing senecioaldehyde by contacting prenol with an oxidative dehydrogenation catalyst in the gas phase together with oxygen. .

〔発明の構成〕[Structure of the invention]

本発明はプレノールを気相で300〜600℃の温度に
おいて分子状酸素とともに、比表面積が31t+//f
′未満の担体に銀と鋼及び塩基性金I!4散化物の3成
分を担持してなる触媒と接触させることを特徴とするセ
ネシオアルデヒドの製造方法に関する。
The present invention uses prenol in the gas phase at a temperature of 300 to 600°C with molecular oxygen, and has a specific surface area of 31t+//f.
'Silver and steel and basic gold I! The present invention relates to a method for producing senecioaldehyde, which comprises bringing it into contact with a catalyst formed by supporting three components of a tetradisperse.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明方法で使用する触媒は、BET法で測定した比表
面積が3ヴ2未満の担体に銀と銅及び塩基性金属酸化物
の3成分を担持したものである。
The catalyst used in the method of the present invention has three components, silver, copper, and a basic metal oxide, supported on a carrier having a specific surface area of less than 3V2 as measured by the BET method.

用いる担体の比表面積はセネシオアルデヒドを選択率よ
く得るためK 3 rrl、#未満である必要があり、
特K 1 n?/f未満であることが好ましい。担体の
比表面積が大きいと副反応が起り、イソブチン、イソプ
レンなどが多量に副生するようになる。担体として上記
のような小さい比表面積を有する石英砂1溶融アルミナ
、溶融シリカ、シリコンカーバイド、ヒドロキシアパタ
イト〔calo(Po4)6(oH)2〕、軽石などを
用いる。このような担体を用いることKjつでセネシオ
アルデヒドへの選択率を向とさせることができること以
外に、担体を使用しない場合に比べて触媒の有効表面積
が増大し、少ない触ts素で大きな活性が得られること
1反応熱の分散及び除去に有利であること、反応時及び
賦活時の局部過熱ycよる触媒金属成分のンンタリング
を抑制し、活性部分の微細構造を安定化すること、反応
ガス量の広範囲な変化に対応し易いことなどの工業士の
利点が生ずる。また、担体と17て酸量が少ないものを
用いる方がセネシオアルデヒドへの選択率を向上させる
点で好壕しく、例えばアミン滴定法で測定した値で2 
XI Q rnmol /7以下の酸量を有するものが
適当である。
The specific surface area of the carrier used must be less than K 3 rrl, # in order to obtain senecioaldehyde with good selectivity,
Special K 1 n? It is preferable that it is less than /f. If the specific surface area of the carrier is large, side reactions occur and large amounts of isobutyne, isoprene, etc. are produced as by-products. As a carrier, quartz sand 1 fused alumina, fused silica, silicon carbide, hydroxyapatite [calo(Po4)6(oH)2], pumice, etc. having a small specific surface area as described above are used. By using such a support, in addition to being able to increase the selectivity to senecioaldehyde, the effective surface area of the catalyst increases compared to when no support is used, and a large activity can be achieved with a small amount of catalytic elements. What can be obtained 1. It is advantageous for dispersing and removing the reaction heat, suppressing the nintering of the catalyst metal component due to local overheating during reaction and activation, stabilizing the fine structure of the active part, and reducing the amount of reaction gas. Advantages of industrial engineers arise, such as the ease with which they can respond to a wide range of changes. In addition, it is preferable to use a carrier with a small amount of acid (17) in order to improve the selectivity to senecioaldehyde; for example, the value measured by amine titration is
Those having an acid content of XI Q rnmol /7 or less are suitable.

上記の担体に担持する銀と銅の割合は重量比で99対1
乃至50対5oの範囲が好ましく、特に98対2乃至9
0対10の範囲が好ましい。担体に担持する銀及び鋼の
合計重量は該担体に対して01〜30重′J1%、好ま
L〈は1〜15重量%である。銀及び銅の担持量は少な
い刀が触媒コストを低減させる上で好ましいが、その担
持量が0.1重量%に満たない場合にはプレノールの転
化率及びセネシオアルデヒドへの選択率が低下するので
好まし2〈ない。iた、その担持量が3011j量優を
越える場合にはその超過量に見合うだけの触媒効果が得
られず、触媒コストの増大になるだけであり工業上採用
するのは好ましくない。銀又は鋼のどちらか一方が担持
されていない触媒を用いた場合には、プレノールの転化
率及びセネシオアルデヒドへの選択率はいずれも低下す
る。塩基性金属酸化物としては塩基性を示す金属酸化物
であればいずれも使用できるが、なかでも特に酸化マグ
ネシウム、酸化カルシウム、酸化バリウムなどのアルカ
リ土類金属の酸化物が好ましい。塩基性金属酸化物の担
持量は担体に対して0.01〜05重最チの範囲が適当
である。
The weight ratio of silver and copper supported on the above carrier is 99:1
The range of 50 to 5o is preferable, especially 98 to 2 to 9
A range of 0:10 is preferred. The total weight of silver and steel supported on the carrier is from 01 to 30% by weight, preferably from 1 to 15% by weight. It is preferable to use a catalyst with a small amount of silver and copper supported in order to reduce the catalyst cost, but if the amount supported is less than 0.1% by weight, the conversion rate of prenol and the selectivity to senecioaldehyde will decrease. Preference 2: No. On the other hand, if the supported amount exceeds 3011j, the catalytic effect commensurate with the excess amount will not be obtained and the cost of the catalyst will increase, so it is not preferable to use it industrially. If a catalyst is used in which either silver or steel is not supported, both the conversion of prenol and the selectivity to senecioaldehyde are reduced. As the basic metal oxide, any metal oxide that exhibits basicity can be used, but oxides of alkaline earth metals such as magnesium oxide, calcium oxide, and barium oxide are particularly preferred. The amount of basic metal oxide supported is suitably in the range of 0.01 to 0.05 times the weight of the carrier.

本発明方法で使用する酸化脱水素触媒は、例えば所定量
の硝酸銀、硝酸鋼及び上記の塩基性金属酸化物を形成す
る金属の硝酸塩の混合水溶液を前記の担体に含浸させた
のち、約300〜400℃の温度において空気中で焼成
し、ついで約300〜500℃の温度において水素で処
理することりこより容易に調製することかできる。本発
明を実施するに用いる触媒層は流動床又は多管式の固定
床が適当である。
The oxidative dehydrogenation catalyst used in the method of the present invention can be prepared by impregnating the above-mentioned carrier with a mixed aqueous solution of silver nitrate, steel nitrate, and nitrates of metals forming the basic metal oxides in predetermined amounts. It can be easily prepared by calcination in air at a temperature of 400°C followed by treatment with hydrogen at a temperature of about 300-500°C. The catalyst bed used in carrying out the present invention is suitably a fluidized bed or a multi-tubular fixed bed.

本発明における酸化脱水素反応は気相で300〜600
℃、好ましくは400〜500℃の温度範囲内で行なわ
れる。触媒層の温度中その最高温度がこの温度範囲内に
なるように設定する必要がある。
The oxidative dehydrogenation reaction in the present invention is carried out in the gas phase at 300 to 600
C, preferably within a temperature range of 400 to 500C. It is necessary to set the maximum temperature of the catalyst layer to be within this temperature range.

300℃より低い温度では触媒単位容量当りのセネシオ
アルデヒドの収量が小さくなり、また600℃を越える
温度では副反応が顕著に起り、触媒の活性寿命が短かく
なる。この酸化脱水素反応は発熱反応であり、触媒層の
温度を上記の温度範囲内に維持するためには適当な方法
で除熱する必要がある。除熱方法としては、例えば反応
域(触媒層)を外部から適当な熱媒により冷却する方法
、原料プレノールのフィードガスと同時に該フィードガ
スに対して約05〜2倍容量の不活性ガスを反応域に供
給する方法又はこれらを併用する方法を採用することが
できる。用いる不活性ガスとしては原料プレノール、触
媒などに対して悪影響を与えない窒素、ヘリウム、水蒸
気などが適当である。
At temperatures lower than 300°C, the yield of senecioaldehyde per unit volume of the catalyst becomes small, and at temperatures above 600°C, side reactions occur significantly, shortening the active life of the catalyst. This oxidative dehydrogenation reaction is an exothermic reaction, and in order to maintain the temperature of the catalyst layer within the above temperature range, it is necessary to remove heat by an appropriate method. Heat removal methods include, for example, cooling the reaction zone (catalyst layer) from the outside with a suitable heating medium, and simultaneously reacting with the feed gas of prenol as a raw material and inert gas of approximately 0.5 to 2 times the volume of the feed gas. It is possible to adopt a method of supplying the product to the area or a method of using these methods in combination. Suitable inert gases to be used include nitrogen, helium, water vapor, and the like, which do not have an adverse effect on the raw material prenol, the catalyst, and the like.

また、本発明方法で使用する触媒では、その伝熱面積を
増大させ除熱を容易にするために、触媒をガラス玉、石
英砂、溶融アルミナ、塩基性金属酸化物を担持した担体
などの不活性粒子で希釈することもできる。
In addition, in the catalyst used in the method of the present invention, in order to increase the heat transfer area and facilitate heat removal, the catalyst is supported on a support such as glass beads, quartz sand, molten alumina, or a carrier supporting a basic metal oxide. It can also be diluted with active particles.

本発明における酸化脱水素反応で用いる分子状酸素は窒
素、アルゴン、ヘリウム、水蒸気などで希釈されていて
もよい。具体的には空気を用いるのが簡便である。分子
状酸素はプレノールに対して化学量論量より少ない量用
いるのが好ましく、具体的にはプレノール1モル当り約
0.4モル以下特に0.2〜04モル使用するのが適当
である。分子状酸素のプレノールに対する使用割合が大
きい程プレノールの転化率が高くなるが、セネシオアル
デヒドへの選択率が低下し、また反応熱の除去も困難と
なる。
The molecular oxygen used in the oxidative dehydrogenation reaction in the present invention may be diluted with nitrogen, argon, helium, water vapor, or the like. Specifically, it is convenient to use air. It is preferable to use molecular oxygen in an amount less than the stoichiometric amount relative to prenol, and specifically, it is appropriate to use an amount of about 0.4 mol or less, particularly 0.2 to 0.4 mol, per 1 mol of prenol. As the ratio of molecular oxygen to prenol increases, the conversion rate of prenol increases, but the selectivity to senecioaldehyde decreases and it becomes difficult to remove the heat of reaction.

プレノールの反応域への供給量は、LH8V(触媒単位
容量当り、1時間当り供給するプレノールの液体容量)
で約0.5〜60hr の範囲が適当である。この範囲
内では分子状酸素との使用割合が同一の場合、LH8V
が大きい程セネシオアルデヒドへの選択率は増大する傾
向にあるが、通常は除熱の観点から3〜2Q hr ”
の範囲内からLH8Vを選ぶのが好ましい。しかし、よ
り高い空時収率(STY)を得ようとする場合には高い
LH8Vの値が採用できる。触媒上の反応ガスの滞留時
間は1秒以下が好ましい。
The amount of prenol supplied to the reaction zone is LH8V (liquid volume of prenol supplied per hour per unit volume of catalyst)
A range of about 0.5 to 60 hours is appropriate. Within this range, if the usage ratio with molecular oxygen is the same, LH8V
The selectivity to senecioaldehyde tends to increase as the
It is preferable to select LH8V from within the range. However, when attempting to obtain a higher space-time yield (STY), a higher value of LH8V can be adopted. The residence time of the reaction gas on the catalyst is preferably 1 second or less.

反応生成ガスからのセネシオアルデヒドの分離回収は、
例えば反応生成ガスを冷却し、凝縮液を蒸留することに
より容易に行なうことかできる。
Separation and recovery of senecioaldehyde from reaction product gas is
For example, this can be easily carried out by cooling the reaction product gas and distilling the condensate.

本発明方法により製造されるセネシオアルデヒドは例え
ばシトラール、β−ヨノ/、菊酸などの合成中間体とし
て有用である。
The senecioaldehyde produced by the method of the present invention is useful as a synthetic intermediate for, for example, citral, β-yono/chrysanthemum acid, and the like.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 電融アルミナ(ツートン社製、5A−5221,1/8
“球状、BET法で測定した比表面積 0.053応今
)の85dを硝酸銅41.7重量係、硝酸第二銅・3水
和物11.2ffi量チ、硝酸マグネシウム・6水和物
1.87重爺チ及び水453重量%から成る混合水溶液
100*eに浸漬し、テカンテーションにより過剰の混
合水溶液を除去したのち、減圧下に150℃で3時間乾
燥した。これを300〜350℃で300 *e/mi
n ノ空気流通下に4時間焼成し7、ついで350〜4
50℃で500 m//minの水素流通下に5時間還
元]7た。このようKしてlpl製した触媒における釧
と鋼と酸化マグネシウムの重量比ti9対1対012で
あり、電融アルミナに対する欽及び銅の合計担持重量は
120重量%であり、酸化マグネシウムの相持重量は0
14重量%であった。
Example 1 Fused alumina (manufactured by Twotone, 5A-5221, 1/8
"Spherical shape, specific surface area measured by BET method: 85 d), 41.7 d of copper nitrate, 11.2 ffi of cupric nitrate trihydrate, 1 ffi of magnesium nitrate hexahydrate The sample was immersed in a mixed aqueous solution 100*e consisting of .87 heavy sugar and 453% by weight of water, and after removing the excess mixed aqueous solution by tecanation, it was dried under reduced pressure at 150°C for 3 hours. 300 *e/mi
Baked for 4 hours under air circulation at 7, then heated to 350~4
Reduction was carried out at 50° C. for 5 hours under hydrogen flow of 500 m/min]7. In this way, the weight ratio of steel and magnesium oxide in the lpl-manufactured catalyst is 9:1:012, the total weight of aluminum and copper supported on fused alumina is 120% by weight, and the relative weight of magnesium oxide is 9:1:012. is 0
It was 14% by weight.

−F記のように調製した触媒701/を内径20聞のガ
ラスWK充jJ[、,300℃に加熱したのち。
- After heating the catalyst 701/ prepared as described in F above to 300° C. in a glass WK container having an inner diameter of 20 mm.

この触媒層にプレノールをLH8V 5. Ohr で
供給し、同時に空気を1.31 J/minの速度で供
給した(プレノールに対する酸素モル比 02)。供給
開始より4時間経過後、反応が定常状態になった時点で
の触媒層の温度中、その最高温度は450℃であった。
Add prenol to this catalyst layer LH8V5. Ohr and at the same time air was fed at a rate of 1.31 J/min (oxygen to prenol molar ratio 02). Four hours after the start of supply, the reaction reached a steady state, and the highest temperature of the catalyst layer was 450°C.

4時間経過後5時間経過するまでの1時間の間に得られ
た反応液を内部標準法でガスクロマトグラフィーにより
定量したところ、プレノールの転化率は37.91であ
り、セネ/オアルデヒドへの選択率は96.6モル係で
あった。セネシオアルデヒドの他にイソプレ/、インバ
レラール及び3−メチル−3−ブテン−1〜アールが微
量副生していた。
When the reaction solution obtained during the 1 hour period from 4 hours to 5 hours was quantified by gas chromatography using an internal standard method, the conversion rate of prenol was 37.91, indicating that the conversion rate to sene/oaldehyde was 37.91. The selectivity was 96.6 molar. In addition to senecioaldehyde, trace amounts of isopre/invaleral and 3-methyl-3-butene-1-al were produced as by-products.

得られた反応液の一部(142oy )に15%炭酸ナ
トリウム水溶液14.2F(反応液を酸滴定してめた酸
量と当量に相当)を添加し、、200〜100wHrの
減圧下で水抜きを行なったのち、蒸留ボトムの温度が1
00℃を越えない減圧下で蒸留することKより、沸点6
0℃150mHrの留分としてセネシオアルデヒドを4
67.9F得た(純度+99.5係、蒸留回収率:99
0チ)。
A 15% aqueous sodium carbonate solution 14.2 F (equivalent to the amount of acid determined by acid titration of the reaction solution) was added to a portion (142 oy) of the resulting reaction solution, and water was added under reduced pressure of 200 to 100 wHr. After the extraction, the temperature of the distillation bottom is 1.
By distilling under reduced pressure not exceeding 00℃, the boiling point is 6.
Senecioaldehyde was extracted as a fraction at 0°C and 150mHr.
Obtained 67.9F (purity +99.5, distillation recovery rate: 99
0chi).

実施例2〜3及び比較例1 *、mアルミナに対する酸化マグネシウムの相持重量を
変化させた以外は実施例1と同様の方法で反応を行なっ
た。実施例1と同様にして反応液の定量を行ない、それ
らの反応成績を実施例1のものと一緒に第1表に示す。
Examples 2 to 3 and Comparative Example 1 *, m The reaction was carried out in the same manner as in Example 1 except that the weight of magnesium oxide relative to alumina was changed. The reaction solution was quantitatively determined in the same manner as in Example 1, and the reaction results are shown in Table 1 together with those in Example 1.

第1表 なお、比較例1ではインブレンが多量(選択率6.7モ
ル係)副生したが、実施例1〜3ではイソプレンは微量
(選択率1〜2モル%)副生し7たにすきなかった。
Table 1 Note that in Comparative Example 1, a large amount of inbrene was produced as a by-product (selectivity of 6.7 mol%), but in Examples 1 to 3, a trace amount of isoprene was produced as a by-product (selectivity of 1 to 2 mol%). I didn't like it.

実施例4〜5 塩基性金楕酸化物を変化させた以外は実施例1と同様の
方法で反応を行なった、実施例1と同様にして反応液の
定量を行ない、それらの反応成績を実施例1のものと一
緒に第2表に示す。
Examples 4 to 5 The reaction was carried out in the same manner as in Example 1 except that the basic gold ellipoxide was changed.The reaction solution was quantified in the same manner as in Example 1, and the reaction results were evaluated. It is shown in Table 2 together with that of Example 1.

第 2 表 実施例6〜9 実施例1と同様にして調製した触媒又はその触媒を6神
の希釈剤で希釈したものを使用し、これらの触媒上Vc
プレノールを352vrl/hrで供給し、同時に空気
を78.46/hr(プレノールに対する酸素モル比°
03)で供給する以外は実施例1と同様に(て反応を行
なった。実施例1と同様にして反応液の定量を行ない、
それらの反応成績を第3表に示す。
Table 2 Examples 6 to 9 Catalysts prepared in the same manner as in Example 1 or those diluted with six different diluents were used, and Vc on these catalysts was
Prenol was supplied at 352 vrl/hr and air was simultaneously supplied at 78.46 vrl/hr (oxygen molar ratio to prenol °
The reaction was carried out in the same manner as in Example 1 except that 03) was supplied.The reaction solution was quantified in the same manner as in Example 1,
The reaction results are shown in Table 3.

実施例10〜13及び比較例2〜3 電融アルミナに対する銀及び/又は銅の合計相持重葉を
12.0重量%に保ち、かつ酸化マグネシウムの世持重
愈を0.14重Ii′チに保ちながら、該銀と鋼の重量
比を変化させた触媒を使用したり外は実施例1と同様の
方法で反応を行なった。実施例1と同様にして反応液の
定量を行ない、その反応成績を実施例1のものと一緒に
第4表に示す。
Examples 10 to 13 and Comparative Examples 2 to 3 The total weight of silver and/or copper to fused alumina was kept at 12.0% by weight, and the weight of magnesium oxide was kept at 0.14 weight%. The reaction was carried out in the same manner as in Example 1, except that catalysts were used with different weight ratios of silver and steel. The reaction solution was quantitatively determined in the same manner as in Example 1, and the reaction results are shown in Table 4 together with those in Example 1.

第4表 なお、比較例2及び3ではイソブチン及びイソグレンが
多量(選択率5〜12モル%)副生じたが、実施例10
〜13ではイソブチン及びインプレンは微量(選択率1
〜2モルモル副生じたにすぎなかった。
Table 4 Note that in Comparative Examples 2 and 3, a large amount of isobutyne and isogrene were produced as by-products (selectivity 5 to 12 mol%), but in Example 10
~13, isobutine and imprene are trace amounts (selectivity 1
Only ~2 mol of by-product was produced.

実施例14〜17及び比較例4〜5 種々の担体を用いて実施例1と同様にして調製した触媒
〔釧と鋼の重量比:9対1、担体に対する釧と銅の合計
担持M量;10重量係(実施例14の場合を除く)、担
体に対する酸化マグネシウムの担持機転:01重量%(
実施例14の場合を除< ) ) 70 +z/!を用
い、この触媒上にプレノールをLii SV 5.(l
 hr で供給し、該プレノールに対して02モル倍葉
の割合で分子状酸素を供給して、450℃で反応を行な
った。実施例1と同様にして反応液の定量を行ない、そ
の反応成績を第5表に示す。
Examples 14 to 17 and Comparative Examples 4 to 5 Catalysts prepared in the same manner as in Example 1 using various carriers [weight ratio of chime to steel: 9:1, total supported M amount of chime and copper to the carrier; 10 weight ratio (excluding the case of Example 14), loading mechanism of magnesium oxide on the carrier: 01% by weight (
Except for the case of Example 14 < ) ) 70 +z/! Prenol was added onto the catalyst using Lii SV 5. (l
The reaction was carried out at 450° C. by supplying molecular oxygen at a ratio of 0.2 molar to the prenol. The reaction solution was quantified in the same manner as in Example 1, and the reaction results are shown in Table 5.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、プレノールから高選択率でセネシ
オアルデヒドを得ることができる。本発明方法は上記の
実施例から明らかなとおりセネシオアルデヒドを工業的
に!!!造する際に採用できる優れた方法である。
According to the method of the present invention, senecioaldehyde can be obtained from prenol with high selectivity. As is clear from the above examples, the method of the present invention can produce senecioaldehyde industrially! ! ! This is an excellent method that can be used when building.

特許出願人 株式会社り ラ し 代理人弁理士本多 堅Patent applicant Rishi Co., Ltd. Representative Patent Attorney Ken Honda

Claims (1)

【特許請求の範囲】[Claims] 1.3−メチル−2−ブテン−1−オールを気相で30
0〜600℃の温度において分子状酸素とともに、比表
面積が3 rfl′7f未満の担体に銀と銅及び塩基性
金属酸化物の3成分を担持してなる触媒と接触させるこ
とを特徴とする3−メチル−2−ブテン−1−アールの
製造方法。 2、担体に担持する銀と銅の割合が重量比で99対1乃
至50対50である特許請求の範囲第1項記載の製造方
法。 3、 塩基性金属酸化物の担持量が担体に対して0.0
1〜051量チである特許請求の範囲第1項又は第29
4記載の製造方法。 4、担体が石英である特許請求の範囲第1〜3項記載の
製造方法。 5、担体が溶融アルミナである特許請求の範囲第1〜3
項記載の製造方法。 6、担体が溶融シリカである特許請求の範囲第1〜3項
記載の製造方法。
1.3-methyl-2-buten-1-ol in gas phase
3, characterized in that it is brought into contact with molecular oxygen at a temperature of 0 to 600°C, and a catalyst comprising three components of silver, copper, and basic metal oxides supported on a carrier having a specific surface area of less than 3 rfl'7f. -Method for producing methyl-2-buten-1-al. 2. The manufacturing method according to claim 1, wherein the ratio of silver and copper supported on the carrier is 99:1 to 50:50 by weight. 3. The amount of basic metal oxide supported is 0.0 with respect to the carrier.
Claim 1 or 29 which has an amount of 1 to 051
4. The manufacturing method described in 4. 4. The manufacturing method according to claims 1 to 3, wherein the carrier is quartz. 5. Claims 1 to 3 in which the carrier is fused alumina
Manufacturing method described in section. 6. The manufacturing method according to claims 1 to 3, wherein the carrier is fused silica.
JP59103520A 1984-05-21 1984-05-21 Preparation of 3-methyl-2-buten-1-ol Pending JPS60246340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59103520A JPS60246340A (en) 1984-05-21 1984-05-21 Preparation of 3-methyl-2-buten-1-ol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59103520A JPS60246340A (en) 1984-05-21 1984-05-21 Preparation of 3-methyl-2-buten-1-ol

Publications (1)

Publication Number Publication Date
JPS60246340A true JPS60246340A (en) 1985-12-06

Family

ID=14356210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59103520A Pending JPS60246340A (en) 1984-05-21 1984-05-21 Preparation of 3-methyl-2-buten-1-ol

Country Status (1)

Country Link
JP (1) JPS60246340A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515361A (en) * 2008-03-19 2011-05-19 ビーエーエスエフ ソシエタス・ヨーロピア Use of noble metal-containing supported catalysts for oxidative dehydrogenation.
CN103769162A (en) * 2012-10-24 2014-05-07 万华化学集团股份有限公司 Loaded composite metal catalyst used for unsaturated alcohol oxidation and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515361A (en) * 2008-03-19 2011-05-19 ビーエーエスエフ ソシエタス・ヨーロピア Use of noble metal-containing supported catalysts for oxidative dehydrogenation.
CN103769162A (en) * 2012-10-24 2014-05-07 万华化学集团股份有限公司 Loaded composite metal catalyst used for unsaturated alcohol oxidation and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3992112B2 (en) Process for the selective production of acetic acid and a catalyst suitable for this purpose
KR0142192B1 (en) Process for preparation of allyl acetate
KR100247524B1 (en) Catalyst for producing acrylic acid and method for production of acrylic acid by the use of the catalyst
JP3287066B2 (en) Method for producing acrylic acid
JP2002540942A (en) Catalyst for producing acetic acid or acetic acid and ethyl acetate, method for producing the same, and method for producing acetic acid or acetic acid and ethyl acetate using the same
JPS63134059A (en) Manufacture of silver catalyst
JPH0242032A (en) Production of methacrylic acid and/or methacrolein
US4181629A (en) Catalyst for the oxidation of methanol to formaldehyde and a method of preparing the catalyst
JP4006029B2 (en) Process for catalytic oxidation of ethane to acetic acid and catalyst therefor
JP2003534303A (en) Method for selectively producing acetic acid by catalytic oxidation of ethane and / or ethylene
US20020002314A1 (en) Method for the preparation of 1,1,1,3,3-pentafluoropropene and 1,1,1,3,3-pentafluoropropane
JPH0242033A (en) Production of methacrylic acid and/or methacrolein
US4638085A (en) Preparation of methyl methacrylate from methacrolein
JPH09124580A (en) Production of aromatic or heteroaromatic nitrile, supported catalyst therefor, and production of the catalyst
JPS6048496B2 (en) Method for producing methacrylic acid
JPS60246340A (en) Preparation of 3-methyl-2-buten-1-ol
JPS60224652A (en) Production of 3-methyl-2-buten-1-al
US4894467A (en) Vapor phase oxidation or styrene to styrene oxide
US7098166B2 (en) Catalyst for preparing fluorine-containing alcohol compound and a process for preparation of fluorine-containing alcohol compound
JP2001353443A (en) Rhenium oxide-based catalyst for selective oxidization
JPH1190233A (en) Manufacture of catalyst for oxychlorination
JPH031059B2 (en)
US3065057A (en) Method of preparing cyanogen
JPS6126972B2 (en)
JP3036938B2 (en) Method for oxidizing saturated hydrocarbons