JP3287066B2 - Method for producing acrylic acid - Google Patents

Method for producing acrylic acid

Info

Publication number
JP3287066B2
JP3287066B2 JP15685193A JP15685193A JP3287066B2 JP 3287066 B2 JP3287066 B2 JP 3287066B2 JP 15685193 A JP15685193 A JP 15685193A JP 15685193 A JP15685193 A JP 15685193A JP 3287066 B2 JP3287066 B2 JP 3287066B2
Authority
JP
Japan
Prior art keywords
catalyst
acrylic acid
active substance
reaction
catalytically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15685193A
Other languages
Japanese (ja)
Other versions
JPH0710802A (en
Inventor
功一 永井
義彦 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP15685193A priority Critical patent/JP3287066B2/en
Publication of JPH0710802A publication Critical patent/JPH0710802A/en
Application granted granted Critical
Publication of JP3287066B2 publication Critical patent/JP3287066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アクリル酸の製造方法
に関する。詳しくはアクロレインと分子状酸素で気相接
触酸化してアクリル酸を製造する方法の改良に関する。
The present invention relates to a method for producing acrylic acid. More specifically, the present invention relates to an improvement in a method for producing acrylic acid by gas phase catalytic oxidation of acrolein and molecular oxygen.

【0002】[0002]

【従来の技術】アクロレインを気相接触酸化してアクリ
ル酸を製造する触媒として、モリブデンとバナジウムを
必須成分として含む複合酸化物系触媒が多数提案されて
いる。
2. Description of the Related Art A large number of composite oxide catalysts containing molybdenum and vanadium as essential components have been proposed as catalysts for producing acrylic acid by gas phase catalytic oxidation of acrolein.

【0003】例えば、特公昭41−1775号には、M
o−Vを担体に担持する触媒を、また、特公昭49−1
1371号には、Mo−V−Cu−Cr/W系で、担体
物性として、表面積2m2 /g以下、気孔率30〜65
%、細孔50〜1500μmが90%以上の担体を使用
する触媒が、さらに特公昭59−8178号にはMo−
V−W−Cu/Fe/Mn/Cr−(Sn)からなる触
媒活性物質を特定の方法で担体に被覆した触媒などが報
告されている。このようにアクロレインを気相接触酸化
してアクリル酸を合成する触媒としてはMo−Vを主成
分とする活性物質を不活性な担体に担持したいわゆるコ
ーティング触媒がよく使われており、反応収率も95%
を超える高性能なものになっている。
For example, Japanese Patent Publication No. 41-1775 discloses M
A catalyst supporting o-V on a carrier is disclosed in
No. 1371 is a Mo-V-Cu-Cr / W-based material having a carrier surface area of 2 m 2 / g or less and a porosity of 30 to 65 as physical properties.
%, A catalyst using a carrier having a pore size of 50 to 1500 μm of 90% or more is disclosed in JP-B-59-8178.
A catalyst in which a catalytically active substance comprising VW-Cu / Fe / Mn / Cr- (Sn) is coated on a carrier by a specific method has been reported. As a catalyst for synthesizing acrylic acid by subjecting acrolein to gas-phase catalytic oxidation, a so-called coating catalyst in which an active substance mainly composed of Mo-V is supported on an inert carrier is often used, and the reaction yield is high. 95%
Has become a high-performance thing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この触
媒を用いて工業的にアクリル酸を生産する際、触媒単位
体積あたりのアクリル酸の生産性および触媒寿命をさら
に向上させたい。アクリル酸の生産性を高めるために原
料アクロレイン流量を増大させると反応熱が大きくなり
触媒層での蓄熱による温度ピークが高くなり、過剰酸化
による収率低下と熱負荷による触媒の劣化を加速するだ
けでなく、暴走反応を引き起こす可能性もある。
However, when acrylic acid is industrially produced using this catalyst, it is desired to further improve the productivity of acrylic acid per unit volume of the catalyst and the catalyst life. Increasing the flow rate of the raw material acrolein to increase the productivity of acrylic acid increases the heat of reaction and increases the temperature peak due to heat storage in the catalyst layer, only accelerating the reduction in yield due to excessive oxidation and the deterioration of the catalyst due to heat load. Instead, it can cause a runaway reaction.

【0005】またこの反応では、反応生成ガスは通常、
水で急冷しアクリル酸水溶液とした後抽出、蒸留などの
工程を経てアクリル酸を分離、精製するが、反応ガス中
の未反応アクロレインが多いと、廃水処理や製品品質上
の複雑な対策が必要となり、アクロレインの反応率を出
来るだけ高くすることが望ましい。そのためアクロレイ
ン反応率は通常99%以上、好ましくは99.5%以上
としたいが、これは簡単なことではない。
In this reaction, the reaction product gas is usually
After quenching with water to form an aqueous acrylic acid solution, the acrylic acid is separated and purified through processes such as extraction and distillation.If the reaction gas contains a large amount of unreacted acrolein, wastewater treatment and complicated measures for product quality are required Thus, it is desirable to make the reaction rate of acrolein as high as possible. For this reason, the acrolein reaction rate is usually 99% or more, preferably 99.5% or more, but this is not a simple matter.

【0006】温度ピークを低く抑えるためには反応管の
径を小さくして除熱を良くする方法が一般的であるが、
工業的には限度があり同一の触媒容量を得るためには反
応器が大きくなり経済的ではない。
In order to keep the temperature peak low, it is common to reduce the diameter of the reaction tube to improve heat removal.
There is a limit in industry, and the reactor becomes large in order to obtain the same catalyst capacity, which is not economical.

【0007】温度ピークを低く抑えるもう一つの方法
は、原料ガス入口側から出口側に向かって触媒の活性を
段階的に増大させる方法であり、特公昭53−3068
8号には入口側の触媒層を不活性物質で希釈する例が示
されている。また特公昭63−38331号にはプロピ
レンを気相接触酸化してアクロレインを合成する際に用
いられるモリブデン−ビスマス−鉄系の複合酸化物触媒
においてアルカリ金属およびタリウムの種類または量を
変えることにより活性を制御し、原料ガス入口側から出
口側に向かって活性のより高い触媒を配置する方法が示
されている。
Another method for keeping the temperature peak low is to gradually increase the activity of the catalyst from the inlet side of the raw material gas toward the outlet side, as disclosed in JP-B-53-3068.
No. 8 discloses an example in which the catalyst layer on the inlet side is diluted with an inert substance. Japanese Patent Publication No. 63-38331 discloses a molybdenum-bismuth-iron composite oxide catalyst used for synthesizing acrolein by oxidizing propylene in the gas phase by changing the types or amounts of alkali metals and thallium. And a method of arranging a more active catalyst from the raw material gas inlet side toward the outlet side.

【0008】アクロレインを気相接触酸化してアクリル
酸を製造する方法に関しては、原料ガス入口側から出口
側に向かって触媒の活性が高くなるように配置する方法
としては、触媒層を不活性物質で希釈する方法しか知ら
れていない。
As for the method for producing acrylic acid by subjecting acrolein to gas phase catalytic oxidation, a method of arranging the catalyst so as to increase the activity of the catalyst from the inlet side of the raw material gas toward the outlet side thereof is as follows. Only the method of dilution with is known.

【0009】本発明の目的は、アクロレインを気相接触
酸化してアクリル酸を製造する方法において、従来より
簡単な方法で触媒層の過剰な蓄熱を防止しアクリル酸の
収率および生産性の向上と触媒寿命の延長を図る手段を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing acrylic acid by subjecting acrolein to gas-phase catalytic oxidation, thereby preventing excess heat storage in the catalyst layer and improving the yield and productivity of acrylic acid by a simpler method than before. And a means for extending the life of the catalyst.

【0010】[0010]

【課題を解決するための手段】本発明者らはかかる課題
を解決するための手段について鋭意検討した結果、担持
率の異なる触媒層を用意し、原料ガス入口側から出口側
に向かってより高い担持率の触媒を充填して反応するこ
とにより、目的を達成できることを見いだし、本発明に
至った。
Means for Solving the Problems As a result of intensive studies on the means for solving the above problems, the present inventors have prepared catalyst layers having different loading rates, and have higher catalyst layers from the inlet side of the raw material gas toward the outlet side. It has been found that the object can be achieved by filling and reacting a catalyst having a supported ratio, and the present invention has been accomplished.

【0011】即ち本発明は、少なくともモリブデン及び
バナジウムを含有する触媒活性物質を不活性な担体に担
持した触媒を充填した固定床多管式反応器を用いて、ア
クロレインを分子状酸素により気相接触酸化してアクリ
ル酸を製造する方法において、反応管の原料ガス入口側
から出口側に向けて触媒活性物質の担持率がより大きい
触媒を順次充填して反応することを特徴とするアクリル
酸の製造方法である。
That is, the present invention provides a gas phase contact of acrolein with molecular oxygen using a fixed-bed multitubular reactor packed with a catalyst in which a catalytically active substance containing at least molybdenum and vanadium is supported on an inert carrier. A method for producing acrylic acid by oxidizing, characterized in that a catalyst having a larger loading ratio of a catalytically active substance is sequentially charged and reacted from a raw material gas inlet side to an outlet side of a reaction tube, and the reaction is performed. Is the way.

【0012】本発明で使用する触媒は少なくともモリブ
デン及びバナジウムを含有する触媒活性物質を不活性な
多孔質担体に担持した触媒である。この触媒活性物質
は、モリブデン及びバナジウムを含む複合酸化物である
が、これ以外に他の成分を含むものであってもよい。こ
の場合、他の成分としては、例えば銅、コバルト、鉄、
ビスマス、ニッケル、クロム、マンガン、マグネシウ
ム、タングステン、アンチモン、ニオブ等がある。また
触媒活性成分としてシリカ、アルミナ、チタニヤなどの
成分を含んでいてもよい。
The catalyst used in the present invention is a catalyst in which a catalytically active substance containing at least molybdenum and vanadium is supported on an inert porous carrier. This catalytically active substance is a composite oxide containing molybdenum and vanadium, but may contain other components in addition to this. In this case, as other components, for example, copper, cobalt, iron,
Examples include bismuth, nickel, chromium, manganese, magnesium, tungsten, antimony, and niobium. Further, it may contain a component such as silica, alumina and titania as a catalytically active component.

【0013】本発明の触媒活性物質の組成を一般式で表
すと例えば次のとおりである。 Moa Vb Cuc Ad Be Cf Ox (式中、Moはモリブデン、Vはバナジウム、Cuは
銅、Aはタングステン及び/又はニオブ、Bはコバル
ト、鉄、ニッケル、マンガン、ビスマス、クロム、アン
チモン、マグネシウム、ヒ素、スズ、ストロンチウム及
びカルシウムからなる群より選ばれた少なくとも一種の
元素、Cはケイ素、アルミニウム、チタン、ジルコニウ
ム及びセリウムからなる群より選ばれた少なくとも一種
の元素、Oは酸素を表し、a、b、c、d、e、f及び
xはそれぞれMo、V、Cu、A、B、C及びOの原子
数を表し、a=12としたとき、b=1〜6、c=0〜
5、d=0〜6、e=0〜5、f=0〜10及びxは各
元素の酸化状態により定まる値をとる。)
The composition of the catalytically active substance of the present invention is represented by the following general formula. Moa Vb Cuc Ad Be Cf Ox (where Mo is molybdenum, V is vanadium, Cu is copper, A is tungsten and / or niobium, B is cobalt, iron, nickel, manganese, bismuth, chromium, antimony, magnesium, arsenic , Tin, strontium and calcium, at least one element selected from the group consisting of silicon, aluminum, titanium, zirconium and cerium; O represents oxygen; a, b , C, d, e, f, and x represent the number of atoms of Mo, V, Cu, A, B, C, and O, respectively, and when a = 12, b = 1 to 6, c = 0 to
5, d = 0 to 6, e = 0 to 5, f = 0 to 10, and x take values determined by the oxidation state of each element. )

【0014】触媒活性成分の原料については、特に規定
するものではないが一般に使用されるアンモニウム塩、
硝酸塩、硫酸塩等が用いられる。
The raw materials for the catalytically active component are not particularly limited, but are generally used ammonium salts,
Nitrate, sulfate and the like are used.

【0015】本発明に用いられる担体は、本反応に不活
性なものであればよいが、一般に溶融アルミナ、炭化珪
素、シリカ−アルミナ、磁製質などからなる外径2〜1
0mm程度の球状、円柱状、円筒状などの成形体が用い
られる。この成形体は10μm以上のマクロポアーをも
つ気孔率の大きなものが好ましい。
The carrier used in the present invention may be any carrier as long as it is inert to the present reaction, and generally has an outer diameter of 2 to 1 made of fused alumina, silicon carbide, silica-alumina, porcelain or the like.
A molded article having a shape of about 0 mm, such as a sphere, a column, or a cylinder, is used. The molded body preferably has a large porosity having a macropore of 10 μm or more.

【0016】触媒の調製法としては特に限定されない
が、活性成分の化合物溶液を混合して得られるスラリー
を担体に含浸させて転動しながら蒸発乾固する方法、活
性成分の化合物溶液の混合物のみあらかじめ蒸発乾固
し、そのままあるいはさらに焼成した活性物質の前駆体
を、前記担体に被覆する方法などがある。粉体を被覆す
る方法としてはこれを水に懸濁させ担体に含浸する、或
いは皿型造粒機、マルメライザーなどを用い吸水させた
担体に粉体を付着させる方法などがある。
The method for preparing the catalyst is not particularly limited, but a method in which a slurry obtained by mixing the compound solution of the active ingredient is impregnated in a carrier, and the mixture is tumbled and evaporated to dryness. There is a method of coating the carrier with a precursor of an active substance which has been evaporated to dryness in advance and is calcined or further calcined. As a method for coating the powder, there is a method in which the powder is suspended in water and impregnated in the carrier, or a method in which the powder is attached to the carrier that has absorbed water using a dish-type granulator, a marmellaizer, or the like.

【0017】通常、触媒活性成分は成形前または成形後
に300〜430℃で焼成されるが、この焼成方法とし
ていわゆる蒸し焼きを採用することで触媒性能がさらに
よくなる。
Usually, the catalytically active component is calcined at 300 to 430 ° C. before or after molding. By employing a so-called steaming method as the calcining method, the catalytic performance is further improved.

【0018】本発明の特徴は、触媒活性物質の担持率を
変えた触媒を用意し、原料ガス入口側においては低担持
率の触媒を充填し、順次出口側に向かってより担持率の
大きい触媒を充填することにある。担持率(触媒当たり
の活性物質の重量割合)は10〜50%の範囲で選ぶこ
とができる。担持率を変える方法は担持成形工程におい
て単に触媒活性物質と担体の比率を変えるだけでよい。
A feature of the present invention is that a catalyst having a different loading ratio of the catalytically active substance is prepared, a catalyst having a lower loading ratio is filled at the inlet side of the raw material gas, and a catalyst having a higher loading ratio is gradually increased toward the outlet side. Is to fill. The loading ratio (weight ratio of active substance per catalyst) can be selected in the range of 10 to 50%. The method of changing the loading rate may simply change the ratio between the catalytically active substance and the carrier in the loading molding step.

【0019】本発明に用いられる触媒の活性は、触媒活
性物質の量によるので、触媒の活性は担持率とほぼ比例
関係にある。したがって出口側に向かってより高担持率
の触媒を充填することによって、入口側では活性が低く
出口側に向かって活性の高い触媒が分布することにな
る。本発明に用いられる担持触媒は、活性物質のみから
なるタブレット状または円筒状の成形触媒に比べて目的
生成物の反応選択性が高く、しかも担持率が低いほどこ
の選択性は高くなる。
Since the activity of the catalyst used in the present invention depends on the amount of the catalytically active substance, the activity of the catalyst is substantially proportional to the loading rate. Therefore, by filling the catalyst with a higher loading rate toward the outlet side, a catalyst having a low activity at the inlet side and a high activity toward the outlet side is distributed. The supported catalyst used in the present invention has a higher reaction selectivity for the target product than a tablet-shaped or cylindrical shaped catalyst comprising only the active substance, and the lower the supported ratio, the higher the selectivity.

【0020】アクロレインは触媒層の前半の部分で大部
分反応するので、本発明のように入口側に担持率を低く
して選択性を高めた担持触媒を配置することにより、温
度ピークを低く抑える効果と相俟って全体のアクリル酸
収率は従来の方法より向上する。
Since acrolein largely reacts in the first half of the catalyst layer, the temperature peak is suppressed to a low level by arranging a supported catalyst having a low loading and a high selectivity at the inlet side as in the present invention. Combined with the effect, the overall acrylic acid yield is improved over the conventional method.

【0021】触媒活性物質の担持率を変えた触媒は種類
を多くして順次充填するのが理想的ではあるが、その効
果は実用的には2〜3種類で十分である。例えば、反応
管の入口側から約1/3〜2/3に担持率が約10〜3
0%の触媒を、出口側から約1/3〜2/3に担持率が
約20〜40%の触媒を充填して行われる。
Although it is ideal that the catalysts with different loading ratios of the catalytically active substance are filled in a large number of types and then packed in succession, two to three types of catalysts are practically sufficient. For example, the loading rate is about 10 to 3 from about 1/3 to 2/3 from the inlet side of the reaction tube.
0% of the catalyst is charged from the outlet side to about 1/3 to 2/3 with a catalyst having a loading of about 20 to 40%.

【0022】本発明における原料のアクロレインとし
て、モリブデン−ビスマス系複合酸化物触媒を用いて分
子状酸素によりプロピレンを接触酸化して得られるアク
ロレインをそのまま用いることが出来る。原料ガス中の
アクロレイン濃度は3〜8%の範囲が選ばれるが、本発
明によれば5%以上の高濃度でも反応の暴走などの問題
なく運転が可能である。分子状酸素の供給源としては一
般に空気が有利に用いられるが、いわゆる排ガス循環方
式を採用する場合は純酸素または酸素富化空気を用いる
こともできる。酸素濃度は爆発範囲も考慮してアクロレ
インの0.5〜1.5倍の範囲から選ばれる。また原料
ガス中にはプロピレン酸化反応の生成水も含めて5%以
上の水が存在することが望ましい。本反応の空間速度は
500〜3000h-1(標準状態換算)の範囲で選ばれ
るが本発明によれば特に1200h -1以上の高負荷条件
でも問題なく反応できる。反応圧力は常圧〜数気圧、反
応温度は220〜320℃程度で行われる。
The raw material acrolein in the present invention is
Using a molybdenum-bismuth-based composite oxide catalyst.
Catalyst obtained by catalytic oxidation of propylene with dendritic oxygen.
Lorain can be used as it is. In the source gas
The concentration of acrolein is selected in the range of 3 to 8%.
According to Ming, problems such as runaway of reaction even at high concentration of 5% or more
Driving is possible without. One source of molecular oxygen
In general, air is advantageously used, but the so-called exhaust gas circulation
Use pure oxygen or oxygen-enriched air when using the formula
You can also. Oxygen concentration is considered as explosion range.
It is selected from the range of 0.5 to 1.5 times the in. Also raw materials
5% or less in gas including water produced by propylene oxidation reaction
Desirably, the upper water is present. The space velocity of this reaction is
500-3000h-1(Standard conversion)
However, according to the invention, in particular 1200 h -1High load conditions above
But you can react without any problem. The reaction pressure is from normal pressure to several atmospheres,
The reaction temperature is about 220 to 320 ° C.

【0023】[0023]

【発明の効果】本発明によって、従来の不活性物質で触
媒を希釈する方法に比べ容易に触媒層の蓄熱を防止する
ことができ、暴走反応の心配なくアクリル酸の高い生産
性を得ることができるだけでなく、従来の方法に比べよ
り高いアクロレインの反応率とアクリル酸の収率が得ら
れる。
According to the present invention, compared with the conventional method of diluting a catalyst with an inert substance, heat storage in the catalyst layer can be easily prevented, and high productivity of acrylic acid can be obtained without fear of runaway reaction. Not only can a higher conversion of acrolein and a higher yield of acrylic acid be obtained than with conventional methods.

【0024】[0024]

【実施例】以下、本発明を実施例をあげて説明するが、
本発明はこれに限定されるものではない。アクロレイン
反応率(%)、アクリル酸収率(%)は、次の如く定義
する。なお、原料ガス中のアクリル酸は反応しないと仮
定する。またアクロレインをAcr、アクリル酸をAA
と略記する。 Acr反応率(%)=(反応したAcrモル数/供給A
crモル数)×100 AA 収率(%)=(生成AA酸モル数/供給Acrモ
ル数)×100
EXAMPLES Hereinafter, the present invention will be described with reference to examples.
The present invention is not limited to this. Acrolein conversion (%) and acrylic acid yield (%) are defined as follows. It is assumed that acrylic acid in the source gas does not react. Acrolein is Acr, acrylic acid is AA
Abbreviated. Acr conversion (%) = (mol of reacted Acr / feed A)
cr mole number) × 100 AA yield (%) = (molar number of AA acid produced / mol number of supplied Acr) × 100

【0025】実施例1 水160リットルに硫酸銅(CuSO4 ・5H2 O)8
0.8kgおよび硫酸コバルト(CoSO4 ・7H
2 O)30.4kgを溶解する。別に熱水650リット
ルにメタバナジン酸アンモニウム(NH4 VO3 )3
7.9kg、モノエタノールアミン(H2 NCH2 CH
2 OH)8.8kgおよびモリブデン酸アンモニウム
((NH4 6 Mo7 24・4H2 O)228.4kg
を溶解する。両者を混合し、さらに20%シリカゾル
(SiO2 )32.4kgを添加し、撹拌しながら濃縮
する。
[0025] Example 1 Water 160 l copper sulfate (CuSO 4 · 5H 2 O) 8
0.8kg and cobalt sulfate (CoSO 4 · 7H
To dissolve the 2 O) 30.4kg. Separately, add 650 liters of hot water to ammonium metavanadate (NH 4 VO 3 ) 3
7.9 kg, monoethanolamine (H 2 NCH 2 CH
2 OH) 8.8 kg and ammonium molybdate ((NH 4) 6 Mo 7 O 24 · 4H 2 O) 228.4kg
Dissolve. The two are mixed, and 32.4 kg of 20% silica sol (SiO 2 ) is added, followed by concentration with stirring.

【0026】混合濃縮液をスラリー状で取り出し、空気
流通下200℃で14時間乾燥し、引き続いて250℃
で3時間熱処理を行った。この固体を粉砕した粉体を、
皿型造粒機を用いて、水を含ませた多孔質のα−アルミ
ナ製担体(平均粒径5mmφ)に付着させながら被覆造
粒した。この時、粉体と担体の比率を変え担持率を変え
たものを3種類作った。各成形品を乾燥した後、容器
(500mm×350mm×120mmの蓋付き直方体
に3mmφの穴を明けたもの)一個当たりに約13kg
の割合で充填した。焼成炉に入れ、380℃に昇温し3
時間保持し焼成した。容器から取りだした後、開放型の
容器に移し、空気流通下300℃で6時間焼成して触媒
を得た。
The mixed concentrate is taken out in the form of a slurry, dried at 200 ° C. for 14 hours under a stream of air, and subsequently dried at 250 ° C.
For 3 hours. The powder obtained by crushing this solid is
Using a dish-type granulator, coating granulation was performed while adhering to a porous α-alumina carrier (average particle size: 5 mmφ) containing water. At this time, three types of powder and carrier having different ratios of loading and carrier were prepared. After drying each molded product, about 13 kg per container (a rectangular parallelepiped with a lid of 500 mm x 350 mm x 120 mm with a hole of 3 mmφ)
At the same rate. Put into a firing furnace and raise the temperature to 380 ° C.
It was kept for a time and fired. After being taken out of the container, it was transferred to an open-type container and calcined at 300 ° C. for 6 hours in an air flow to obtain a catalyst.

【0027】この触媒の活性物質の酸素を除く組成は、
Mo123 Cu3 Co1 Si1 である。担持率23%の
ものを触媒A、27%のものを触媒B、31%のものを
触媒Cとする。
The composition of this catalyst excluding the oxygen as an active substance is as follows:
Mo 12 V 3 Cu 3 Co 1 Si 1 . The catalyst having a loading of 23% is referred to as catalyst A, the catalyst having a loading of 27% is referred to as catalyst B, and the catalyst having a loading of 31% is referred to as catalyst C.

【0028】内径30mmのステンレス製反応管の原料
ガス入り口側に触媒Aを1000ml出口側に触媒Cを
1000ml充填し、プロピレンをモリブデン−ビスマ
ス系の複合酸化物系触媒存在下に気相接触酸化して得ら
れたアクロレイン含有ガスと追加空気の混合ガスを原料
とし、空間速度=1800h-1(標準状態換算)で反応
を行った。原料ガス中のアクロレインは5.8容量%、
酸素6.5容量%、水蒸気28容量%であった。残りは
窒素と未反応プロピレン、アクリル酸その他の前段反応
副生物であった。
A stainless steel reaction tube having an inner diameter of 30 mm was charged with 1000 ml of catalyst A on the inlet side of the raw material gas and 1000 ml of catalyst C on the outlet side, and propylene was subjected to gas phase catalytic oxidation in the presence of a molybdenum-bismuth composite oxide catalyst. Using a mixed gas of an acrolein-containing gas and additional air obtained as a raw material, a reaction was performed at a space velocity of 1800 h -1 (converted to a standard state). Acrolein in the raw material gas is 5.8% by volume,
Oxygen 6.5% by volume and steam 28% by volume. The remainder was unreacted propylene, acrylic acid and other pre-reaction by-products with nitrogen.

【0029】反応温度の暴走などの問題なく反応をスタ
ートでき、3日後の反応管加熱用熱媒の温度は262
℃、触媒層の温度ピークは触媒Aの部分にあり、310
℃であった。この時の反応成績はAcr反応率99.8
%、AA収率96.1%であった。このまま反応を続
け、250日後には熱媒温度265℃、ピーク温度30
6℃であり、反応成績はAcr反応率99.9%、AA
収率96.2%であった。
The reaction can be started without any problem such as runaway of the reaction temperature, and the temperature of the heating medium for heating the reaction tube after 3 days is 262.
° C, the temperature peak of the catalyst layer is in the portion of catalyst A,
° C. The reaction result at this time was an Acr reaction rate of 99.8.
% And the AA yield was 96.1%. The reaction was continued as it was. After 250 days, the temperature of the heating medium was 265 ° C., and the peak temperature was 30.
6 ° C., the reaction result was 99.9% for Acr conversion, and AA
The yield was 96.2%.

【0030】比較例1 内径30mmのステンレス製反応管に触媒Cのみを20
00ml充填し、実施例1と同じ条件で反応を開始しよ
うとしたところ、熱媒温度256℃で触媒層のピーク温
度が360℃程度となった。この時Acr反応率98.
4%、AA収率93.5%であった。熱媒温度をさらに
上昇させ反応率を上げようとしたが、ピーク温度が38
0℃を越え、さらに上昇傾向にあったので反応を停止し
た。
Comparative Example 1 20 parts of catalyst C alone were placed in a stainless steel reaction tube having an inner diameter of 30 mm.
When the reaction was started under the same conditions as in Example 1, the peak temperature of the catalyst layer was about 360 ° C at a heating medium temperature of 256 ° C. At this time, the Acr reaction rate was 98.
The AA yield was 43.5% and the AA yield was 93.5%. An attempt was made to raise the reaction rate by further raising the temperature of the heating medium, but the peak temperature was 38
The temperature exceeded 0 ° C., and the reaction was stopped because the temperature tended to increase further.

【0031】比較例2 内径30mmのステンレス製反応管に触媒Bのみを20
00ml充填し、実施例1と同じ条件で反応を行った。
反応の開始時に熱媒温度が上昇、アクロレイン流量をゆ
っくり増やしていくことにより5日目に定常状態に達
し、熱媒温度265℃で触媒層のピーク温度が348℃
であり、Acr反応率99.2%、AA収率94.6%
であった。このまま反応を続け、250日後には熱媒温
度270℃、ピーク温度326℃であり、反応成績はA
cr反応率99.1%、AA収率94.5%であった。
Comparative Example 2 20 parts of catalyst B alone were placed in a stainless steel reaction tube having an inner diameter of 30 mm.
The reaction was carried out under the same conditions as in Example 1 with a filling of 00 ml.
At the start of the reaction, the temperature of the heat medium rises, and a steady state is reached on the fifth day by slowly increasing the flow rate of acrolein. At a heat medium temperature of 265 ° C, the peak temperature of the catalyst layer becomes 348 ° C.
Acr conversion 99.2%, AA yield 94.6%
Met. The reaction was continued as it was. After 250 days, the temperature of the heating medium was 270 ° C and the peak temperature was 326 ° C.
The cr reaction rate was 99.1%, and the AA yield was 94.5%.

【0032】比較例3 内径30mmのステンレス製反応管のガス入口側に触媒
C600mlと担体400mlを混合したものを、出口
側には触媒Cのみ1000mlを充填し、実施例1と同
様の条件で反応を行った。問題なく反応をスタートで
き、3日後の熱媒温度268℃で触媒層のピーク温度が
310℃であり、Acr反応率99.8%、AA収率9
4.8%であった。このまま反応を続け、250日後に
は熱媒温度275℃、ピーク温度308℃であり、反応
成績はAcr反応率99.5%、AA収率94.6%で
あった。
Comparative Example 3 A mixture of 600 ml of catalyst C and 400 ml of carrier at the gas inlet side of a stainless steel reaction tube having an inner diameter of 30 mm and 1000 ml of catalyst C alone at the outlet side were reacted under the same conditions as in Example 1. Was done. The reaction can be started without any problem, the peak temperature of the catalyst layer is 310 ° C. at a heating medium temperature of 268 ° C. after 3 days, the Acr conversion is 99.8%, and the AA yield is 9
It was 4.8%. The reaction was continued as it was. After 250 days, the heating medium temperature was 275 ° C., the peak temperature was 308 ° C., and the reaction results were Acr conversion rate of 99.5% and AA yield of 94.6%.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // C07B 61/00 300 C07B 61/00 300 (56)参考文献 特開 平3−294239(JP,A) 特開 昭59−8178(JP,A) 特公 昭63−38331(JP,B1) 特公 昭53−30688(JP,B1) 特公 昭49−11371(JP,B1) 特公 昭41−1775(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C07C 57/055 B01J 23/28 B01J 23/88 B01J 35/02 C07C 51/235 C07B 61/00 300 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification symbol FI // C07B 61/00 300 C07B 61/00 300 (56) References JP-A-3-294239 (JP, A) JP-A Sho 59 -8178 (JP, A) JP-B 63-38331 (JP, B1) JP-B 53-30688 (JP, B1) JP-B 49-11371 (JP, B1) JP-B 41-1775 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) C07C 57/055 B01J 23/28 B01J 23/88 B01J 35/02 C07C 51/235 C07B 61/00 300

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくともモリブデン及びバナジウムを
含有する触媒活性物質を不活性な担体に担持した触媒を
充填した固定床多管式反応器を用いて、アクロレインを
分子状酸素により気相接触酸化してアクリル酸を製造す
る方法において、反応管の原料ガス入口側から出口側に
向けて触媒活性物質の担持率がより大きい触媒を順次充
填して反応することを特徴とするアクリル酸の製造方
法。
1. A gaseous catalytic oxidation of acrolein with molecular oxygen using a fixed-bed multitubular reactor filled with a catalyst in which a catalytically active substance containing at least molybdenum and vanadium is supported on an inert carrier. A method for producing acrylic acid, characterized by sequentially filling and reacting a catalyst having a higher loading rate of a catalytically active substance from a raw material gas inlet side to an outlet side of a reaction tube.
【請求項2】 少なくともモリブデン及びバナジウムを
含有する触媒活性物質の組成が、一般式 Moa Vb C
uc Ad Be Cf Ox(式中、Moはモリブデン、Vは
バナジウム、Cuは銅、Aはタングステン及び/又はニ
オブ、Bはコバルト、鉄、ニッケル、マンガン、ビスマ
ス、クロム、アンチモン、マグネシウム、ヒ素、スズ、
ストロンチウム及びカルシウムからなる群より選ばれた
少なくとも一種の元素、Cはケイ素、アルミニウム、チ
タン、ジルコニウム及びセリウムからなる群より選ばれ
た少なくとも一種の元素、Oは酸素を表し、a、b、
c、d、e、f及びxはそれぞれMo、V、Cu、A、
B、C及びOの原子数を表し、a=12としたとき、b
=1〜6、c=0〜5、d=0〜6、e=0〜5、f=
0〜10及びxは各元素の酸化状態により定まる値をと
る。)である請求項1記載のアクリル酸の製造方法。
2. The composition of a catalytically active substance containing at least molybdenum and vanadium has a general formula Moa Vb C
uc Ad Be Cf Ox (where Mo is molybdenum, V is vanadium, Cu is copper, A is tungsten and / or niobium, B is cobalt, iron, nickel, manganese, bismuth, chromium, antimony, magnesium, arsenic, tin ,
At least one element selected from the group consisting of strontium and calcium, C is at least one element selected from the group consisting of silicon, aluminum, titanium, zirconium and cerium, O represents oxygen, a, b,
c, d, e, f and x are Mo, V, Cu, A,
Represents the number of atoms of B, C and O, and when a = 12, b
= 1-6, c = 0-5, d = 0-6, e = 0-5, f =
0 to 10 and x take values determined by the oxidation state of each element. 2. The method for producing acrylic acid according to claim 1, wherein
【請求項3】 触媒活性物質の担持率が入口側触媒で1
0〜30%、出口側触媒で20〜40%である請求項1
記載のアクリル酸の製造方法。
3. The loading rate of the catalytically active substance is 1 at the inlet side catalyst.
2. The composition according to claim 1, wherein the content of the catalyst is 0 to 30% and the content of the catalyst at the outlet side is 20 to 40%.
The method for producing acrylic acid according to the above.
【請求項4】 反応管の入口側から1/3〜2/3に触
媒活性物質の担持率が10〜30%の触媒を、出口側か
ら1/3〜2/3に担持率が20〜40%の触媒を充填
して行う請求項1記載のアクリル酸の製造方法。
4. A catalyst having a catalyst active substance loading of 10 to 30% in 1/3 to 2/3 from the inlet side of the reaction tube, and a catalyst loading of 20 to 30% in 1/3 to 2/3 from the outlet side. The method for producing acrylic acid according to claim 1, wherein the method is carried out by filling the catalyst with 40% of the catalyst.
JP15685193A 1993-06-28 1993-06-28 Method for producing acrylic acid Expired - Fee Related JP3287066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15685193A JP3287066B2 (en) 1993-06-28 1993-06-28 Method for producing acrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15685193A JP3287066B2 (en) 1993-06-28 1993-06-28 Method for producing acrylic acid

Publications (2)

Publication Number Publication Date
JPH0710802A JPH0710802A (en) 1995-01-13
JP3287066B2 true JP3287066B2 (en) 2002-05-27

Family

ID=15636771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15685193A Expired - Fee Related JP3287066B2 (en) 1993-06-28 1993-06-28 Method for producing acrylic acid

Country Status (1)

Country Link
JP (1) JP3287066B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19910508A1 (en) * 1999-03-10 2000-09-21 Basf Ag Process of catalytic gas phase oxidation of acrolein to acrylic acid
JP3943284B2 (en) * 1999-05-27 2007-07-11 株式会社日本触媒 Acrylic acid production method
JP4058270B2 (en) * 1999-12-10 2008-03-05 三菱レイヨン株式会社 Method for producing methacrylic acid
ZA200200049B (en) 2001-01-25 2002-07-16 Nippon Catalytic Chem Ind Fixed-bed shell-and-tube reactor and its usage.
JP5134745B2 (en) 2001-09-19 2013-01-30 株式会社日本触媒 Acrylic acid production method
CN1599708A (en) * 2001-12-27 2005-03-23 三菱化学株式会社 Process for vapor-phase catalytic oxidation and process for production of (meth)acrolein or (meth)acrylic acid
JP4813758B2 (en) 2003-02-27 2011-11-09 株式会社日本触媒 Composite oxide catalyst and method for producing acrylic acid using the same
US7161044B2 (en) 2003-10-22 2007-01-09 Nippon Shokubai Co., Ltd. Catalytic gas phase oxidation reaction
JP4867129B2 (en) 2003-12-15 2012-02-01 三菱化学株式会社 Method for producing (meth) acrylic acid or (meth) acrolein
US7265250B2 (en) 2003-12-26 2007-09-04 Lg Chem, Ltd. Method of producing unsaturated aldehyde and/or unsaturated fatty acid
JP2005213179A (en) * 2004-01-29 2005-08-11 Mitsubishi Rayon Co Ltd Catalyst layer and method for forming the same, fixed bed tubular reactor, method for producing methacrolein or methacrylic acid
JP2005224660A (en) 2004-02-10 2005-08-25 Nippon Shokubai Co Ltd Catalyst for catalytic vapor-phase oxidation reaction of acrolein and method for producing acrylic acid by catalytic vapor-phase oxidation method using the catalyst
KR101206583B1 (en) * 2004-07-01 2012-11-29 바스프 에스이 Method for the production of acrylic acid by means of heterogeneously catalyzed partial gas phase oxidation of propylene
KR100850857B1 (en) * 2005-02-01 2008-08-06 주식회사 엘지화학 Method of producing unsaturated fatty acid
KR100677051B1 (en) * 2005-03-18 2007-02-01 주식회사 엘지화학 Method of producing unsaturated acid from olefin
DE102005019911A1 (en) 2005-04-27 2006-11-02 Basf Ag Rectifying separation of a liquid II containing acrylic acid and/or methacrylic acid and acrolein and/or methacrolein and acetone, comprises providing the liquid II containing acetone to a rectification column
EP1987877A3 (en) 2007-03-29 2010-10-13 Nippon Shokubai Co., Ltd. Oxide catalyst, process for producing acrolein or acrylic acid and process for producing water-absorbent resin
EP2347823B1 (en) * 2008-09-30 2016-08-31 Nippon Shokubai Co., Ltd. Catalyst for producing acrylic acid and process for producing acrylic acid using the catalyst
JP5902374B2 (en) * 2009-03-26 2016-04-13 株式会社日本触媒 Acrylic acid production method
JP5387297B2 (en) 2009-09-30 2014-01-15 住友化学株式会社 Method for producing composite oxide catalyst
JP5680373B2 (en) 2010-11-01 2015-03-04 日本化薬株式会社 Catalyst and method for producing acrylic acid
US8969618B2 (en) * 2011-02-02 2015-03-03 Nipponkayaku Kabushiki Kaisha Process for producing unsaturated aldehyde and/or unsaturated carboxylic acid
WO2013147032A1 (en) 2012-03-29 2013-10-03 株式会社日本触媒 Process for producing acrylic acid using fixed-bed multitubular reactor
DE102013218628A1 (en) * 2013-09-17 2014-03-06 Basf Se Catalyst useful for producing alpha, beta-unsaturated carboxylic acid by gas phase oxidation of alpha, beta-unsaturated aldehyde, comprises support molded body with active material applied on support molded body
JP6534328B2 (en) * 2015-09-29 2019-06-26 株式会社日本触媒 Method of producing catalyst for producing acrylic acid, catalyst therefor, and method of producing acrylic acid using the catalyst
WO2021145233A1 (en) * 2020-01-14 2021-07-22 株式会社日本触媒 Method for producing acrylic acid

Also Published As

Publication number Publication date
JPH0710802A (en) 1995-01-13

Similar Documents

Publication Publication Date Title
JP3287066B2 (en) Method for producing acrylic acid
JP5031946B2 (en) Method for catalytic gas phase oxidation of propene to acrolein
JP4185217B2 (en) Composite oxide catalyst and method for producing (meth) acrolein and (meth) acrylic acid
US6638890B2 (en) Modified carrier, complex oxide catalyst and process for preparation of acrylic acid
KR950003119B1 (en) Method for production of acric acid
JP3696239B2 (en) Method for producing catalytically active composite metal oxide material containing elements V and Mo in the form of oxides as basic components
JP3943284B2 (en) Acrylic acid production method
KR101013249B1 (en) Method for the heterogeneously catalysed partial gas phase oxidation of propene to form acrylic acid
US6545177B2 (en) Complex oxide catalyst and process for preparation of acrylic acid
JPH04217932A (en) Production of unsaturated aldehyde and unsaturated acid
JP2002539102A (en) Catalytic gas-phase oxidation of propene to acrylic acid.
JP2011074085A (en) Method for catalytic gas-phase oxidation of propene to acrylic acid
US5198579A (en) Catalyst for oxidizing methacrolein and method for preparing methacrylic acid
US7015354B2 (en) Preparation of (meth)acrolein and/or (meth)acrylic acid
JPH0686399B2 (en) Method for producing acrylic acid
KR101065106B1 (en) Method for the heterogeneously catalyzed partial gas phase oxidation of propene into acrolein
US4552978A (en) Oxidation of unsaturated aldehydes
JPH1043595A (en) Catalyst composition for ammoxidation
JP3028327B2 (en) Method for producing methacrolein and methacrylic acid
JP2988660B2 (en) Method for producing methacrolein and methacrylic acid
KR20050115311A (en) Method for the heterogeneously catalysed partial gas phase oxidation of acrolein to form acrylic acid
JPH1135519A (en) Production of acrylic acid
KR101065089B1 (en) Method for the heterogeneously catalysed partial gas phase oxidation of propene to form acrolein
JPH1133393A (en) Fixed bed reactor and production of unsaturated carboxylic acid
JP2695480B2 (en) Catalyst for producing methacrylic acid and method for producing the same

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees