JPS5823474B2 - Acid aqueous solution recovery method and device - Google Patents

Acid aqueous solution recovery method and device

Info

Publication number
JPS5823474B2
JPS5823474B2 JP11851676A JP11851676A JPS5823474B2 JP S5823474 B2 JPS5823474 B2 JP S5823474B2 JP 11851676 A JP11851676 A JP 11851676A JP 11851676 A JP11851676 A JP 11851676A JP S5823474 B2 JPS5823474 B2 JP S5823474B2
Authority
JP
Japan
Prior art keywords
aqueous solution
acid aqueous
amount
tank
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11851676A
Other languages
Japanese (ja)
Other versions
JPS5343689A (en
Inventor
黒田美紀
生野逸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11851676A priority Critical patent/JPS5823474B2/en
Publication of JPS5343689A publication Critical patent/JPS5343689A/en
Publication of JPS5823474B2 publication Critical patent/JPS5823474B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/36Regeneration of waste pickling liquors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Control Of Non-Electrical Variables (AREA)

Description

【発明の詳細な説明】 本発明は塩化第2鉄と塩酸を含む酸水溶液を酸洗処理等
に使用して劣化した該酸水溶液の回復方法及び装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for recovering an acid aqueous solution containing ferric chloride and hydrochloric acid which has deteriorated when the acid aqueous solution is used for pickling treatment or the like.

塩化第2鉄及び塩酸を含んだ酸水溶液を鉄鋼の酸洗処理
に使用すると該酸水溶液中の塩化第2鉄は処理量に従っ
て溶は込む鉄イオンと反応して塩化第1鉄となる他項酸
の減少により酸洗能力が劣化してくる。
When an acid aqueous solution containing ferric chloride and hydrochloric acid is used for pickling steel, the ferric chloride in the acid aqueous solution reacts with the iron ions introduced into the solution according to the amount treated, and becomes ferrous chloride. As the amount of acid decreases, the pickling ability deteriorates.

この劣化した酸水溶液中の塩化第1鉄を塩化第2鉄に酸
化回復させる方法として該酸水溶液中に塩素ガスを吹き
込む方法があるが、本発明は該酸水溶液中へ吹き込む塩
素ガスとして劣化した該酸水溶液を電気分解することに
より発生する塩素ガスを使用することを特徴とする酸水
溶液の回復方法及び装置を提供するものである。
There is a method of oxidizing and recovering ferrous chloride in this deteriorated acid aqueous solution to ferric chloride, but there is a method of blowing chlorine gas into the acid aqueous solution, but in the present invention, chlorine gas is blown into the acid aqueous solution. The present invention provides a method and apparatus for recovering an acid aqueous solution, characterized in that chlorine gas generated by electrolyzing the acid aqueous solution is used.

以下本発明を図面によって説明する。The present invention will be explained below with reference to the drawings.

第1図は本発明を利用して酸水溶液を回復させるととも
に塩化第2鉄及び塩酸濃度を制御するための装置の具体
例を示す。
FIG. 1 shows a specific example of an apparatus for recovering an aqueous acid solution and controlling ferric chloride and hydrochloric acid concentrations utilizing the present invention.

第1図において2は塩化第2鉄及び塩酸を含む酸水溶液
を収容した酸洗槽セあり、ストIJツブ1が浸漬されな
がら通過して酸洗処理が行われる。
In FIG. 1, reference numeral 2 denotes a pickling tank containing an acid aqueous solution containing ferric chloride and hydrochloric acid, through which the strike IJ tube 1 is immersed and passes through for pickling treatment.

しかして酸洗処理量が増すに従って前述の如く酸水溶液
中の塩酸の減少及び塩化第2鉄が溶は込む鉄イオンと反
応して塩化第1鉄となり、又スケールの溶は込みにより
鉄イオンが増加して酸洗能力が低下してくる。
However, as the amount of pickling treatment increases, as mentioned above, the amount of hydrochloric acid in the acid aqueous solution decreases, ferric chloride reacts with the iron ions introduced into the solution to become ferrous chloride, and iron ions increase due to the incorporation of scale. As the pickling capacity increases, the pickling ability decreases.

この酸洗能力の低下した酸水溶液を酸洗槽2からまず循
環ポンプ10によって分析装置6(分析機器としては塩
酸は電磁濃度計を鉄イオンは三波長分光計を用いるのが
よい)へ供給し、分析装置6において酸水溶液中の塩酸
の減少量及び第1鉄イオンの増加量を分析する。
This acid aqueous solution with reduced pickling ability is first supplied from the pickling tank 2 to the analyzer 6 (preferably using an electromagnetic densitometer for hydrochloric acid and a three-wavelength spectrometer for iron ions) using the circulation pump 10. , the amount of decrease in hydrochloric acid and the amount of increase in ferrous ions in the acid aqueous solution are analyzed in the analyzer 6.

図中3は塩酸タンク、12は水タンクである。In the figure, 3 is a hydrochloric acid tank, and 12 is a water tank.

この場合分析した第1鉄イオンの増加量には塩化第2鉄
の減少分の他にスケールの溶は込み等による増加も含ま
れているので、全ての第1鉄イオンを塩化第2鉄イオン
に酸化させると回復した酸水溶液中の塩化第2鉄は劣化
前の濃度より高くなる。
In this case, the amount of increase in ferrous ions analyzed includes the decrease in ferric chloride as well as the increase due to scale penetration, so all ferrous ions are replaced by ferric chloride ions. When oxidized to , the concentration of ferric chloride in the recovered acid aqueous solution becomes higher than that before deterioration.

従って増加した第1鉄イオン量に見合う酸水溶液量を廃
棄する必要がある。
Therefore, it is necessary to discard an amount of acid aqueous solution corresponding to the increased amount of ferrous ions.

そこで分析装置6による分析値を演算装置7に加えます
酸水溶液中のスケール溶は込みによる第1鉄イオンの増
加量を演算する。
Therefore, the analysis value from the analyzer 6 is added to the calculation device 7, and the amount of increase in ferrous ions due to scale dissolution in the acid aqueous solution is calculated.

R1」ち酸洗槽2内の全酸水溶液量をA分析装置6によ
る酸水溶液中の始めの第2鉄イオンの濃度をa1同じく
塩酸の濃度をbとし、単位時間当りの第2鉄イオンの減
少量をa/、同じく第1鉄イオンの増加量をCとすると
、単位時間後のスケールの溶は込みによる第1鉄イオン
の増加量は次式で表わされる。
R1'', that is, the total amount of acid aqueous solution in the pickling tank 2 is A1, the initial concentration of ferric ions in the acid aqueous solution measured by the analyzer 6 is a1, and the concentration of hydrochloric acid is b, and the amount of ferric ions per unit time is If the amount of decrease is a/, and the amount of increase in ferrous ions is C, then the amount of increase in ferrous ions due to scale penetration after a unit time is expressed by the following equation.

((a−a’)+c−a )A=(C−a’)A・・・
・・(1)上記(1)式のスケール溶は込み等によって
増加した第1鉄イオン量に見合う酸水溶液量■は次式に
よって求まる。
((a-a')+c-a)A=(C-a')A...
(1) The amount of acid aqueous solution corresponding to the amount of ferrous ions increased due to scale dissolution in the above equation (1) etc. is determined by the following equation.

H=A(c−a’ )/ ((a−a □ )+c )
−・”(2)この酸水溶液量■を酸洗槽2から循環ポ
ンプ10によって電解槽5へ供給し、一方残りの酸水溶
酸を回復槽4へ供給する。
H=A(c-a')/((a-a □)+c)
-.'' (2) This amount of acid aqueous solution ■ is supplied from the pickling tank 2 to the electrolytic cell 5 by the circulation pump 10, while the remaining acid aqueous solution is supplied to the recovery tank 4.

そして電解槽5内の酸水溶液を電気分解して塩素ガスを
発生させ、該塩素ガスを塩素カス誘導管8を通して回復
槽4の酸水溶液中へ供給し、塩化第1鉄を塩化第2鉄に
酸化させる。
Then, the acid aqueous solution in the electrolytic cell 5 is electrolyzed to generate chlorine gas, and the chlorine gas is supplied into the acid aqueous solution in the recovery tank 4 through the chlorine sludge induction pipe 8 to convert ferrous chloride to ferric chloride. oxidize.

この場合第1鉄イオンを第2鉄イオンに酸化させるため
に必要な塩素ガス量、この塩素ガスを発生させるに必要
な電気量を演算制御装置7で演算し電解槽5における塩
素ガス発生量の制御を行う。
In this case, the amount of chlorine gas required to oxidize ferrous ions to ferric ions and the amount of electricity required to generate this chlorine gas are calculated by the arithmetic and control device 7, and the amount of chlorine gas generated in the electrolytic cell 5 is calculated. Take control.

なお演算制御装置7における演算内容を次に示す。Note that the calculation contents in the calculation control device 7 are shown below.

電解槽5へ供給した残りの酸水溶液中に含まれる第1鉄
イオン量はC(A−II )でありこの第1鉄イオンを
第2鉄イオンに酸化するために必要な塩素ガス量(RC
7)は RC,g=に−C(A−H) である。
The amount of ferrous ions contained in the remaining acid aqueous solution supplied to the electrolytic cell 5 is C(A-II), and the amount of chlorine gas required to oxidize these ferrous ions to ferric ions (RC
7) is RC, g=to -C(A-H).

但しKは実験により求められる値であり、第1鉄イオン
の単位重量を第2鉄イオンに酸化させるために必要な塩
素ガス量を表わす。
However, K is a value determined by experiment, and represents the amount of chlorine gas required to oxidize a unit weight of ferrous ions to ferric ions.

又この塩素ガスを発生させるに必要な電気量Qは ここでdは1クーロンあたりの塩素ガス発生量である。Also, the amount of electricity Q required to generate this chlorine gas is Here, d is the amount of chlorine gas generated per coulomb.

従って演算制御装置7から電解槽5へ電解電力(Qを出
力させ塩素ガス量(R(4)を発生させる。
Therefore, the arithmetic and control device 7 outputs the electrolytic power (Q) to the electrolytic cell 5 to generate the amount of chlorine gas (R(4)).

しかして演算制御装置7によって、電解槽5への必要電
気量(Qの供給が終ると回復槽4の廃酸液の回復が終了
する。
When the arithmetic and control unit 7 finishes supplying the necessary amount of electricity (Q) to the electrolytic cell 5, the recovery of the waste acid solution in the recovery tank 4 ends.

次に回復した酸水溶液を回復槽4から回復酸水溶液返送
管9を通して循環ポンプ11にて酸洗槽2へ返送する。
Next, the recovered acid aqueous solution is returned from the recovery tank 4 to the pickling tank 2 by the circulation pump 11 through the recovered acid aqueous solution return pipe 9.

そして前記の一部の酸水溶液の廃棄により塩酸及び第2
鉄イオンの総量が不足する。
Then, by discarding some of the acid aqueous solution mentioned above, hydrochloric acid and second
The total amount of iron ions is insufficient.

その不足量、耶ち廃棄した酸水溶液中に含まれる塩酸(
WHCt)、第1鉄イオン(WFe丑)、第2鉄イオン
(WFe州つの量は WHC,ff = b −H WFeFee−H WF e+1+−(a −a ’ ) Hである。
Hydrochloric acid contained in the discarded acid aqueous solution (
The amounts of ferrous ions (WHCt), ferrous ions (WFe), and ferric ions (WFe) are WHC, ff = b -H WFeFee-H WF e+1+-(a -a') H.

従って上記塩酸及び第2鉄イオンを追加するとともにそ
れに見合う水を補給して酸水溶液の回復制御が完了する
ものである。
Therefore, the recovery control of the acid aqueous solution is completed by adding the hydrochloric acid and ferric ions and replenishing the corresponding amount of water.

なお本例では酸水溶液の循環をバッチ方式で説明したが
酸水溶液を、電解槽、及び回復槽へ絶えず供給し連続し
て回復させる如くなしてもよい。
In this example, the circulation of the acid aqueous solution is described as a batch system, but the acid aqueous solution may be constantly supplied to the electrolytic cell and the recovery tank for continuous recovery.

本発明はこのようにして酸水溶液の回復作業を自動化す
るとともに劣化した酸水溶液中の塩素イオンを有効に利
用可能となしたもので、従来法のように新規な塩素ガス
の供給を必要としないからタンクの設置及びその供給に
おける有害な塩素ガスの外部に洩れる危険性も少ない。
In this way, the present invention automates the recovery work of the acid aqueous solution and makes it possible to effectively utilize the chlorine ions in the deteriorated acid aqueous solution, and does not require a new supply of chlorine gas unlike the conventional method. There is also little risk of harmful chlorine gas leaking to the outside during tank installation and supply.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

新規な酸水溶液を鉄鋼の酸洗に使用して劣化した酸水溶
液の1部を分析装置へ導ひき分析した。
A new acid aqueous solution was used to pickle steel, and a portion of the deteriorated acid aqueous solution was introduced into an analyzer and analyzed.

第1表に缶液の濃度を示す。Table 1 shows the concentration of the can liquid.

第1表の分析値を演算装置へ加えた結果スケール溶は込
みによるFeeの増加量は、0.611/を又該Fe廿
の増加量に見合う酸水溶液量は210.53.!であっ
た。
As a result of adding the analysis values in Table 1 to the calculation device, the amount of increase in Fee due to scale dissolution is 0.611/, and the amount of acid aqueous solution corresponding to the increase in Fe is 210.53. ! Met.

この酸水溶液量を電解槽へ供給し、又残りの酸水溶液を
回復槽へ供給した。
This amount of the acid aqueous solution was supplied to the electrolytic cell, and the remaining acid aqueous solution was supplied to the recovery tank.

この場合回復槽内のFe廿をFe+t+へ酸化させるた
めに必要なCt量は2’6.320.9又電解槽で、こ
のCt量を発生させるための電気量は20,000(A
−5ec)であった。
In this case, the amount of Ct required to oxidize Fe in the recovery tank to Fe+t+ is 2'6.320.9 in the electrolytic tank, and the amount of electricity to generate this amount of Ct is 20,000 (A
-5ec).

又前記廃棄(電解槽へ供給した)酸水溶液中に含まれる
HCtは29474.2.!9 又それに見合う水の
量は210.537であった。
Furthermore, the HCt contained in the waste acid aqueous solution (supplied to the electrolytic cell) was 29474.2. ! 9 The corresponding amount of water was 210.537.

これらを補給して回復させた酸水溶液の濃度を第2表に
示す。
Table 2 shows the concentration of the acid aqueous solution recovered by replenishing these.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための装置の説明図であ
る。 1・・・ストリップ、2・・・酸洗槽、3・・・塩酸タ
ンク、4・・・回復槽、5・・・電解槽、6・・・分析
装置、7・・・演算装置、8・・・誘導管、9・・・回
復酸水溶液返送管、10.11・・・循環ポンプ、12
・・・水タンク。
FIG. 1 is an explanatory diagram of an apparatus for carrying out the method of the present invention. DESCRIPTION OF SYMBOLS 1... Strip, 2... Pickling tank, 3... Hydrochloric acid tank, 4... Recovery tank, 5... Electrolytic tank, 6... Analyzer, 7... Arithmetic device, 8 ... Guide pipe, 9 ... Recovery acid aqueous solution return pipe, 10.11 ... Circulation pump, 12
···water tank.

Claims (1)

【特許請求の範囲】 1 塩化第2鉄と塩酸を含む劣化した酸水溶液に塩素ガ
スを吹き込んで回復させる方法において、前記塩素ガス
を前記劣化した酸水溶液を電気分解することにより得る
酸水溶液の回復方法。 2 酸洗槽と分析装置、電解槽、及び回復槽を酸水溶液
供給管によって接続し更に回復槽と電解槽を塩素ガス誘
導管で接続するとともに該回復槽と酸洗槽を回復酸水溶
液返送管で接続し一方前記分析装置からの分析値信号に
よって、廃棄酸水溶液量、電解槽供給電力、補給塩酸量
及び水量を演算かつ制御する演算制御装置を設けてなる
酸水溶液の回復装置。
[Scope of Claims] 1. Recovery of the acid aqueous solution obtained by electrolyzing the deteriorated acid aqueous solution with the chlorine gas, in a method for recovering the degraded acid aqueous solution containing ferric chloride and hydrochloric acid by blowing chlorine gas into the degraded acid aqueous solution. Method. 2 Connect the pickling tank, the analyzer, the electrolytic tank, and the recovery tank with an acid aqueous solution supply pipe, and further connect the recovery tank and the electrolytic tank with a chlorine gas guide pipe, and connect the recovery tank and the pickling tank with a recovery acid aqueous solution return pipe. A recovery device for an acid aqueous solution, which is connected to the analyzer and includes an arithmetic and control device that calculates and controls the amount of the waste acid aqueous solution, the power supplied to the electrolytic cell, the amount of supplementary hydrochloric acid, and the amount of water based on the analysis value signal from the analyzer.
JP11851676A 1976-10-04 1976-10-04 Acid aqueous solution recovery method and device Expired JPS5823474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11851676A JPS5823474B2 (en) 1976-10-04 1976-10-04 Acid aqueous solution recovery method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11851676A JPS5823474B2 (en) 1976-10-04 1976-10-04 Acid aqueous solution recovery method and device

Publications (2)

Publication Number Publication Date
JPS5343689A JPS5343689A (en) 1978-04-19
JPS5823474B2 true JPS5823474B2 (en) 1983-05-16

Family

ID=14738553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11851676A Expired JPS5823474B2 (en) 1976-10-04 1976-10-04 Acid aqueous solution recovery method and device

Country Status (1)

Country Link
JP (1) JPS5823474B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132482A (en) * 1979-03-31 1980-10-15 Mitsubishi Plastics Ind Different species pipe joint and its manufacture
JPS56160388U (en) * 1980-04-28 1981-11-30
JPS6077889U (en) * 1983-11-01 1985-05-30 株式会社クボタ Pipe joint structure
JP2700645B2 (en) * 1987-05-13 1998-01-21 未来工業 株式会社 A method of connecting a synthetic resin pipe to a connection port of a piping device such as a synthetic resin elbow or a branching tool having an external thread on an outer surface, and a synthetic resin pipe connection tool used for the method
JPH0755430Y2 (en) * 1990-05-01 1995-12-20 日本鋼管継手株式会社 Flexible pipe fittings

Also Published As

Publication number Publication date
JPS5343689A (en) 1978-04-19

Similar Documents

Publication Publication Date Title
EP0075882B1 (en) Process for regenerating cleaning fluid
Li et al. Pickling of austenitic stainless steels (a review)
US6565735B1 (en) Process for electrolytic pickling using nitric acid-free solutions
US5154774A (en) Process for acid pickling of stainless steel products
CN1451058A (en) Continuous electrolytic pickling method for metallic products using alternate current suplied cells
US5690748A (en) Process for the acid pickling of stainless steel products
Mao ECM Study in a Closed‐Cell System: II., and
KR930008197A (en) Etching Solution
JPS5823474B2 (en) Acid aqueous solution recovery method and device
Tilak et al. On the mechanism of sodium chlorate formation
FI86649C (en) FOERFARANDE FOER ELEKTROLYTISK BETNING AV KROMHALTIGT AEDELSTAOL.
US4462911A (en) Detoxification or decontamination of effluents and/or flue gases
EP0960221B1 (en) Method for pickling products of a metal alloy containing iron and of titanium and alloys thereof
JP3282829B2 (en) Method for pickling alloy products in the absence of nitric acid, method for collecting pickling waste liquid, and apparatus therefor
US4391685A (en) Process for electrolytically pickling steel strip material
JPH083774A (en) Pickling method and pickling device for steel products
Turaev et al. Regeneration by membrane electrolysis of an etching solution based on copper chloride
WO1999032690A1 (en) Pickling process with at least two steps
JP2000054167A (en) Method for controlling ferric chloride etching solution and apparatus therefor
JPH08254597A (en) Method for treating waste liquid containing ammoniac nitrogen and organic substance
JP3855601B2 (en) Continuous pickling method for titanium materials
JPH09263986A (en) Recovery treatment of gaseous chlorine in electrolytic regeneration and device for execution therefor
JP3069951B2 (en) Concentration control method of hydrogen peroxide solution containing ferric ion
WO2022091049A1 (en) Novel process for descaling or pickling of steels and stainless steels
JPS6239086Y2 (en)