JPS5823408A - Manufacture of unidirectional electromagnetic steel plate having superior magnetism - Google Patents

Manufacture of unidirectional electromagnetic steel plate having superior magnetism

Info

Publication number
JPS5823408A
JPS5823408A JP56122729A JP12272981A JPS5823408A JP S5823408 A JPS5823408 A JP S5823408A JP 56122729 A JP56122729 A JP 56122729A JP 12272981 A JP12272981 A JP 12272981A JP S5823408 A JPS5823408 A JP S5823408A
Authority
JP
Japan
Prior art keywords
rolled
hot
iron loss
content
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56122729A
Other languages
Japanese (ja)
Inventor
Koichi Fujiwara
藤原 宏一
Yozo Suga
菅 洋三
Takeaki Takeshita
竹下 武章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP56122729A priority Critical patent/JPS5823408A/en
Publication of JPS5823408A publication Critical patent/JPS5823408A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To stably form with good yield a unidirectional electromagnetic steel plate having low iron loss and consisting of crystal grains having an azimuth represented as (110)[001]by Miller indices by a method wherein a specific amount of P is contained in a silicon steel material containing C: 0.020-0.080%, Si: 2.0-4.5%, Mn: 0.04-0.10%, S: 0.015-0.033%. CONSTITUTION:P of 0.013% or less is contained in a silicon steel material including C: 0.020-0.080%, Si: 2.0-4.5%, Mn: 0.04-0.10%, S: 0.015-0.033%, and a unidirectional electromagnetic steel plate having superior magnetism is formed by the secondary recrystallization phenomenon. The lower content of the above P makes better iron loss and a content of 0.013% or less remarkably improves the iron loss.

Description

【発明の詳細な説明】 本発明はミラー指数で(110)(001)と表わされ
る方位を持つ結晶粒から成る、いわゆる1方向性電磁鋼
板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a so-called unidirectional electrical steel sheet, which is composed of crystal grains having an orientation expressed by Miller index (110) (001).

このよりな1方向性電磁鋼板は焼鈍工程と冷延工程とを
適宜繰返して最終成品厚と々り九鋼板を高温焼鈍するこ
とにより(110)(001)方位を持つ1次再結晶粒
が選択的に成長する、いわゆる2次再結晶現象によ)得
られる。1方向性電磁鋼板は主に変圧器、および発電機
用鉄心に使用され、磁気特性として磁化特性と鉄損特性
が良好でなければならない、磁化特性の良否はかけられ
た磁場によって鉄心内に誘起される磁束密度(B、。
This stiff unidirectional electrical steel sheet is produced by appropriately repeating the annealing process and the cold rolling process, and by annealing the final finished product at a high temperature of 90%, primary recrystallized grains with (110)(001) orientation are selected. (by the so-called secondary recrystallization phenomenon). Unidirectional electrical steel sheets are mainly used in transformers and generator cores, and must have good magnetic properties such as magnetization and iron loss properties.The quality of magnetization is determined by the magnetic field induced in the core. magnetic flux density (B,.

で代表される)00大小で決まる。鉄損特性としては鉄
心に所定の交流磁束密度を与えた場合に鉄心内で熱とな
りて失われるエネルギー損(W17150で代表される
)の少ないことが望まれる。鉄損を少なくするためには
成品に残留する不純物や残留応力を少なくすること、比
抵抗を大きくすること。
(represented by) 00 is determined by the size. As for iron loss characteristics, it is desired that when a predetermined alternating current magnetic flux density is applied to the iron core, the energy loss (represented by W17150) that is lost as heat within the iron core is small. In order to reduce iron loss, it is necessary to reduce the impurities and residual stress remaining in the product, and to increase the specific resistance.

成品結晶粒を小さくすること、勢が効果的であるが、そ
れ以上に磁化特性の影響が大きい。
Although it is effective to reduce the size of crystal grains in the product, the influence of magnetization characteristics is even greater.

最近では省エネルギーの観点から鉄損の少ない1方向性
電磁鋼板の要求が非常に強くなっている。
Recently, from the viewpoint of energy saving, there has been a strong demand for unidirectional electrical steel sheets with low iron loss.

しかしながら、この低鉄損1方向性電磁鋼板を製造する
九めに製造工程が複雑に表りたり、又工業成品として不
安定になシ歩留シが低下したのでは製造に要し次エネル
ギーが増し、省エネルギー用の1方向性電磁鋼板を製造
しようとする主旨に反する。
However, in the ninth stage of manufacturing this low core loss unidirectional electrical steel sheet, the manufacturing process becomes complicated, and it becomes unstable as an industrial product, resulting in a decrease in yield and the energy required for manufacturing. This is contrary to the purpose of producing unidirectional electrical steel sheets for energy saving purposes.

本発明はこのような観点から鉄損の少ない1方向性電磁
鋼板を、製造工種が従来より複雑になること無く、さら
に工業成品として一層安定させ歩留りの向上する製造方
法を提供するものである。
From this point of view, the present invention provides a method for manufacturing unidirectional electrical steel sheets with low iron loss, which can be made more stable as an industrial product and improve yield without making the manufacturing process more complicated than before.

ところで磁束密度を向上させ九鉄損の優れた1方向性電
磁鋼板を得るには、仕上高温焼鈍工程において2次再結
晶を完全に行なわせることによシ(1to)(oot)
方位の集積度を高くする必要がある。そのためKti1
次再結晶粒の成長を高温度に達するまで抑制するための
不純物を含有させる必要がある。この1次再結晶粒の成
長を抑制する不純物として、従来からMn8 、 At
N 、 Mn8・、TiN勢の析出分散相、さらに8b
s Ass Pb B等の粒界に偏析し易い元素を利用
することが一般的に行なわれている0例えば薪出分散相
としてAtNを利用して高磁束密度1方向性電磁鋼板を
製造する方法が特公昭40−15644号公報によって
提案されている。又、特公昭51−13469号公報に
hs又はS@にsbを含有させた珪素鋼索材を出発材と
して仕上高温焼鈍の800〜920℃範囲で長時間保定
する方法が示されている。しかしながら前者については
AtHの分散状態を厳密に管理する必要があり工業生産
に際して安定性に欠けるうらみがある。又後者について
は、高価なsbを使用すること、さらに仕上高温焼鈍の
時間が長く使用エネルギーが件常に増加すること等の問
題がある。
By the way, in order to obtain a unidirectional electrical steel sheet with improved magnetic flux density and excellent iron loss, complete secondary recrystallization is required in the final high temperature annealing process.
It is necessary to increase the degree of integration of directions. Therefore, Kti1
It is necessary to contain impurities to suppress the growth of secondary recrystallized grains until a high temperature is reached. Conventionally, Mn8, At
Precipitated dispersed phase of N, Mn8・, TiN, and further 8b
It is common practice to use elements that tend to segregate at grain boundaries, such as s Ass Pb B. For example, there is a method for producing high magnetic flux density unidirectional electrical steel sheets using AtN as the dispersed phase. This is proposed in Japanese Patent Publication No. 15644/1973. Further, Japanese Patent Publication No. 51-13469 discloses a method in which a silicon steel cable containing hs or S@ containing sb is used as a starting material and maintained at a high temperature finish annealing in the range of 800 to 920° C. for a long time. However, in the former case, it is necessary to strictly control the dispersion state of AtH, and there is a problem of lack of stability during industrial production. Regarding the latter, there are problems such as the use of expensive SB, and the long time required for final high-temperature annealing, which constantly increases the amount of energy used.

以上のように磁束密度を上けて鉄損を向上させた1方向
性電磁鋼板を製造するために種々の粒成長阻止物が用い
られているが、そのいずれについても工業的安定性、あ
るいは製造コスト高、等の問題がある。
As mentioned above, various grain growth inhibitors are used to manufacture unidirectional electrical steel sheets with increased magnetic flux density and improved core loss, but all of them have problems with industrial stability or manufacturing. There are problems such as high costs.

ところで1Mn5Fi強いて添加しなくても通常不純物
として鋼中に含有されている範囲で2次再結晶に有効な
粒成長阻止物となるため古くから2回冷延工程法におい
て用いられてきた。このMnSを用いた方法は磁束密度
が際立って高くなることはないが、工業成品として安定
な生産が出来、また工程条件も簡単であるので製造コス
トが安く、使用エネルギー量も少なくて良い、したがっ
て、この工程で磁性を向上させる技術開発が多く試みら
れてきた。この工l!において優れた磁性を得るために
FiMnsを均一、かつ微細に形成させることが重要で
ある。 MnSを制御する方法として特開昭48−69
72号公報に示されているように熱蛭時のスラブ加熱を
充分に行なり&iに適切な冷却速度で熱延する方法、特
公昭47−25250号公報に示されているように鋼中
に若干の酸可溶性Atを残す11度にAj脱酸を行ない
シリカ系非金属介在物を減らす方法が知られている。前
者についてはコイル長手方向、巾方向で冷却速度に差が
あるため磁性を均一化することが難がしいこと、後者に
ついては鋼中に残存した酸可溶性Atが特開昭53−1
17619号公報に示されているように磁性に悪影響を
持つことがらシ期待したほど磁性が向上しない仁と、等
かならずしも満足出来る技術では無い。
By the way, even if 1Mn5Fi is not added, it has been used for a long time in the double cold rolling process because it is an effective grain growth inhibitor for secondary recrystallization in the range where it is normally contained in steel as an impurity. This method using MnS does not significantly increase the magnetic flux density, but it can be produced stably as an industrial product, and the process conditions are simple, so the manufacturing cost is low and the amount of energy used is low. Many attempts have been made to develop technology to improve magnetism in this process. This work! In order to obtain excellent magnetism, it is important to form FiMns uniformly and finely. Japanese Patent Application Laid-Open No. 48-69 as a method for controlling MnS
As shown in Japanese Patent Publication No. 72, the slab is sufficiently heated during heating and hot rolled at an appropriate cooling rate. A method is known in which silica-based nonmetallic inclusions are reduced by performing Aj deoxidation at 11 degrees, which leaves some acid-soluble At. Regarding the former, it is difficult to make the magnetism uniform because there is a difference in the cooling rate in the longitudinal and width directions of the coil, and regarding the latter, acid-soluble At remaining in the steel is
As shown in Japanese Patent No. 17619, this technique is not always satisfactory, as it has an adverse effect on magnetism and does not improve magnetism as much as expected.

本発明は珪素鋼素材中のP含有量を減少させると熱延板
中のMn8が極めて均一、かつ微細になるため、通常行
なわれているMnSを1次再結晶粒の成長を抑制する不
純物として用いる2回冷延工程法において磁性の良い製
品を安定して製造出来ることを見い出したものである。
In the present invention, when the P content in the silicon steel material is reduced, the Mn8 in the hot rolled sheet becomes extremely uniform and fine. It has been discovered that products with good magnetic properties can be stably manufactured using the two-step cold rolling process used.

Pについては従来から特開昭50−72817号公報記
載の方法に代表されるようにむしろ意識的に添加するこ
とによって磁性を向上させる技術が開示されているが。
Regarding P, techniques have been disclosed for improving magnetism by intentionally adding P, as typified by the method described in JP-A-50-72817.

本発明では今までに知られていない、珪素含有鋼におい
てP含有量を極力減らすことによってMnsの分散が均
一、かつ微細になるという知見により磁性を改善出来る
ことを始めて見い出した。本発明のように高価な元素を
添加したシ、あるいは複雑な工程条件を追加したシする
ことなく、P含有量を減らすことだけで磁性を向上させ
得ることは非常に実用的である。
In the present invention, we have discovered for the first time that magnetism can be improved by reducing the P content in silicon-containing steel as much as possible, which has not been known until now, based on the knowledge that the dispersion of Mns becomes uniform and fine. It is very practical to be able to improve magnetism simply by reducing the P content without adding expensive elements or adding complicated process conditions as in the present invention.

以下に実験結果によってP含有量の効果を示す。The effect of P content will be shown below based on experimental results.

CO,045−−Sl 3.25 * s Mn 0.
081G、SO,026−を含有する溶鋼を150を転
炉で溶與し、一方は精錬中に排滓を2回するいわゆるダ
ブルスラグ法でPを0.0061他方は通常行なわれて
いる1回排滓でPを0.020−とじた、この溶鋼を連
続鋳造によってスラグとなし、1380℃で4hr加熱
後に連続熱延によシ2.3露の熱延板とした。
CO,045--Sl 3.25*s Mn 0.
Molten steel containing 081G, SO, 026- is melted in a converter, and one is slaged twice during refining using the so-called double slug method, with a P of 0.0061 and the other once, which is normally carried out once. This molten steel, which had a P content of 0.020-0 with the waste slag, was made into slag by continuous casting, and after being heated at 1380° C. for 4 hours, it was continuously hot-rolled into a hot-rolled sheet with a thickness of 2.3 dew.

この熱延板の板厚中心部のMn9の電顕観察結果を第1
図(a)にPo、006−1第1図伽)にPo、020
−の場合を示す−Pが0.006−と低い熱延板では大
きなMn8がほとんど無く、Pが0.0201!iと高
いものに比べ均一にMnSが析出している。上記熱延板
を0.75■に冷延、870℃X 3 win焼鈍、0
.30■に冷延、湿水素中で850℃X 3 min焼
鈍%25℃/hrの昇熱速度で1200℃に加熱し20
hr焼鈍した。この時、Po、006−のものはB  
= 1.87 (T)、W17150− L 15 (
W/′kg) s p0 0.020−のものはB、。−1,84(T)、Wl 
7150−1、25 (W/kf)であった。
The results of electron microscopy of Mn9 at the center of the thickness of this hot-rolled sheet are
Po in Figure (a), Po in 006-1 Figure 1), 020
In the hot-rolled sheet with a low -P of 0.006-, there is almost no large Mn8, and the P is 0.0201! MnS is precipitated more uniformly compared to those with higher i. The above hot rolled sheet was cold rolled to 0.75mm, annealed at 870°C x 3win, 0
.. Cold rolled to 30cm, annealed at 850℃ x 3 min in wet hydrogen and heated to 1200℃ at a heating rate of 25℃/hr.
Annealed for hr. At this time, Po, 006- is B
= 1.87 (T), W17150-L 15 (
W/'kg) s p0 0.020- is B. -1,84(T),Wl
7150-1, 25 (W/kf).

P含有量の低い製品は熱延板のMn8が均一に分散して
いたことに対応して、磁束密度、鉄損ともに優れていた
The product with a low P content had excellent magnetic flux density and iron loss, corresponding to the uniform dispersion of Mn8 in the hot rolled sheet.

次にP含有量を変えたときの鉄損の変化を説明する。C
約0.04816.81約3.2011、Mn約o、o
ss、B約0.0251を含有する30種類の溶鋼を1
50を転炉で溶製した。この時のP含有量を0.003
〜0.032−の範囲で変えた。溶鋼を連続鋳造によシ
スラグと成し、1380℃で4hr加熱後に連続熱延に
よシ2.3−〇熱延板とした。
Next, the change in iron loss when the P content is changed will be explained. C
approx. 0.04816.81 approx. 3.2011, Mn approx. o, o
30 types of molten steel containing approximately 0.0251 ss and B
50 was melted in a converter. The P content at this time is 0.003
It was varied within the range of ~0.032-. The molten steel was continuously cast to form a cis slug, heated at 1380°C for 4 hours, and then continuously hot rolled to form a 2.3-〇 hot-rolled plate.

この熱延板を0.75■に冷延%870℃×3m1n焼
鈍、0.30 mに冷延、湿水素中で850℃X3m1
n焼鈍、20℃/ h rの昇熱速度で1200℃に加
熱し2ohr焼鈍した。この時の鉄損を館2図に示す。
This hot-rolled sheet was annealed to 0.75 mm at 870°C x 3 m1n, cold rolled to 0.30 m, and 850°C x 3 m1 in wet hydrogen.
n annealing, heating to 1200°C at a heating rate of 20°C/hr and annealing for 2ohr. Figure 2 shows the iron loss at this time.

これからP含有量が低くなると鉄損が良くなっているこ
とが分シ、特に0.013−以下で鉄構向上程度が大き
くなっている。
It can be seen that as the P content decreases, the iron loss improves, and the degree of improvement in the iron structure becomes particularly large at 0.013- or less.

次に本発明の構成要件について説明する。Next, the constituent elements of the present invention will be explained.

本発明の出発素材である溶鋼を得るためには公知の製鋼
方法、例^−ば転炉を用いることが出来るが、P含有量
を減らすための排滓処理に注意する必要がある。鋼中P
は溶解炉の中で酸素がス又は鉄鉱石等の酸化剤で酸化さ
れて酸化リンとなってスラグ中に移行し、排滓によシ炉
外へ取シ除かれる。溶鋼Pとスラグ中酸化リンとの間に
はスラグ温度、塩基度で決まる一定値があるので、その
値以上に溶鋼Pを減少させることは出来ない。そこで鋼
中Pを減少させるためには溶解途中で排滓し、その後に
斬らしい溶滓を再度作シ、Pを下げると同時に復Pを防
止する方法、いわゆるダブルス2グ法が有効である。も
ちろん溶鋼原料である溶銑について予備処理でp含有量
を減らしておくことは有効である。
In order to obtain the molten steel which is the starting material of the present invention, a known steel manufacturing method such as a converter can be used, but care must be taken in treating the slag to reduce the P content. Steel middle P
Oxygen is oxidized in the melting furnace by an oxidizing agent such as sulfur or iron ore and becomes phosphorus oxide, which is transferred into the slag and removed from the furnace as waste. Since there is a certain value between the molten steel P and the phosphorus oxide in the slag, which is determined by the slag temperature and basicity, the molten steel P cannot be reduced beyond that value. Therefore, in order to reduce the P content in the steel, an effective method is to remove the slag during melting and then re-create the molten slag to lower the P content and at the same time prevent the P from returning. Of course, it is effective to reduce the p content of hot metal, which is a raw material for molten steel, through preliminary treatment.

この溶鋼の成分範囲としてはC0,02〜0,08−1
Si 2.0〜4.5 * s Mn O,04〜0.
10 % −80,020〜0.033−が必要である
。Cが上限より高くなれば後続工程での脱炭焼鈍時間が
長くなシ経済的に不利となる。一方下限よシも低くなる
と2次再結晶が行われ離くなシ最終成品に細粒が発生し
、磁性が劣化するe 81は4.5−を超えると冷延割
れが生じるので上限を4.5−とじた・又少なすぎると
比抵抗が小さくなシ鉄損が劣化するので2−以上とした
。Mn及びS量#−1t2次再結晶粒成長に対して重要
な粒成長抑制剤としてのMnS量を規定するもので、上
記範囲の下限以下では2次再結晶のためのMnSの絶対
量が不足し2次再結晶の発達が十分でなくなる。一方M
n及びS量が上記範囲の上限以上では、通常行なわれて
いるスラブ加熱温度範囲である1400℃以下ではMn
Sが十分に固溶せず、従って連続熱延に際して析出する
MnS#′i不均一に分散し、とのMnSを利用しても
2次再結晶の発達は十分でない。P含有量は第2図から
分るように低いほど鉄損が良くなるが、0.013−以
下で顕著に良くなる。特にo、oos−以下になると現
行の1方向性電磁鋼板に関するJISI規格の最高グレ
ーFであるC9よ#)1グレ′−ド弱良く表っておシ高
磁束密度1方向性電磁鋼板のG8Hとほとんど同等の鉄
損になる。
The composition range of this molten steel is C0,02~0,08-1
Si 2.0~4.5*s MnO, 04~0.
10% -80,020 to 0.033- is required. If C is higher than the upper limit, the decarburization annealing time in the subsequent step will be long, which is economically disadvantageous. On the other hand, if the lower limit is too low, secondary recrystallization will occur, causing fine grains to be generated in the final product and deteriorating the magnetism. .5- Closed. Also, if it is too small, the iron loss will deteriorate due to low specific resistance, so it was set to 2- or more. Mn and S amount #-1t This specifies the amount of MnS as an important grain growth inhibitor for secondary recrystallization grain growth, and below the lower limit of the above range, the absolute amount of MnS for secondary recrystallization is insufficient. Therefore, the development of secondary recrystallization becomes insufficient. On the other hand, M
When the n and S amounts are above the upper limit of the above range, Mn is
Since S is not sufficiently dissolved in the solid solution, MnS #'i precipitated during continuous hot rolling is non-uniformly dispersed, and secondary recrystallization is not sufficiently developed even if MnS is used. As can be seen from FIG. 2, the lower the P content, the better the iron loss, but it becomes significantly better at 0.013- or less. In particular, when the magnetic flux density is below o, oos-, the highest gray F of the current JISI standard for unidirectional electrical steel sheets, C9, and G8H, a high magnetic flux density unidirectional electrical steel sheet, are clearly expressed. The iron loss is almost the same.

上記成分を含有する溶鋼は固化してスラグと成すわけで
あるが、その方法として連続鋳造あるいは鋳型に鋳造抜
分塊圧嬌によってスラブと成すことが出来る。スラブは
素材中のMn及びS量に応じてMnSが十分固溶出来る
温度になるまで加熱される6本発明のMn e B量で
おれば1300〜1400℃の加熱温度が適切である。
Molten steel containing the above-mentioned components is solidified to form slag, which can be formed into a slab by continuous casting or by compressing the cast stubble into a mold. The slab is heated to a temperature at which MnS can be sufficiently dissolved in solid solution depending on the amount of Mn and S in the material. 6 If the amount of Mn e B of the present invention is used, a heating temperature of 1300 to 1400° C. is appropriate.

加熱後に連続熱延によシ2.3■前稜に圧延する。この
熱延中にMnSの析出する1200〜950℃の温度範
囲に適尚な時間だけ滞在するような加熱履歴を採ること
が望ましい、この熱延板は必要に応じて熱延板焼鈍を行
なった後に冷延する。この時の板厚は第2回目の冷延時
の圧下率が45〜70チの範囲になるように決めれば良
い、冷延板は約850〜1000℃の範囲で数分間焼鈍
後、第2回冷延で最終板厚まで圧延する。さらに湿水素
中で脱炭焼鈍を行なった後にMg0%At20.等の焼
鈍分離剤を塗布し、約1200℃で20hr前後の高温
焼鈍を行なう。
After heating, it is continuously hot-rolled to a 2.3mm front ridge. It is desirable to adopt a heating history such that the hot-rolled sheet stays in the temperature range of 1200 to 950°C for an appropriate period of time during which MnS precipitates during this hot-rolling process.This hot-rolled sheet is annealed as necessary. It is then cold rolled. The plate thickness at this time should be determined so that the rolling reduction during the second cold rolling is in the range of 45 to 70 inches. Cold rolled to final thickness. Furthermore, after decarburization annealing in wet hydrogen, Mg0%At20. An annealing separator such as the following is applied, and high-temperature annealing is performed at approximately 1200° C. for approximately 20 hours.

なお、この時の昇熱速度は生産性を落とさない15″C
7′hr〜50′C/11rの比較的速い速度が望まし
い・ 以下に本発明の具体的な例を述べる。
The heating rate at this time is 15"C, which does not reduce productivity.
A relatively high speed of 7'hr to 50'C/11r is desirable. Specific examples of the present invention will be described below.

実施例1 150を転炉で溶解する途中で排滓処理を行なうことに
よりPを下げた溶鋼と、排滓処理なしで出鋼したPの比
較的に高い溶鋼を連続鋳造でスラブと成した。この時の
成分はtlはC0,055チ。
Example 1 Molten steel whose P content was lowered by performing slag treatment during melting of 150 in a converter, and molten steel with relatively high P value tapped without slag treatment were formed into slabs by continuous casting. At this time, the component tl is C0,055.

ss3.35−lMn O,08Ls、S O,027
%”t”P含有量はそれぞれ0.006−10.022
チであった。
ss3.35-lMn O,08Ls, SO,027
%”t”P content is 0.006-10.022 respectively
It was Chi.

スラブを1380℃で3hr加熱後、連続熱延によシ2
.3■の熱延板となし、0.75■に冷延した。
After heating the slab at 1380℃ for 3 hours, it was continuously hot rolled 2
.. It was made into a hot-rolled sheet with a thickness of 3cm and cold-rolled to a thickness of 0.75cm.

さらに950℃×2m1nの焼鈍後に0.30■に冷延
した。この冷延板を湿水素中で850℃・X3m1nの
脱炭焼鈍を行ない、′焼鈍分離剤としてMgOを塗布後
、30 N7hrの昇熱速度で1200℃に加熱後29
hrの焼鈍を行なった。この時の磁性は次の通シであっ
た。
Further, it was annealed at 950°C x 2ml and then cold rolled to a thickness of 0.30cm. This cold-rolled sheet was subjected to decarburization annealing at 850° C. x 3 ml in wet hydrogen, coated with MgO as an annealing separator, heated to 1200° C. at a heating rate of 30 N7 hr, and then heated to 1200° C.
Annealing was performed for hr. The magnetism at this time was as follows.

Po、006%材 B 10 ;L 89 T  # 
 W1y15 o==l、 15 wAPo、022%
材  B、。=e1.85丁 w  Wl 715 o
−1,23wA9以上の如く低P材の方が磁束密度、鉄
損ともに優れていた。
Po, 006% material B 10 ; L 89 T #
W1y15 o==l, 15 wAPo, 022%
Material B. = e1.85 pieces w Wl 715 o
-1.23 wA9 or higher, the low P material was superior in both magnetic flux density and iron loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は熱延板の板厚中心部の金属組織を示す電子顕微
鏡写真、第2図は素材中のP含有量と鉄損との関係を示
す図である。 特許出願人 新日本製鐵株式會社 代 理 人  大  関  和  失 策1図 (al           (b) 手続補正書 (自発) 昭和56年10月26日 特許庁長官 島 1)響 樹膜 1、 事件の表示 昭和56年特許願第122729号 2、 発明の名称 磁性の優れた1方向性電磁鋼板の製造法3、 補正をす
る者 事件との関係 特許出願人 東京都千代田区大手町二丁目6番3号 (665)新日本製鐵株式会社 代表者  武  1)   量 4、代理人〒100 東京都千代田区丸の内二丁目4番1号 5、 補正命令の日付 昭和  年  月   日6、
補正の対象 (1)特許請求の箱間を別紙の通り補正する。 (2)明細書9頁13〜14行rs0.020〜0.0
33囁」をr80.015〜0−033%」に補正する
。 特許請求の範囲 CO,020〜0.080 %、812.0〜4.5 
%。 Mn 0.04〜0.10%、80.015〜0.03
3%を含有する珪素鋼素材を熱延し、この熱延板を焼鈍
をはさむ2回の冷延で最終成品厚の冷延板となし、脱炭
を兼ねた1次再結晶焼鈍を施した後、仕上高温焼鈍を行
なって(110)(001)  方位の2次再結晶粒を
発達させる一連の工程より成る1方向性電磁鋼板の製造
方法において、前記珪素鋼素材中のP含有量0.013
%以下にすることを特徴とする磁性の優れた1方向性電
磁鋼板の製造法。
FIG. 1 is an electron micrograph showing the metal structure at the center of the thickness of a hot rolled sheet, and FIG. 2 is a diagram showing the relationship between the P content in the material and iron loss. Patent Applicant Nippon Steel Corporation Representative Kazu Ozeki Mistake 1 Diagram (al (b) Procedural Amendment (Spontaneous) October 26, 1980 Commissioner of the Japan Patent Office Shima 1) Hibiki Jumei 1, Incident Indication 1981 Patent Application No. 122729 2 Title of the invention Method for manufacturing unidirectional electrical steel sheet with excellent magnetism 3 Relationship to the case of the person making the amendment Patent applicant 2-6-3 Otemachi, Chiyoda-ku, Tokyo (665) Nippon Steel Corporation Representative Takeshi 1) Amount 4, Agent 2-4-1-5, Marunouchi 2-4-1, Chiyoda-ku, Tokyo 100, Date of amendment order: Showa, Month, Day 6,
Target of amendment (1) Amend the box spacing of the patent claims as shown in the attached sheet. (2) Specification page 9 lines 13-14 rs0.020-0.0
33 whisper" is corrected to r80.015~0-033%". Claims CO, 020-0.080%, 812.0-4.5
%. Mn 0.04-0.10%, 80.015-0.03
A silicon steel material containing 3% was hot-rolled, and this hot-rolled sheet was cold-rolled twice with annealing in between to obtain a cold-rolled sheet with the final product thickness, and then subjected to primary recrystallization annealing that also served as decarburization. In the method for manufacturing a unidirectional electrical steel sheet, which comprises a series of steps of performing final high-temperature annealing to develop secondary recrystallized grains with (110) (001) orientation, the P content in the silicon steel material is 0. 013
% or less.

Claims (1)

【特許請求の範囲】[Claims] C0,020〜o、oso%、812.0〜4.511
゜Mn 0.04〜0.1096.80.020〜0.
033 %を含有する珪素鋼素材を熱延し、との熱延板
を焼鈍をはさむ2回の冷延で最終成品厚の冷延板となし
、脱炭を兼ねた1次再結晶焼鈍を施した後、仕上高温焼
鈍を行なって(110)(001)方位の2次再結晶粒
を発達させる一連の工程よシ成る1方向性電磁鋼板の製
造方法において、前記珪素鋼素材中のP含有量0.01
3−以下にすることを特徴とする磁性の優れた1方向性
電磁鋼板の製造法。
C0,020~o, oso%, 812.0~4.511
°Mn 0.04~0.1096.80.020~0.
A silicon steel material containing 0.33% is hot-rolled, and the hot-rolled sheet is cold-rolled twice with annealing to obtain a cold-rolled sheet with the final product thickness, and then subjected to primary recrystallization annealing that also serves as decarburization. In the method for manufacturing a unidirectional electrical steel sheet, which comprises a series of steps of performing final high-temperature annealing to develop secondary recrystallized grains with (110) (001) orientation, the P content in the silicon steel material is 0.01
3. A method for producing a unidirectional electrical steel sheet with excellent magnetic properties.
JP56122729A 1981-08-05 1981-08-05 Manufacture of unidirectional electromagnetic steel plate having superior magnetism Pending JPS5823408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56122729A JPS5823408A (en) 1981-08-05 1981-08-05 Manufacture of unidirectional electromagnetic steel plate having superior magnetism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56122729A JPS5823408A (en) 1981-08-05 1981-08-05 Manufacture of unidirectional electromagnetic steel plate having superior magnetism

Publications (1)

Publication Number Publication Date
JPS5823408A true JPS5823408A (en) 1983-02-12

Family

ID=14843133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56122729A Pending JPS5823408A (en) 1981-08-05 1981-08-05 Manufacture of unidirectional electromagnetic steel plate having superior magnetism

Country Status (1)

Country Link
JP (1) JPS5823408A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221239A (en) * 1985-03-21 1986-10-01 ピュアパック・インコーポレイテッド Production of gelled triacetyl cellulose product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221239A (en) * 1985-03-21 1986-10-01 ピュアパック・インコーポレイテッド Production of gelled triacetyl cellulose product

Similar Documents

Publication Publication Date Title
US3764406A (en) Hot working method of producing cubeon edge oriented silicon iron from cast slabs
US5779819A (en) Grain oriented electrical steel having high volume resistivity
US4623407A (en) Method for producing a grain-oriented electrical steel sheet having a high magnetic flux density
KR930001330B1 (en) Process for production of grain oriented electrical steel sheet having high flux density
KR20190077201A (en) Hot-rolled steel sheet for non-oriented electrical steel sheet, non-oriented electrical steel sheet and method for manufacturing the same
JPH0686631B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
JPS60121222A (en) Production of grain-oriented silicon steel sheet
JP2011246750A (en) Method for producing low iron loss unidirectional magnetic steel sheet
JP2017106057A (en) Production method of grain oriented magnetic steel sheet
KR100288351B1 (en) Standard grain oriented electrical steel manufacturing method using one step cold rolling process
JPS5956523A (en) Manufacture of anisotropic silicon steel plate having high magnetic flux density
JPS631371B2 (en)
JPS633007B2 (en)
JPH08269552A (en) Production of grain oriented silicon steel sheet having ultrahigh magnetic flux density
JPS5823408A (en) Manufacture of unidirectional electromagnetic steel plate having superior magnetism
JPH05295447A (en) Annealing method for finishing grain oriented electrical steel sheet in short time
JP3310004B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPS60114522A (en) Production of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
JPS5832214B2 (en) Method for manufacturing unidirectional silicon steel sheet with extremely high magnetic flux density and low iron loss
JPS63176427A (en) Manufacture of grain-oriented high-silicon steel sheet
KR100273094B1 (en) The slab heating method of oriented electric steelsheet with decreasing edge crack
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPS5830927B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPS6134118A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
CN113166874A (en) Oriented electrical steel sheet and method for manufacturing the same