JPS5823148A - Color picture display unit - Google Patents
Color picture display unitInfo
- Publication number
- JPS5823148A JPS5823148A JP57119660A JP11966082A JPS5823148A JP S5823148 A JPS5823148 A JP S5823148A JP 57119660 A JP57119660 A JP 57119660A JP 11966082 A JP11966082 A JP 11966082A JP S5823148 A JPS5823148 A JP S5823148A
- Authority
- JP
- Japan
- Prior art keywords
- deflection
- center
- neck
- focusing
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/46—Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
- H01J29/58—Arrangements for focusing or reflecting ray or beam
- H01J29/62—Electrostatic lenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/46—Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
- H01J29/48—Electron guns
- H01J29/51—Arrangements for controlling convergence of a plurality of beams by means of electric field only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/46—Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
- H01J29/70—Arrangements for deflecting ray or beam
- H01J29/72—Arrangements for deflecting ray or beam along one straight line or along two perpendicular straight lines
- H01J29/76—Deflecting by magnetic fields only
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の関連する技術分野〕
この発明は一般にカラー画像表示装置に関し、特に低収
差ビーム集束レンズを有する多ビームカラー映像管にコ
ンパクトな偏向ヨークを設けて、ビーム集束性能または
高電圧安定度を損うことなく低蓄積エネルギ動作の可能
な自己集中型の新規な表示装置を形成する装置に関する
。DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention relates] The present invention generally relates to a color image display device, and more particularly, to a multi-beam color picture tube having a low aberration beam focusing lens with a compact deflection yoke to improve beam focusing performance. or to an apparatus for forming a novel self-concentrating display capable of low stored energy operation without compromising high voltage stability.
カラー画像表示装置において最初シャドーマスク型の多
ビーム式カラー映像誉が用いられたとき、その表示スク
リーン上の走査マスクのすべての点において確実にビー
ムが集中するようするために動的集中補正回路が必要で
あったが、それ以後例えば米国特許第38001’76
号明細書記載のような自己集中表示方式が開発されて動
的集中補正回路の必要がなくなった。上記米国特□許の
方式では、3本のインライン型電子ビームが全ラスタ点
で実質的な集中が得られるような負の水平等方収差と正
の垂直等方収差音生ずる不均一性を持つ偏向磁界を通る
。When a shadow mask type multi-beam color image display was first used in a color image display, a dynamic concentration correction circuit was used to ensure that the beam was focused at every point of the scanning mask on the display screen. Since then, for example, U.S. Pat. No. 38001'76
A self-focusing display system, such as that described in that patent, was developed to eliminate the need for a dynamic concentration correction circuit. In the system of the above US patent □, the three in-line electron beams have negative horizontal isotropic aberration and positive vertical isotropic aberration so that they are substantially concentrated at all raster points. Pass through a deflection magnetic field.
上記米国特許の方式が最初商用された−とき、偏向面に
おける隣接ビームの中心間距離(S間隔)は集中条件を
簡単にするため約5.081ff未満に保たれ千いたが
、このようにビーム間隔を小さくするとその走査される
ビームの電子銃源の集束電極の横長素子に設けられるビ
ーム位置決定用開孔の直径に限度が生じる。各ビームの
集束レンズの有効径はこの開孔の直径で決まるため、と
の開孔が小さければ小径レンズに付随する球面収差によ
るビームスポットの変形の問題が生ずる。When the system of the above US patent was first commercialized, the center-to-center distance (S spacing) of adjacent beams at the deflection plane was kept less than about 5.081ff to simplify the concentration conditions; When the interval is made small, a limit is placed on the diameter of the beam positioning aperture provided in the oblong element of the focusing electrode of the electron gun source for the scanned beam. Since the effective diameter of the focusing lens for each beam is determined by the diameter of this aperture, if the apertures are small, the problem of deformation of the beam spot will occur due to spherical aberration associated with the small diameter lens.
しかしその後ビーム間隔を広げて集束電極の開孔径を犬
きくすることができるようになり、そのためスポット変
形の問題は減少したが、代りに集中の問題が増加した。However, later it became possible to widen the beam spacing and increase the aperture diameter of the focusing electrode, which reduced the problem of spot deformation but increased the problem of concentration.
例えば東芝レビュー昭和55年3.4月号掲載の沃野等
の論文[ミニネックカラー映像管」に記載されたような
自己集中表示方式の次の改良では、ネック部の外径が通
常用いられて来たもの(29,11闘および36.51
111)より著しく小さい(22,5mtpr )カラ
ー映像管に比較的コンパクトな偏向ヨークラ増付けた管
球ヨシク構体が用いられている。この論文によると、ネ
ック部の直径を小さくすると水平偏向の誘導電力が節約
され、通常のネック径29゜1朋のものに比して偏向感
度が20〜30チ向上するが。For example, in the next improvement of the self-focusing display method described in the paper by Yono et al. [Mini Neck Color Picture Tube] published in the March/April 1980 issue of the Toshiba Review, the outside diameter of the neck was usually used. What came (29, 11 battles and 36.51
111) A significantly smaller (22,5 mtpr) color picture tube is used with a relatively compact tube construction with an additional deflection yoke. According to this paper, reducing the diameter of the neck saves the induced power for horizontal deflection and improves the deflection sensitivity by 20 to 30 degrees compared to a conventional neck diameter of 29 degrees.
ネック部領域の寸法が充−分な集束惟−熊や高電圧安定
度(す々わち放電に対する信頼度)を得ることの困難を
助長することになる。The dimensions of the neck region add to the difficulty of obtaining sufficient focusing voltage and high voltage stability (and thus reliability for discharge).
この発明は上述の「ミニネック」方式のような偏向電力
節約、偏向感度向上およびヨークのコンパクト性がネッ
ク径の減少に頼らすに得られる管球ヨーク構体を用いる
カラー画像表示装置を提供することを目的とし、この発
明の方式では、上記「ミニネック」方式のように小S間
隔(約5.osxx)を用いているが、]ミニネック」
方式では有効集束レンズ径がそのレンズに入射する隣接
ビームの中心間隔よシ小さく制限されるのに対し、長径
がこのビームの中心間隔の3倍以上も大きい非対称主集
束レンズを形成する集束電極構体を用いている。The present invention aims to provide a color image display device using a tube yoke structure in which deflection power saving, deflection sensitivity improvement, and yoke compactness, such as the above-mentioned "mini-neck" method, can be obtained by relying on a reduction in neck diameter. The method of the present invention uses a small S spacing (approximately 5.osxx) like the above-mentioned "mini-neck" method.
In this method, the effective focusing lens diameter is limited to be smaller than the center spacing of adjacent beams incident on the lens, whereas the focusing electrode structure forms an asymmetric main focusing lens whose major axis is three times or more larger than the center spacing of the beams. is used.
「ミニネック」方式のネック径の減少がこの発明では採
用されないため、従来一般に用いられたものと同等の集
束電圧レベルを高電圧安定度を犠牲にせずに適用するこ
とができ、またその集束電極構体と内壁の間に適当な間
隙を保つための適切な余裕がある。この電圧レベルでは
上記「ミニネック」方式で得られたより著しく高い集束
性能が容易に得られる。また電圧レベルを下げた動作に
より集束電圧源の条件を緩和するために上記集束性能の
若干を犠牲にすることもある。Because the neck diameter reduction of the "mini-neck" approach is not employed in this invention, focusing voltage levels comparable to those commonly used in the past can be applied without sacrificing high voltage stability, and the focusing electrode structure There is adequate clearance to maintain a suitable clearance between the inner wall and the inner wall. At this voltage level, significantly higher focusing performance than that obtained with the "mini-neck" approach described above is easily obtained. Also, some of the focusing performance may be sacrificed in order to relax the requirements of the focusing voltage source by operating at a reduced voltage level.
〔発明の実施例〕
この発明の実施例では、管球ヨーク構体に通常のネック
部外径29.llIIIMの管球を用いる。これによっ
てネック径22 、5 MMのものの破損し易さに関係
する取扱いの問題は、管球の製造と画像表示装置の組立
ての双方においてなくなり、また「ミニネック」管の排
気に付随する排気時間の長い問題も解消する。[Embodiment of the Invention] In an embodiment of the invention, the tube yoke structure has a normal neck outer diameter of 29. A llIIIM tube is used. This eliminates the handling problems associated with the fragility of 22.5 mm neck diameters, both in tube manufacture and image display assembly, and also reduces the evacuation time associated with evacuation of "mini-neck" tubes. It also solves long problems.
900偏向角を用いたこの発明の1実施例にょると、S
間隔が約5.0811rNの29.1lffff径ネツ
クの管球に水平偏向巻線の窓のビーム出口端における内
径が約ac+、7闘(すなわち偏向角l°当りO0’7
61111以下)で半トロイド型(すなわち垂直偏向巻
線がトロイのコンパクトな90°ヨークの水平偏向巻線
の蓄積エネルギ条件は陽極電圧25KVの動作において
僅か1.85mJに過ぎない。According to one embodiment of the invention using a 900 deflection angle, S
In a tube with a diameter of 29.1 lffff and a spacing of about 5.0811 rN, the inner diameter of the window of the horizontal deflection winding at the beam exit end is about ac+, 7 mm (i.e., O0'7 per l° of deflection angle).
The stored energy requirement for a compact 90° yoke horizontal deflection winding of semi-troid type (i.e. the vertical deflection winding is Troy) is only 1.85 mJ at an anode voltage of 25 KV operation.
110°偏向角を用いたこの発明の他の実施例によると
、上記同様のS間隔とネック径の管球に窓のビーム出口
端における内径が約8.15朋(すなわちこの場合も偏
向角1°当り0 、1611ff以下)のコンパクトな
半トロイド型ヨークを設けて自己集中式19V画像表示
を行う。このコンパクトな110°ヨークの水平偏向巻
線の蓄積エネルギ条件は陽極電圧25KVの動作におい
て僅か3.5 mJに過ぎない。Another embodiment of the invention using a 110° deflection angle provides a tube with a similar S spacing and neck diameter and an inner diameter of about 8.15 mm at the beam exit end of the window (i.e., again with a deflection angle of 1 A compact semi-troid type yoke (less than 0,1611 ff per degree) is provided to provide a self-focusing 19V image display. The stored energy requirement of the horizontal deflection winding of this compact 110° yoke is only 3.5 mJ at an anode voltage of 25 KV operation.
上述の実施例におけるヨークの相対的コン″クト性を理
解するには、前述のS間隔の広い管球と共に過去長期間
用いられた90°偏向ヨークの匹敵する内径が例えば約
’lB、2MMであるのに対し、そのS間隔の広い管球
と共に長期間用いられた110°偏向ヨークの内径は例
えば約108.ツ朋(どちらの内径も偏向角1°当り0
76闘より著しく大きい)ことを知ればよい。To understand the relative connectivity of the yokes in the embodiments described above, it is important to note that a comparable internal diameter of a 90° deflection yoke used for a long time in the past with the wide S-spacing tubes described above is, for example, about '1B, 2MM. On the other hand, the inner diameter of a 110° deflection yoke used for a long period with a tube with a wide S spacing is, for example, about 108.
All you need to know is that it is significantly larger than 76 fights).
上述の2実施例ではどちらも29.111111径のネ
ック部に米国特許願第201692号明細書開示の一般
形状を持つ集束電極構体を挿入することにより高レベル
の集束性能を保証している。この形状では電子銃構体の
ビーム出口端の主集束電極の一部が管球ネック部の長軸
に垂直で、ここに各電子ビームが各別に通過する3個の
円孔が形成されている。In both of the above-mentioned embodiments, a high level of focusing performance is ensured by inserting a focusing electrode structure having the general shape disclosed in US Pat. In this shape, a part of the main focusing electrode at the beam exit end of the electron gun assembly is perpendicular to the long axis of the tube neck, and three circular holes are formed here through which each electron beam passes separately.
またその主集束電極の隣接部は上記一部から長手方向に
延びて全ビームの径路に対する共通の囲壁を形成してい
る。この主集束電極の各囲壁部は並置されてその間にビ
ームの共通集束レンズを形成している。最後尾の集束電
極の共通の囲壁の内側長径は例えば17.65朋、最後
尾の次の集束電極の共通の共壁の内側長径は例えば18
.16 ffである。Adjacent portions of the main focusing electrode also extend longitudinally from the portion to form a common enclosure for the entire beam path. The surrounding walls of the main focusing electrode are juxtaposed to form a common focusing lens for the beam therebetween. The inner major axis of the common wall of the last focusing electrode is, for example, 17.65 mm, and the inner major axis of the common co-wall of the next focusing electrode after the last one is, for example, 18 mm.
.. It is 16ff.
この寸法にすると29.11 M径のネック部の内部空
間が(上述の1ミニネツク」に比して)広くなり、長径
が少なくとも開孔の中心間隔の3.5倍以上の集束レン
ズができる。上記の各長径間の差にXつて電子銃構体か
ら発射されるビームに対する所要の集中効果が制御され
る。With this dimension, the internal space of the neck portion with a diameter of 29.11 mm becomes wider (compared to the above-mentioned 1 mini neck), and a focusing lens whose major axis is at least 3.5 times the center distance of the apertures can be obtained. The required concentration effect on the beam emitted from the electron gun assembly is controlled by the difference between the long spans described above.
この発明を実施する方式の電子銃構体の1例示形式では
、最後尾の次の集束電極の共通囲壁部の内周の形状が例
えば上記米国特許出願明細書記載のような競走トラック
型をしており、これに対し最後尾の集束電極の共通囲壁
部の内周形状が例えば米国特許願第2B2228号明細
書記載のような亜鈴型をしている。さらに電子銃構体の
ビーム形成領域には主集束レンズの入口における各ビー
ム断面の垂直寸法をその水平寸法に対して減じる型のレ
ンズの非対称性がある。この非対称性は例えば電子銃構
体の第1グリツド(G1)の各円孔に垂直に長い矩形開
口を共働させることによシ導入される。In one exemplary form of an electron gun assembly embodying the present invention, the inner periphery of the common surrounding wall of the next focusing electrode at the rearmost position has a racetrack shape, for example, as described in the above-mentioned US patent application. In contrast, the inner periphery of the common surrounding wall of the last focusing electrode has a dumbbell shape, for example, as described in US Patent Application No. 2B2228. Furthermore, there is a lens asymmetry in the beam forming region of the electron gun assembly of the type that reduces the vertical dimension of each beam cross section at the entrance of the main focusing lens relative to its horizontal dimension. This asymmetry is introduced, for example, by cooperating a perpendicularly elongated rectangular opening with each circular hole in the first grid (G1) of the electron gun assembly.
上記「競走トラック型」および「亜鈴型」囲繞部並びに
Glの矩形開口の寸法を適尚に選定することにより、表
示ラスタの中心部と端縁部の光点の許容形状がこれらの
素子に関係する非点収差の最適の釣合いによって得られ
る。By appropriately selecting the dimensions of the above-mentioned "race track type" and "drink type" surrounding parts and the rectangular opening of Gl, the permissible shape of the light spot at the center and edge of the display raster is related to these elements. This is obtained by optimally balancing astigmatism.
第1図はこの発明の原理を実施したカラー画像表示方式
の映像管ヨーク構体の平面図で、カラー映像管11は円
筒状ネック部11N (インライン電子銃構体を収容)
、表示面(図面が大きくなるため図示せず)を収容する
実質的に矩形のスクリーン部およびこの両者を連結する
ファンネル部11F (一部図示)とを含む真空外囲器
を有する。このネック部11Nとファンネル部11Fの
隣接部分を偏向ヨーク構体13のヨーク取付台上りが取
巻いている。FIG. 1 is a plan view of a picture tube yoke structure of a color image display system embodying the principles of the present invention, in which the color picture tube 11 has a cylindrical neck portion 11N (accommodating an in-line electron gun structure).
, has a vacuum envelope including a substantially rectangular screen section that accommodates a display surface (not shown to increase the size of the drawing) and a funnel section 11F (partially shown) that connects the two. The yoke mounting base of the deflection yoke structure 13 surrounds the adjacent portion of the neck portion 11N and the funnel portion 11F.
ヨーク構体13は(絶縁材料製の)ヨーク取付台1′7
を取囲む可磁化材料の磁心15にトロイド状に巻かれた
垂直偏向巻線13Vと、第1図では見えない水平偏向巻
線13H’ii含むが、第2図の取外したヨーク構体1
3の正面図に示すように、水平偏向巻線13Hは鞍型に
巻かれ、長手方向に延びる有効導線がヨーク取付台17
の咽喉部内に張り付いている。The yoke structure 13 includes a yoke mounting base 1'7 (made of insulating material).
It includes a vertical deflection winding 13V wound in a toroidal manner around a magnetic core 15 of magnetizable material surrounding the yoke structure 1, and a horizontal deflection winding 13H'ii which is not visible in FIG.
3, the horizontal deflection winding 13H is wound in a saddle shape, and the effective conductor extending in the longitudinal direction is connected to the yoke mounting base 17.
It is stuck inside the throat of the person.
巻線13Hの前端部は巻上げられて取付台17の前縁部
1’7F内に収容され、後端部(第1図、第2図には見
えない)も同様に台17の後縁部1”R内に収容されて
いる。The front end of the winding 13H is wound up and housed within the front edge 1'7F of the mounting base 17, and the rear end (not visible in FIGS. 1 and 2) is similarly housed within the rear edge of the base 17. It is housed within 1”R.
第1図にはこの発明の1実施例に適する寸法関係が指定
されているが、巻線13H、x3vで形成される偏向ヨ
ークのコンパクトなことは(そのヨークの与える偏向角
の\)1度当り約0.プロH未満に相当する前部内径「
i」で示されている。第2図に示すように、この内径は
鞍型巻線13Hの有効導線の前端(すなわち巻線)の形
成する窓のビーム出口端)で測定される。カラー映像管
11のネック部11Nの外径し」は通常の29.11
mになっている。In FIG. 1, dimensional relationships suitable for one embodiment of the present invention are specified, and the compactness of the deflection yoke formed by the windings 13H and x3V (the deflection angle given by the yoke) is 1 degree. Approximately 0. Front inner diameter equivalent to less than Pro H
i”. As shown in FIG. 2, this inner diameter is measured at the front end of the active conductor of the saddle winding 13H (i.e., at the beam exit end of the window formed by the winding). The outer diameter of the neck portion 11N of the color picture tube 11 is the normal 29.11 mm.
It has become m.
ネック部13内の電子銃構体の電極間に形成された(点
線のレンズで示す)静電ビーム集束レンズ18は、その
水平方向の(すなわち3本のビーム軸R1G、Bの占め
る水平面上の)差渡し寸法rfJが、レンズ入口におけ
る隣接ビーム軸間隔rgJIJ、tば約5.08flの
3.5倍以上になっている。The electrostatic beam focusing lens 18 (indicated by a dotted line lens) formed between the electrodes of the electron gun assembly in the neck part 13 is directed in the horizontal direction (that is, on the horizontal plane occupied by the three beam axes R1G and B). The width rfJ is 3.5 times or more the distance between adjacent beam axes rgJIJ, t, approximately 5.08 fl at the lens entrance.
第3図は第1図のカラー映像管11のネック部11Nに
適する電子銃構体の1実施例の部分断面側面図である。FIG. 3 is a partially sectional side view of one embodiment of an electron gun assembly suitable for the neck portion 11N of the color picture tube 11 shown in FIG.
この第3図の電子銃構体の電極には3本の陰極21(第
3図の側面図には1本しか見えない)。The electrodes of the electron gun assembly in FIG. 3 include three cathodes 21 (only one is visible in the side view of FIG. 3).
制御グリッド(Gl)23、遮蔽グリッド(G2)25
.第1加速集束電極(G3)2′7および第2加速集束
電極(G4)29がある。これらの電子銃素子の取付台
は1対の平行なガラス支柱33a%331)により与え
られ、この間に各電極が支持されている。Control grid (Gl) 23, shielding grid (G2) 25
.. There is a first accelerating and focusing electrode (G3) 2'7 and a second accelerating and focusing electrode (G4) 29. The mounting base for these electron gun elements is provided by a pair of parallel glass columns 33a% 331) between which each electrode is supported.
各陰極21Fi()1%G2、G3、G4の各電極の各
開孔に整合して、これから出た電子がその開孔を通って
映像管の表示面に達し得るようになっている。陰極から
放出された電子はそれぞれ異なる単方向電位(例えばそ
れぞれOボルトと+1100ボルト)に保たれた()l
、 G2電極23.25の対向する開孔領域間に設定さ
れた各静電ビーム形成レンズにより3本の電子ビームに
成形される。このビームの表示面に対する集束はまずG
3、G4電極の隣接領域(21a、29a)間に形成さ
れた主静電集束レンズ(第1図の18)によって行われ
る。例としてG3電極はG4電極の印加電位(例えば+
25KV )の26チの電位(例えば+6aoov )
に保たれる。Each cathode 21Fi()1% is aligned with each aperture in each electrode of G2, G3, and G4 so that electrons emitted from the aperture can reach the display surface of the picture tube. The electrons emitted from the cathode were held at different unidirectional potentials (e.g., O volts and +1100 volts, respectively) ()l
, are formed into three electron beams by each electrostatic beam forming lens set between opposing aperture areas of the G2 electrodes 23, 25. This beam is first focused on the display surface by G
3. Performed by the main electrostatic focusing lens (18 in FIG. 1) formed between the adjacent regions (21a, 29a) of the G4 electrode. For example, the G3 electrode is at the potential applied to the G4 electrode (e.g. +
25KV) 26-chi potential (e.g. +6aoov)
is maintained.
G3電極27は7ランジ付開端部を衝合した2つのカッ
プ型素子2’7a 、 2’7bの構体から成り、その
前部素子2’7aの正面図は第4図に、その線a−c’
に沿う断面図は第8図に示され、後部素子2’71)の
背面図は第6図に、その線E−E’に沿う断面図は第1
O図に示されている。The G3 electrode 27 consists of two cup-shaped elements 2'7a and 2'7b whose open ends with seven flange abut each other, and the front view of the front element 2'7a is shown in FIG. 4, along the line a-- c'
A cross-sectional view along the line E-E' is shown in FIG. 8, a back view of the rear element 2'71) is shown in FIG.
This is shown in Figure O.
G4電極29はカップ型素子29aとそのフランジ付開
端部と開孔付閉端部を衝合した静電遮蔽カップ291)
とから成っている。素子29aは背面図が第5図に、そ
の線D−D’に沿う断面図が第9図に示されている。The G4 electrode 29 includes a cup-shaped element 29a and an electrostatic shielding cup 291 whose flanged open end and apertured closed end abut each other.
It consists of. A rear view of the element 29a is shown in FIG. 5, and a cross-sectional view taken along the line DD' is shown in FIG.
G3素子27&の閉塞前端の凹陥部の底に当る軸に垂直
な部分40には3個の開孔44が形成されている。Three openings 44 are formed in a portion 40 perpendicular to the axis that corresponds to the bottom of the concave portion at the closed front end of the G3 element 27&.
この各開孔44から射出される3本のビームの共通の囲
壁部を成す凹陥部の周壁42は両側が半円形でその間が
平行直線状になっていて、第4図の端面図では「競走ト
ラック」型に見える。この03の囲壁部の最大水平内径
はビーム軸の平面上にあり、第4図ではf□で表されて
いる。またこのG3の囲壁部の最大垂直内径は周壁の平
行直線状部分の間隔で決まり、第4図ではf2で表され
ている。この垂直内径はどのビーム位置においてもf2
に等しい。The peripheral wall 42 of the concave portion, which forms a common surrounding wall for the three beams emitted from each of the apertures 44, has semicircular sides on both sides and a parallel straight line between them. Looks like a truck. The maximum horizontal inner diameter of the surrounding wall portion of 03 is on the plane of the beam axis, and is represented by f□ in FIG. Further, the maximum vertical inner diameter of the surrounding wall portion of G3 is determined by the interval between the parallel linear portions of the surrounding wall, and is represented by f2 in FIG. 4. This vertical inner diameter is f2 at any beam position.
be equivalent to.
G4素子29aの閉塞後端の凹陥部の底に当る軸に垂直
な部分50にも3個の開孔54が形成されている。Three openings 54 are also formed in a portion 50 perpendicular to the axis corresponding to the bottom of the concave portion at the closed rear end of the G4 element 29a.
G4電極に入射する3本のビームの共通囲壁を形成する
凹陥部の周壁52は中央部において平行直線状を成して
いるが、両端部ではこの中央部の平行壁面間隔よシ直径
の大きい過剰半円形をして、第5図に示すように「亜鈴
」型に見える。この形状のため、中央開孔の軸位置にお
けるG4の囲壁の垂直内径は、両側開孔の軸位置におけ
るそれより小さい。G4の囲壁部の最大水平内径はビー
ム軸の面内にあり、第5図にf3で示されている。また
G4の囲壁部の最大垂直内径は両端部の半円の直径に相
当し、第5図にf4で示されている。The peripheral wall 52 of the concave portion forming a common surrounding wall for the three beams incident on the G4 electrode has a parallel straight line shape at the center, but at both ends there is an excess diameter larger than the parallel wall spacing at the center. It has a semicircular shape and looks like a "salmon" as shown in Figure 5. Because of this shape, the vertical inner diameter of the G4 enclosure at the axial position of the central aperture is smaller than that at the axial position of the bilateral apertures. The maximum horizontal inner diameter of the surrounding wall of G4 is in the plane of the beam axis and is indicated by f3 in FIG. Further, the maximum vertical inner diameter of the surrounding wall portion of G4 corresponds to the diameter of the semicircles at both ends, and is indicated by f4 in FIG.
G3、G4電極の各1競走トラツク」および「亜鈴」型
領域の最大外側幅は同じで、第8図および第9図にf6
で示されている。開孔44.54の直径も同じで第8図
および第9図にdで示されている。G3、G4電極の凹
陥部の深さもまた等しく、第8図および第9図にrで示
されている。しかしG3の開孔の深さく第8図のaよ)
と04のそれ(第9図のG2)は等しくないo d %
f工、f2、f3、f4、f5、f6、r1a工s
FL2の値は例えば次の通りである。d =4.06J
ff。The maximum outer width of each of the G3 and G4 electrodes is the same, and the f6
It is shown in The diameter of the apertures 44.54 is also the same and is indicated by d in FIGS. 8 and 9. The depths of the recesses of the G3 and G4 electrodes are also equal and are indicated by r in FIGS. 8 and 9. However, the depth of the hole in G3 is a)
and that of 04 (G2 in Figure 9) are not equal o d %
f engineering, f2, f3, f4, f5, f6, r1a engineering
For example, the value of FL2 is as follows. d=4.06J
ff.
fl= la+la RM、 f2=8.0OII
IIl、 f3= 1’7.65 jl’l、
f、=”1.24MIR,f5=6.86M11、f6
−22.22 MW%r =2.9211111゜a、
=0.861111%a2=1.14fl、各集束電極
の隣接開孔間の中心間隔gは第1図について述べたよう
に例えば5.08ffである。素子2’/a%29aの
軸方向の長さは例えばそれぞれ12.451f113.
0.5jnlで、第3図の構体の03.04間隔は例え
ばx 、 2 ’y tzである。fl=la+la RM, f2=8.0OII
IIl, f3= 1'7.65 jl'l,
f,=”1.24MIR,f5=6.86M11,f6
−22.22 MW%r = 2.9211111°a,
=0.861111%a2=1.14 fl, and the center spacing g between adjacent apertures of each focusing electrode is, for example, 5.08 ff, as described with respect to FIG. The axial length of each element 2'/a%29a is, for example, 12.451f113.
0.5jnl, the 03.04 spacing of the structure of FIG. 3 is, for example, x, 2'y tz.
素子2ta、29aの間に形成される顕著な主集束レン
ズは、対向する陥入壁面間を連続的に延びてビーム径路
と交わる領域で比較的曲率の低い等電位線を有し、3本
の電子ビームの径路のすべてと交わる大きな単一レンズ
として現れる。これに対し凹陥部のない従来法の電子銃
では、集束電極の各不陥入開孔領域に集中する比較的曲
率の高い強力な等電位mによって顕著な集束効果が与え
られる。図示実施例の素子27a 129aには凹陥部
があるため、開孔領域における比較的曲率の高い等電位
線は集束性能の品質を決定する役割を僅かしか負わず、
それはむしろ陥入壁面に関連する大レンズの寸法で決ま
る。The prominent main focusing lens formed between the elements 2ta and 29a has equipotential lines with relatively low curvature in the region that extends continuously between the opposing recessed wall surfaces and intersects the beam path, and has three equipotential lines. It appears as a large single lens that intersects all of the electron beam's path. In contrast, in conventional electron guns without recesses, a significant focusing effect is provided by a strong equipotential m with a relatively high curvature concentrated in each unrecessed aperture region of the focusing electrode. Since the elements 27a-129a of the illustrated embodiment have recesses, the relatively high curvature equipotential lines in the aperture region play only a minor role in determining the quality of the focusing performance;
Rather, it is determined by the dimensions of the large lens in relation to the invaginating wall.
このため不都合な球面収差効果のレベルが開孔の直径に
比較的無関係で、主として陥入壁面で形成される大レン
ズの寸法に支配されるという保証により、開孔径に限度
を生じても狭いビーム間隔(例えば前述の5,0811
1111)を用いることができる。This ensures that the level of undesirable spherical aberration effects is relatively independent of aperture diameter and is dominated primarily by the dimensions of the large lens formed by the recessed wall, resulting in a narrow beam even when limiting the aperture diameter. interval (e.g. 5,0811
1111) can be used.
以上の条件ではネック部の直径が集束性能の限定要因と
なシ、この発明の集束方式に前述の寸法を用いると、上
記通常直径(すなわち2g、11sm)のネック部内に
(ガラス公差最悪時にも)良好な高電圧安定性に適合す
る外囲器内壁との許容間隔を保って容易に適用されるよ
うな集束電極の外部寸法で、極めて優れた集束品質を得
ることができる。Under the above conditions, the diameter of the neck is not a limiting factor in focusing performance.If the above-mentioned dimensions are used in the focusing method of the present invention, the diameter of the neck of the above-mentioned normal diameter (i.e., 2g, 11sm) (even at the worst glass tolerance) ) Very good focusing quality can be obtained with external dimensions of the focusing electrode such that it is easily applied with an acceptable spacing to the inner wall of the envelope that is compatible with good high voltage stability.
これに対し前述の沃野等の1ミニネツク」管のネック部
は1述のような寸法の集束電極構体に合わない。On the other hand, the neck of the 1-mini neck tube of Yono et al. mentioned above does not fit into the focusing electrode structure of the dimensions mentioned above.
主静電ビーム集束レンズ1Bの収斂側には上述のように
競走トラック型周壁を持つ素子の凹陥部がある。仁のよ
うな水平対垂直非対称形状は非点収差効果を生じ、 G
3電極の凹陥部を通過する電子ビームの垂直方向の線群
が水平方向の線群よシ大きく収斂する。これと並存する
G4電極の凹陥部が同じ競走トラック型であれば、主集
束レンズ1日の発散側も補償方向の非点収差効果を呈す
る。この補償効果は正味非点収差の存在を防ぐには大き
さが不適当で、表示面上に所要形状の光点を形成する妨
げになることがある。On the convergent side of the main electrostatic beam focusing lens 1B, there is a concave portion of the element having a racetrack type peripheral wall as described above. A horizontal-to-vertical asymmetrical shape such as a star creates an astigmatism effect, resulting in a G
The vertical lines of the electron beam passing through the recesses of the three electrodes converge to a greater extent than the horizontal lines. If the concave portion of the G4 electrode existing alongside this is of the same race track shape, the divergent side of the main focusing lens also exhibits an astigmatism effect in the compensation direction. This compensating effect is inadequately sized to prevent the presence of net astigmatism and may interfere with forming a light spot of the desired shape on the display surface.
この非点収差の補償に必要な追加を行う1つの方法は、
前述の米国特許願第201692号明細書記載のように
、素子29a、29bの接触面にある軸に垂直な板の開
孔に1対の帯金を用いてスロットを形成するもので、こ
の方法による各部の寸法例はその米国出願明細書に記載
されている。One way to make the necessary additions to compensate for this astigmatism is to
As described in the above-mentioned U.S. Patent Application No. 201692, a pair of metal bands are used to form a slot in an opening in a plate perpendicular to the axis on the contact surface of the elements 29a and 29b, and this method Examples of dimensions of each part are given in the US patent application.
非点収差の補償に必要な追加を行う他の方法は、前述の
米国特許願第282228号明細書記載のように。Other methods of making the necessary additions to compensate for astigmatism are as described in the aforementioned US patent application Ser. No. 2,822,288.
G4電極の凹陥部の形状を「亜鈴型」に変更するもので
ある。このためにその亜鈴型の中央領域の垂直方向寸法
の減少量を、主集束レンズ自身の発散部の非点収差を実
質的完全に補償するように選定するか、上記形式の04
のスロットの補償効果を補充するように選定する。この
方法による各部寸法例もその米国出願明細書に記載され
ている。The shape of the concave portion of the G4 electrode is changed to a "salmon-shaped" shape. For this purpose, the reduction in the vertical dimension of its dumbbell-shaped central region is selected to substantially completely compensate for the astigmatism of the diverging part of the main focusing lens itself, or
Select to replenish the compensation effect of the slot. Examples of the dimensions of each part obtained by this method are also described in that US application.
ここではG4の凹陥部壁面の亜鈴型輪郭の補償効果にG
l、 G2電極23.25によって形成されたビーム形
成レンズに適当な非対称性を導入して得られる補償効果
を組合せる別の非点収差補償法を用いる。Here, G
Another astigmatism compensation method is used which combines the compensation effect obtained by introducing a suitable asymmetry in the beam-forming lens formed by the G2 electrodes 23.25.
この補償効果の性質を理解するには、第1図に背面図を
、第’7a図および第1b図にその断面図を示したよう
なGl電極23の構造を考えるのが適当である。In order to understand the nature of this compensation effect, it is appropriate to consider the structure of the Gl electrode 23 as shown in the rear view in FIG. 1 and in cross-section in FIGS. 7a and 1b.
Gl電極23の中央部には3個の開孔64(直径d工)
があり、各開孔ぽその電極23の背面の凹陥部66と前
面の凹陥部68に連絡している。背面の各凹陥部66の
周壁形状は円形で、その直径には適当な間隙を保って陰
極71(第7b図に点線で外形を示す)の前端を受入れ
得るよう充分に大きい。また前面の各凹陥部68の周壁
は水平寸法りより垂直寸法Vが遥かに大きい長方形スロ
ットを形状している。隣接する開孔64の中心間隔gは
前述の03およびG4電極のものと同じである。G1電
極23の他の寸法の実施例は次の通りである。d工=
0.615朋、k = 3.0’15朋、h、 : O
,’711 ml、V = 2.134 mW、開孔6
4の深さG3 ” 0.102鰭、スロット6日の深さ
a4= 0.203朋、凹陥部66の深さa5=0.4
57闘。陰極21およびG2電極25と組立てたとき、
陰極21と凹陥部66の底の間隔は例えばO,152f
fll!で、Glと02の間隔は例えば0 、1+78
鰭である。There are three holes 64 (diameter d) in the center of the Gl electrode 23.
, which communicate with the recess 66 on the back and the recess 68 on the front of the electrode 23 at each aperture. The shape of the peripheral wall of each of the rear recesses 66 is circular, and its diameter is large enough to receive the front end of the cathode 71 (outline indicated by dotted lines in FIG. 7b) with an appropriate gap. Additionally, the peripheral wall of each front recess 68 is shaped like a rectangular slot whose vertical dimension V is much larger than its horizontal dimension. The center distance g between adjacent openings 64 is the same as that of the 03 and G4 electrodes described above. Examples of other dimensions of the G1 electrode 23 are as follows. d engineering=
0.615 ho, k = 3.0'15 ho, h, : O
, '711 ml, V = 2.134 mW, aperture 6
4 depth G3" 0.102 fin, slot depth a4 = 0.203 mm, depth of recess 66 a5 = 0.4
57 fights. When assembled with the cathode 21 and the G2 electrode 25,
The distance between the cathode 21 and the bottom of the recess 66 is, for example, O, 152f.
flll! For example, the interval between Gl and 02 is 0, 1+78
It's a fin.
第3図に示す組立状−では、G2電極25の3個の円孔
26がそれぞれG1電極23の開孔64に1つずつ整合
し、その間のスロット68がG1−G2ビーム形成電極
の各収斂側に非対称性を導入する。これによって各ビー
ムの垂直方向線群の交点が水平方向線群の交点より各ビ
ーム径路に沿ってさらに前方に移動するため、主集束レ
ンズに入る各ビームの断面は垂直寸法より水平寸法が大
きくなり、このビーム断面形状の「事前変形」の向きは
主集束レンズの非点収差の光点変形効果を補償する向き
である。In the assembled state shown in FIG. 3, the three circular holes 26 of the G2 electrode 25 are aligned one by one with the apertures 64 of the G1 electrode 23, and the slots 68 therebetween are aligned with the respective converging holes 26 of the G1-G2 beam forming electrodes. Introducing asymmetry on the sides. This moves the intersection of the vertical lines of each beam further along each beam path than the intersection of the horizontal lines, so that the cross-section of each beam entering the main focusing lens has a horizontal dimension larger than its vertical dimension. , the direction of this "pre-deformation" of the beam cross-sectional shape is the direction that compensates for the light point deformation effect of the astigmatism of the main focusing lens.
上記のようにビームが主集束レンズに入る前に[事前変
形」する利点の1つは、垂直水平寸法における集束品質
の等化を促進することである。主集束レンズの非対称は
、ビーム径路と交わるレンズ領域の垂直寸法が(前述の
従来法電子銃の集束レンズの大きさを制限した)集束電
極開孔の直径より著しく太きいけれどもその領域の水平
寸法よりは小さくなるような性質のものである。従って
各ビームの垂直方向の線群はその水平方向の線群が見る
レンズより小さいレンズを見ることになる。One of the advantages of "pre-deforming" the beam before it enters the main focusing lens, as described above, is that it promotes equalization of the focusing quality in the vertical and horizontal dimensions. The asymmetry of the main focusing lens is such that the vertical dimension of the lens region that intersects the beam path is significantly larger than the diameter of the focusing electrode aperture (which limited the size of the focusing lens in conventional electron guns discussed above), but the horizontal dimension of that region It is of a nature that it becomes smaller. Each beam's vertical lines therefore see a smaller lens than its horizontal lines see.
上述の「事前変形」は各ビームの主集束レンズ通過中の
垂直の拡がりを制限して、小さくて低品質の垂直レンズ
を通る正しく中心合せされたビームの垂直境界線の分離
が大きくて高品質の水平レンズを通るビームの水平境界
線の分離より小さくなるようにする。The "pre-deformation" described above limits the vertical divergence of each beam as it passes through the main focusing lens, so that the separation of the vertical boundaries of correctly centered beams passing through a small, low quality vertical lens is large and high quality. so that the separation of the horizontal boundaries of the beam passing through the horizontal lens is less than that of the horizontal lens.
上述の主集束レンズに入るビームに「事前変形」を加え
る利点の他の1つは、ヨーク構体13の後方に生ずるト
ロイド型垂直巻線13Vのフリンジ磁界に応するビーム
の主集束レンズへの入射点の不都合な垂直偏移に関係す
るラスク上下の垂直フレアの問題が解消または低減され
ることである。後述のように特にビーム径路の低速領域
においてこのフリンジ磁界からビームを磁気遮蔽するこ
とに努力は払われているが、その径路の次の領域はその
フリンジ磁界から実質的に遮蔽されない。上述の各ビー
ムの主集束レンズ通過中の垂直拡がりの制限によって、
フリンジ磁界による入射点の偏移が比較的収差のないレ
ンズ領域外へ境界線群を押し出す可能性が減する。Another advantage of "pre-deforming" the beam entering the main focusing lens described above is that the incidence of the beam on the main focusing lens in response to the fringe magnetic field of the toroidal vertical winding 13V generated behind the yoke structure 13 is The problem of vertical flare above and below the rask, which is related to unfavorable vertical shifts of points, is eliminated or reduced. Although efforts are made to magnetically shield the beam from this fringe field, particularly in the low velocity regions of the beam path, as discussed below, subsequent regions of the path are not substantially shielded from the fringe field. Due to the above-mentioned limitations on the vertical spread of each beam while passing through the main focusing lens,
The possibility that a shift of the point of incidence by the fringe magnetic field will push the boundary group out of the relatively aberration-free lens region is reduced.
上述の主集束レンズに入るビームに「事前変形」を加え
る利点の今1つは、鞍型巻線13Hによりラスク両側の
光点形状に与えられる主水平偏向磁界の逆効果を減する
ことである。ヨーク構体に必要な自己集中効果を生成す
るため、水平偏向磁界はビーム偏向領域の軸方向長さの
相当な部分に亘って強い糸巻型になっている。この水平
偏向磁界のこのような不均一性の不幸な結果として、ラ
スク両側で各ビームの垂直方向線群の過剰集束を生ずる
傾向があるが、上述の「事前変形」を用い°ると、偏向
領域通過中の各ビームの垂直方向寸法が充分に圧縮され
て、ラスク両側の過剰集束効果が許容限度内に減殺され
る。Another advantage of adding "pre-deformation" to the beam entering the main focusing lens described above is to reduce the adverse effect of the main horizontal deflection magnetic field imparted by the saddle winding 13H to the light spot shape on both sides of the rask. . To produce the necessary self-focusing effect in the yoke structure, the horizontal deflection field is strongly pincushion-shaped over a significant portion of the axial length of the beam deflection region. An unfortunate consequence of this non-uniformity in the horizontal deflection field is that it tends to produce over-focusing of the vertical lines of each beam on both sides of the rask, but with the "pre-deformation" described above, the deflection The vertical dimension of each beam as it passes through the field is sufficiently compressed to reduce overfocusing effects on either side of the rask to within acceptable limits.
上述のビームの「事前変形」を説明するため米国特許第
4234814号を引用する。この特許の構体では水平
方向に長い長方形スロットが02電極の各円形開孔に整
合連通してその背面に設けられ、これによって各ビーム
形成レンズの発散部に非対称性を導入することにより、
主集束レンズを通過する各ビームの垂直方向寸法をその
水平方向寸法に対して圧縮する。上述の電子銃方式の0
1電極に前述の非対称性を導入する利点は垂直方向の焦
点深度の改善であることが判る。この得られる焦点深度
は普通表示系に設けられている集束電圧調節用電位差計
を用いて(G3電極27に印加される)集束電圧を適当
範囲に亘って微細に変化させ、垂直方向の集束に顕著な
撹乱を与えずに水平方向の集束を最適にすることができ
るものである。Reference is made to US Pat. No. 4,234,814 to explain the "pre-deformation" of the beams mentioned above. In the construction of this patent, a horizontally elongated rectangular slot is provided on the back surface of each circular aperture in aligned communication with each circular aperture of the 02 electrode, thereby introducing an asymmetry in the diverging portion of each beam-forming lens.
The vertical dimension of each beam passing through the main focusing lens is compressed relative to its horizontal dimension. 0 of the above-mentioned electron gun method
It can be seen that the advantage of introducing the above-mentioned asymmetry into one electrode is an improvement in the depth of focus in the vertical direction. The depth of focus obtained is determined by finely changing the focusing voltage (applied to the G3 electrode 27) over an appropriate range using a focusing voltage adjustment potentiometer normally provided in the display system, and adjusting the focusing voltage in the vertical direction. This allows optimization of horizontal focusing without significant disturbance.
前述のように各ビーム径路の低速領域を偏向ヨークの後
向きのフリンジ磁界から遮蔽することが望ましい。この
ためG3電極27の後部素子2’7b内にカップ型磁気
遮蔽素子31を嵌込み、第3図の構体に見られるように
両者の閉端部を衝合して固定している。第6図および第
10図に示すように、上記カップ型素子27bの閉端部
には円形周壁を持つ3個のインライン開孔28が形成さ
れ、磁気遮蔽用嵌着素子31の閉端部にも定位置に嵌着
したとき開孔2Bと整合連通する円形周壁を持つ3個の
インライン開孔32が同様に形成されている。As previously discussed, it is desirable to shield the low velocity region of each beam path from the backward fringing magnetic field of the deflection yoke. For this purpose, a cup-shaped magnetic shielding element 31 is fitted into the rear element 2'7b of the G3 electrode 27, and the closed ends of both are abutted and fixed as seen in the structure of FIG. As shown in FIGS. 6 and 10, three in-line holes 28 having circular peripheral walls are formed at the closed end of the cup-shaped element 27b, and at the closed end of the magnetic shielding fitting element 31. Three in-line apertures 32 are similarly formed with circular peripheral walls that align and communicate with apertures 2B when seated in place.
第3図の構体では、開孔28はG2電極25の開孔26
と整合しているが軸方向に離れている。この構体のこの
部分の寸法は例えば次の通シである。開孔26の直径=
0.615 MM 、開孔26の深さ= 0.508
朋、開孔28の直径= 1,524 MM1開孔28の
深さ: 0.254朋、開孔32の直径=2.54順、
開孔32の深さ=0.254酊、整合開孔26.28の
軸方向間隔= 0.838朋、各隣接開孔の中心間隔(
前述のg ) −s、oem0磁気遮蔽用嵌着素子31
の軸方向長さは例えば5.38ffで、い
これに対しG3素子2’7b 、 2’7aのそれは例
えばそれぞれ13.335 ffおよび12.45 f
fである。この遮蔽素子の長さくG3電極全長のIA以
下)は前焦点領域のビーム径路を遮蔽することと、4隅
部の集中を乱す磁界の歪をなくすることの互いに競合す
る2つの希望の許容し得る妥協点を示している。遮蔽素
子31は例えば集束電極素子の材料(例えばステンレス
鋼)より高透磁率の可磁化材料(例えばニッケル52チ
、鉄48チの鉄ニツケル合金)で作られる。In the structure of FIG. 3, the opening 28 is the opening 26 of the G2 electrode 25.
are aligned with but axially separated. The dimensions of this part of the structure are, for example, as follows. Diameter of opening 26 =
0.615 MM, depth of opening 26 = 0.508
Diameter of hole 28 = 1,524 Depth of MM1 hole 28: 0.254, Diameter of hole 32 = 2.54,
Depth of aperture 32 = 0.254 mm, axial spacing of aligned apertures 26.28 = 0.838 mm, center spacing of each adjacent aperture (
g) -s, oem0 magnetic shielding fitting element 31 mentioned above
For example, the axial length of G3 elements 2'7b and 2'7a is 13.335 ff and 12.45 ff, respectively.
It is f. The length of this shielding element (less than the IA of the total length of the G3 electrode) allows two competing wishes: to shield the beam path in the front focal region and to eliminate the distortion of the magnetic field that disturbs the concentration at the four corners. It shows the compromises you can get. The shielding element 31 is made, for example, of a magnetizable material (for example, an iron-nickel alloy of 52 mm nickel and 48 mm iron) having a higher magnetic permeability than the material of the focusing electrode element (for example stainless steel).
G4電極29の前部素子29bはその前部周辺に複数個
の接触バネ30を有し、映像管内面の通常のカーボン被
覆に接触してG4電)に陽極電位(例えば25KV)を
伝達するようになっている。カップ型素子29bの閉端
部には主集束レンズを離れる各ビームを通す中心間隔例
えば5 、08 ff1l+の3個のインライン開孔(
図示せず)があり、好ましくはその閉端部内面の開孔付
近に、例えば米国特許第3’/’72554号のコマ収
差補正用高透磁率磁気部材が取付けられている。The front element 29b of the G4 electrode 29 has a plurality of contact springs 30 around its front part, so as to contact the conventional carbon coating on the inner surface of the picture tube and transmit an anode potential (for example, 25 KV) to the G4 electrode. It has become. The closed end of the cup-shaped element 29b has three in-line apertures (with a center spacing of e.g. 5,08 ff1l+) through which each beam leaving the main focusing lens passes.
(not shown), and preferably a high permeability magnetic member for correcting coma aberration, as disclosed in US Pat. No. 3'/'72,554, is attached near the opening on the inner surface of the closed end.
第3図の構体におiる他の電極(陰極、Gl、’G2、
G3)への動作電位の印加は映像管のベースから通常の
導線構体(図示せず)t−介して行ちれる。The other electrodes (cathode, Gl, 'G2,
Application of the operating potential to G3) takes place from the base of the picture tube via a conventional conductor structure (not shown).
第3図の構体の03、G4電極間に形成される主集束レ
ンズはこれを通る3本のビームに正味集中効果を及ぼし
、このためビームはこのレンズを集中傾向に出て行くが
、素子2’7a 、 29aの隣接する囲壁の水平方向
寸法の相対値はこの集中作用の強さに影響する。すなわ
ちこの集中作用は寸法比が04の囲壁の幅に味方すると
増大し、G3の囲壁の幅にる
味方すに減少する。上に寸法を例示した実施例では集中
作用の減少が望まれ、GfS、G4の囲壁幅の比は一7
15/695が適当であることが判った。The main focusing lens formed between the 03 and G4 electrodes of the structure of Figure 3 has a net focusing effect on the three beams passing through it, so that the beams exit this lens with a tendency to concentrate, but element 2 The relative values of the horizontal dimensions of adjacent enclosures '7a, 29a influence the strength of this concentration effect. That is, this concentration effect increases as the size ratio approaches the width of the enclosure wall of 04, and decreases as the size ratio approaches the width of the enclosure wall of G3. In the embodiment whose dimensions are illustrated above, a reduction in concentration effect is desired, and the ratio of the wall widths of GfS and G4 is 17
It was found that 15/695 was appropriate.
第1図の表示方式を使用する場合、ラスタの中心部にお
けるビームの集中度を最適状態に調節するため通常能の
ネック部囲繞装置を用いることがある。この装置は例え
ば米国特許第3’725831号明細書記載の可調節磁
気リング型または米国特許第41624’70号明細書
記載の鞘型のものでよい。When using the display system of FIG. 1, a conventional neck encircling device may be used to optimally adjust the concentration of the beam at the center of the raster. This device may be of the adjustable magnetic ring type as described in US Pat. No. 3'725831 or of the sheath type as described in US Pat. No. 41624'70, for example.
第13図は第1図の装置に使用し得る第3図の電子銃構
体の変形の略図である。この変形では遮蔽グリッド25
′と主加速集束電極27 / 、29 /との間に1対
の補助集束電極2フ“、29“を設けている。13 is a schematic illustration of a variation of the electron gun assembly of FIG. 3 that may be used in the apparatus of FIG. 1; FIG. In this variant, the shielding grid 25
A pair of auxiliary focusing electrodes 2' and 29' are provided between the main acceleration and focusing electrodes 27/ and 29/.
主集束レンズはこの場合G5、G6電極を構成するとの
最終電極の間に形成される。最初にビームが通過する方
の補助集束電極(G3電極27/′)はG5電極2フと
同電位(例えば+8 KV )で付勢されるが、他方の
補助集束電極(G4電極29“)はG6電極29と同等
位(例えば25KV )で付勢される。第3図の実施例
におけるよう・に、制御グリッド(Gl電極23′)と
遮蔽グリッド(G2電極25))の間に形成された各ビ
ーム形成レンズにより各ビームが(各陰極21/から放
出された電子から)形成される。The main focusing lens is formed between the final electrodes, which in this case constitute the G5 and G6 electrodes. The auxiliary focusing electrode (G3 electrode 27/') through which the beam passes first is energized with the same potential as the G5 electrode 2 (e.g. +8 KV), but the other auxiliary focusing electrode (G4 electrode 29") energized at the same level (e.g. 25 KV) as the G6 electrode 29. As in the embodiment of FIG. Each beam forming lens forms a respective beam (from the electrons emitted from each cathode 21/).
この第2の実施例を実現するには、G5、G6電極2グ
“、29“を例えば第3図の構体の03、G4電極2フ
、29と同様の形とし、「競走トラック型」と「亜鈴を
」で前述の寸法順序を持ち、底部に前述の5808朋の
中心間隔の陥入開孔を有する囲壁を並置する。To realize this second embodiment, the G5 and G6 electrodes 2 and 29 are shaped similarly to, for example, the 03 and G4 electrodes 2 and 29 of the structure shown in FIG. A surrounding wall having the above-mentioned dimensional order of "marine" and having recessed apertures with the above-mentioned center-to-center spacing of 5808 mm is juxtaposed at the bottom.
また前述の形式のビームの「事前変形」も各ビーム形成
レンズの非対称性により導入する。これは例えば01%
G2電極”” s 25”fr前記米国特許第4234
814号の形式に構成し、Gl電極23′の背面に水平
方向の長方形スロットヲ設けてこれを上記GA。A "pre-deformation" of the beam of the type described above is also introduced by the asymmetry of each beam-forming lens. This is for example 01%
G2 electrode ""s 25"fr Said US Patent No. 4234
No. 814, a horizontal rectangular slot is provided on the back surface of the Gl electrode 23', and this is used as the GA.
G2の中心間隔5.08Hの3個の円形開孔の間に介在
させる。例えば上述のような中心間隔を持つ3個のイン
ライン円孔を形成したカップ型素子で形成された挿間補
助集束レンズ27“、29“は、主集束レンズと次の偏
向領域を通過するビームの断面寸法の対称的減少という
正味効果を有する対称G3−G4およびGa−G5レン
ズを導入する。この寸法減少はラスタ両側の光点形状に
対する水平偏向磁界の過剰集束効果を減するために望ま
しいかも知れないが、よす簡単な第3図の2電位集束方
式の場合ム径路領域遮蔽効果が03電極27“を高透磁
率材料で形成することによシ調和される。It is interposed between three circular holes of G2 with a center spacing of 5.08H. For example, the interposed auxiliary focusing lenses 27", 29" formed by cup-shaped elements having three in-line circular holes with center spacing as described above are used to control the beam passing through the main focusing lens and the next deflection area. We introduce symmetrical G3-G4 and Ga-G5 lenses with the net effect of a symmetrical reduction in cross-sectional dimension. Although this size reduction may be desirable to reduce the overfocusing effect of the horizontal deflection field on the light spot shapes on both sides of the raster, the simpler two-potential focusing scheme shown in Figure 3 has a masking effect in the mu path region of 03. This is achieved by forming the electrode 27'' from a high magnetic permeability material.
第1図の方式の偏向ヨークの感度を上げるため、管球外
囲器のファンネル部11Fの偏向領域の円錐部の形状を
、コンパクト型ヨークの偏向巻線13Hの有効導線がネ
ック陰影(偏向ビームのファンネル部内面への衝、突)
を排除しつつできるだけ(ラスタの4隅に向う)最外ビ
ーム径路(近付くように選ぶことが望ましい。第11図
は90°偏向角を用いた第1図の方式の1実施例に適す
るように選定したファンネル形状を示す。この形状を表
わす数式は下記の通りである。In order to increase the sensitivity of the deflection yoke of the method shown in Fig. 1, the shape of the conical part of the deflection area of the funnel part 11F of the tube envelope is changed so that the effective conductor of the deflection winding 13H of the compact yoke is used to create the neck shadow (deflected beam). impact on the inner surface of the funnel)
It is preferable to choose the outermost beam path (toward the four corners of the raster) as close as possible (towards the four corners of the raster) while eliminating the The selected funnel shape is shown below.The formula representing this shape is as follows.
x =、C0−4−C1(Z)−4−c2(z2)+a
s(z”)+ca(z’)+05(Z5)+06(Z6
)+07(Z’)ここでXは管球の長手軸Aから外囲器
の外面に向って測った円錐の半径を闘で表した値、2は
ネック部とファンネル部の接合線の前方1 、2 ’7
ff111の点で軸Aと交わる平面2=0から軸Aに
沿って表示面方向に測定した距離ヲ鰭で表した値であり
、この場合GO= 15.10490590 、(!l
= −0,1582240210%C2= 0.011
62553080 、C3= 8.880522990
X 10 、c4=−3,877228960X
10 、C!5= ’7.249226520 X1
0 、C6: −6,’723851420 X
10 、 C)= 2.487i!7761+
x lo lxであって、この値は9.35〜52゜0
11nRノz値に対して有効である。x =, C0-4-C1(Z)-4-c2(z2)+a
s(z")+ca(z')+05(Z5)+06(Z6
)+07(Z') where X is the radius of the cone measured from the longitudinal axis A of the tube toward the outer surface of the envelope, and 2 is the radius 1 in front of the joining line between the neck and funnel. ,2'7
It is the value expressed in fins of the distance measured in the direction of the display surface along the axis A from the plane 2 = 0 that intersects the axis A at the point ff111, in this case GO = 15.10490590, (!l
= -0,1582240210%C2=0.011
62553080, C3=8.880522990
X 10 , c4=-3,877228960X
10,C! 5 = '7.249226520 X1
0, C6: -6,'723851420 X
10, C) = 2.487i! 7761+
x lo lx, and this value is 9.35~52°0
Valid for a z value of 11nR.
第12図は110°偏向角を用いた第1図の方式の1実
施例に適するように選定されたファンネル形状を示す。FIG. 12 shows a funnel shape selected to be suitable for one embodiment of the system of FIG. 1 using a 110 DEG deflection angle.
この形状を表わす数式は次の通りである。The formula representing this shape is as follows.
X = C!O+C!1(Z)+c!2(Z2)+03
(Z3)+(34(Z’)+C3(Z5)ここでXは長
手軸Aから外囲器の外面まで測ツ7’c円錐半径tal
lで表した値、2はネック部とファンネル部の接合線の
前方1.4’7ffの点で軸Aと交わる平面2=0から
軸Aに沿って表示面方向に測った距離をnで表した値で
あり、この場合Co =14,5840702゜C1=
0.312534174 、02= 0.02
4218り585、 C3=−6,99’740898
XIO’、C!4= 1.64032142X 10
%05 == 1.17802606 X 10″
であって、この値は1.53〜50、Oflの2値に対
して有効である。X = C! O+C! 1(Z)+c! 2(Z2)+03
(Z3) + (34 (Z') + C3 (Z5) where X is the measuring tube 7'c cone radius tal from the longitudinal axis A to the outer surface of the envelope
The value expressed by l, 2 is the distance measured along axis A in the direction of the display surface from the plane 2 = 0 that intersects axis A at a point 1.4'7ff in front of the joining line of the neck part and funnel part. In this case, Co =14,5840702°C1=
0.312534174, 02=0.02
4218ri585, C3=-6,99'740898
XIO',C! 4= 1.64032142X 10
%05 == 1.17802606 X 10″
This value is valid for two values of 1.53 to 50 and Ofl.
例えば第1図の方式の1100偏向角19型の実施例で
は、ヨーク取付台17の咽喉部の形がヨーク構体13を
最前方位置においたとき第12図の軸に垂直な平面1%
17間の外囲器部分11F 、 IINの外面に巻+5
1iIx3Hの有効導線が緊密に衝合するようになって
いる。第12図のファンネル形状では、外囲器の角にビ
ームを衝突させずに長さくy−y’)のヨークを(純度
調節のため)例えば5〜6n後退させることができる。For example, in the 1100 deflection angle 19 type embodiment of the method shown in FIG.
Envelope part 11F between 17, winding +5 on the outer surface of IIN
The active conductors of 1iIx3H are brought into close abutment. With the funnel shape of FIG. 12, the yoke of length y-y' can be retracted, for example, by 5-6n (for purity control) without the beam impinging on the corners of the envelope.
2o 第14a図には第1図の方式の110’偏向実
施例で自己集中を行わせるため第2図のヨークに要する
水平偏向磁界の必要な不均一度関数H2の一般形が実線
HH2で示されている。ここで横軸は管球の長手軸に沿
う位置(第12図の平面z=0の位置を参考のため示す
)を示し、縦軸は均一磁界からの偏移度を示す。この第
14a図において、曲線HH2の0軸からの上向き(矢
印P方向)の変位は磁場の「糸巻型」不均一を示し、下
向き(矢印B方向)の変位は「樽型」の不均一を示す。2o In Fig. 14a, the general form of the necessary non-uniformity function H2 of the horizontal deflection magnetic field required for the yoke of Fig. 2 to achieve self-focusing in the 110' deflection embodiment of the method shown in Fig. 1 is shown by the solid line HH2. has been done. Here, the horizontal axis indicates the position along the longitudinal axis of the tube (the position of the plane z=0 in FIG. 12 is shown for reference), and the vertical axis indicates the degree of deviation from the uniform magnetic field. In Fig. 14a, the upward displacement (in the direction of arrow P) of the curve HH2 from the 0 axis indicates a "pincushion" non-uniformity of the magnetic field, and the downward displacement (in the direction of arrow B) indicates a "barrel-shaped" non-uniformity. show.
同位置の横軸に対して描かれた点線曲線HHoは管軸に
沿う相対磁界強度分布を表わす水平偏向磁界のH8関数
を示す。曲線HH2の正の波はラスタ両側の光点形状の
問題の原因として前述した強力な・糸巻型フィールド領
域の位置を示す。A dotted curve HHo drawn with respect to the horizontal axis at the same position shows the H8 function of the horizontal deflection magnetic field representing the relative magnetic field strength distribution along the tube axis. The positive wave of curve HH2 indicates the location of the strong pincushion field region mentioned above as the cause of the spot shape problem on both sides of the raster.
第14b図は横軸縦軸を第1aa図と同様として第14
1図の水平偏向磁界に対し自己集中結果を得るための垂
直偏向磁界の必要な不均一度関数H2の一般形を示す。In Figure 14b, the horizontal and vertical axes are the same as in Figure 1aa.
The general form of the necessary inhomogeneity function H2 of the vertical deflection magnetic field to obtain a self-concentration result for the horizontal deflection magnetic field of FIG. 1 is shown.
付随する点線曲線■Hoは垂直偏向磁界のH8関数を示
すもので、管軸に沿う相対磁界強度微分布を表わす。曲
線VH6の左端部はビームの「事前変形」の利点につい
て前述したようにトロイド型巻線13Vの後方への垂直
偏向磁界の著しい浴出を立証している。The accompanying dotted curve ■Ho shows the H8 function of the vertical deflection magnetic field, and represents the relative magnetic field strength differential distribution along the tube axis. The left end of the curve VH6 demonstrates the significant outflow of the vertical deflection field to the rear of the toroidal winding 13V, as discussed above regarding the benefits of "pre-deformation" of the beam.
例えば第12図の形状に基き第14b図の曲線によって
示唆されるように、−第1図の方式の主偏向作用は、フ
ァンネル部の形状が適正でヨークの導線を最も外側のビ
ーム径路に近接し得る領域で起る。For example, based on the shape of FIG. 12 and suggested by the curve of FIG. 14b, the main deflection effect of the system of FIG. Occurs in areas where it is possible.
従って[−ミニネック」方式で頼みにしたネック径の減
少がないことは偏向効率の実現においてそれ程重要でな
いことが判る。一方この径の減少がないため「ミニネッ
ク」方式では実現不能の集束レンズ径が容易に得られ、
高電圧安定度性能と矛盾なしで高い集束品質が保証され
る。Therefore, it can be seen that the absence of a reduction in the neck diameter relied on in the [-mini-neck] method is not so important in achieving deflection efficiency. On the other hand, since there is no reduction in this diameter, it is easy to obtain a focusing lens diameter that cannot be achieved with the "mini-neck" method.
High focusing quality is guaranteed consistent with high voltage stability performance.
第12図において軸に垂直な平面C%C′はそれぞれ第
1図の方式の上記1100偏向19型実施例における磁
心15の前後両端の位置を表わす。図示のように水平巻
線13Hの有効導線の前後端間の軸方向距離(y−y′
)は磁心15の前後端間の軸方向距離(C−C′)より
著しく(例えば1.4倍)大きく、磁心15の後方に余
分の導線長のl/a以上(例えば62.5%)がある。In FIG. 12, the plane C%C' perpendicular to the axis represents the positions of the front and rear ends of the magnetic core 15 in the 1100 deflection type 19 embodiment of the system shown in FIG. As shown in the figure, the axial distance (y-y'
) is significantly larger (e.g. 1.4 times) than the axial distance (C-C') between the front and rear ends of the magnetic core 15, and is greater than l/a (e.g. 62.5%) of the extra conductor length behind the magnetic core 15. There is.
各平面間距離(c−y) 、(y−y勺、(y′−c’
)H例えばそれぞれ約7.62fl、50.81N1%
12.7nである。Distance between each plane (c-y), (y-y, (y'-c')
) H e.g. about 7.62fl, 50.81N1% respectively
It is 12.7n.
水平巻線の有効導線を磁心の後方に著しく延長する特徴
はその方式の蓄積エネルギ(すなわち詳述すればl/2
’ IHLH” )の需要の減少を助け、水平偏向中心
を後方に移動して垂直偏向中心と実質的に一致させ易く
する。この水平巻線の後方推移の制限は所要のヨーク後
退条件下のネック部間隙とテスク4隅における充分なビ
ーム集中に対する影響の考察から生ずる。第12図の巻
線13Hと磁心15の相対位置と軸方向距離比は、偏向
効率の向上の要求と、4隅部の許容集中性能および適当
なヨーク後退範囲の要望により生ずる競合需要間の許容
し得る妥協点を示している。第14a図と第14b図の
曲線HHOとWHOの比較によって判るように、第12
図の巻! 131と゛磁心ユ5の相対位置は各強度分布
関数HHOとVHoのピークの軸方向位置と実質的に一
致することが望ましい。The feature of significantly extending the effective conductor of the horizontal winding behind the magnetic core is the storage energy of the system (i.e., 1/2
'IHLH') and facilitates moving the horizontal center of deflection rearward to substantially coincide with the vertical center of deflection. This restriction of the backward travel of the horizontal windings reduces the demand on the yoke under the required yoke retraction conditions. The relative position and axial distance ratio of the winding 13H and the magnetic core 15 in FIG. 14a and 14b, indicating an acceptable compromise between the competing demands created by the desire for acceptable concentration performance and a suitable yoke retraction range.
Figure volume! It is desirable that the relative positions of the magnetic core unit 131 and the magnetic core unit 5 substantially coincide with the axial positions of the peaks of the respective intensity distribution functions HHO and VHo.
第1図はこの発明の1実施例による映像管とヨークの組
合せの平面図、第2図は第1図の装置のヨーク構体の正
面図、第3図は第1図の装置の映像管のネック部に用い
る電子銃構体の部分断面側面図、第4図、第5図、第6
図および第1図は第3図の電子銃構体の各素子の端面図
、第’711図は第マ図の電子銃素子の線AQA’に沿
う断面図、第7b図は第9図の電子銃素子の線B−B’
に沿う断面図、第8図は第4図の電子銃素子の線C−C
!’に沿う断面図、第9図は第5図の電子銃素子の線D
−D ’に沿う断面図、第1O図は第6図の電子銃素子
の線B−に’に沿う断面図、第11図は90’偏向角を
用いるこの発明の1実施例に適する映像管ファンネル形
状を示す図、第12図は110°偏向角を用いるこの発
明の1実施例に適する映像管ファンネル形状を示す図、
第13図は第3図の電子銃構体の変形を示す略図、第1
4a図および第14b図は第2図のヨーク構体の1実施
例に関係することが望ましい不均一度関数を示す図であ
る。
11N・・・ネック部、 IIF・・・レアンネル蔀
、13・・・ヨーク構体、13H・・・水平偏向巻線、
13v・・・・垂直偏向巻線、18・・・主集束レンズ
、27.29・・・主集束電極、2’7a 、 29a
・・・並置された部分、40.50・・・長手軸に垂直
に配置された部分、42.52・・・隣接する部分、
44.54・・・インライン開孔。
%許出願人 アールシーニー コーポレーション
代理人 ゛清水 哲ほか2名
才2閃
第3口
才4閉
第51
第6口
オフ図
オ’fafa
才8図
uv。
手続補正書(自発)
昭和57年9月6日 ″
特許庁長官 若 杉 和 夫
1、事件の表示
特願昭57−119660号
2、発明の名称
カラー画像表示装置
3、補正をする者
事件との関係 特許出願人
住所 アメリカ合衆国 ニューヨーク州 1002
05、補正の対象
明細書の「特許請求の範囲」および「発明の詳細な説明
」の各欄。
6、補正の内容
(1)特許請求の範囲を別紙の通り訂正する。
(2)明細書第3頁第19〜20行の「水平等方収差と
正の垂直等方収差」を「水平軸方向収差と正の垂直軸方
向収差」と訂正する。
(3)同上第4頁第4行の「未満」を「未満」と訂正す
る。
(4)同上第5頁第4行の「の誘導」を削除する。
(5)同上第7頁“第1行のI”s、oa、、の」をl
”5.081111未満の」と訂正する。
(6] 同上第7頁第12行の「8.15」を「al
、Jと訂正する。
(7)同上第8頁第1行の「あるのに対し、その」を「
あシ、またその」と訂正する。
(8)同上第11頁第17行の「5.08+o+の」を
15.08期)の」と訂正する。
(9) 同上第14頁第10行の「内径は」を「内径
f5は」と訂正する。
添付書類
特許請求の範囲
以上
特許請求の範囲
(1) 表示スクリーンを収容するスクリーン部、円
筒形ネック部および上記スクリーン部とネック部を連結
するファンネル部を含む真空外囲器と上記ネック部内に
取付けられて3本のインライン型軍接部分を包囲して上
記スクリーン全体に上記ビームを実質的に集中させつつ
表示ラスタを描かせ、そのラスタの対角線の両端隅で終
るビーム径路間に所定の偏向角を設定する偏向磁界を発
生するもので、それぞれ窓部を形成する鞍型形状の水平
偏向巻線とトロイド型形状の垂直偏向巻線とを含み上記
外囲器の包囲領域内に上記ビームの各偏向中心を設定す
るコンパクトな偏向ヨーク構体とを具備し、上記電子銃
構体はそのビーム放出端に異なる7位に保たれた2つの
主集束電極を含み、この直な方向に配置され、上記3本
のビームがそれぞれ通過する3個のインライン開孔を有
する部分と、それから長手方向に延びて上記ビーム全部
の径路に共通の囲壁な形成する隣接部分とを含み、上記
並置され、上記3個の開孔の各隣接するもの一中心間距
離は、上記ビームの隣接するものの中心間距離を上記偏
向中心を通シ軸に垂直な平面内において約5.0Btr
an (200ミ/し)未満に限定し、上記並置された
各部分の形状は、上記主集束レンズの軸に垂直な長径を
上記隣接開孔間の中心間距離の3倍より大きく設定し、
上記ネック部の直径は、その内面が上記並置された囲壁
の外面から離れるように充分大きく、上記コンパクトな
ヨーク構体のされていることを特徴とするカラー画像表
示装置。1 is a plan view of a combination of a picture tube and a yoke according to one embodiment of the present invention, FIG. 2 is a front view of the yoke structure of the apparatus shown in FIG. 1, and FIG. 3 is a view of the picture tube of the apparatus shown in FIG. Partial cross-sectional side views of the electron gun assembly used in the neck part, FIGS. 4, 5, and 6
1 and 1 are end views of each element of the electron gun assembly in FIG. 3, FIG. Gun element line B-B'
8 is a cross-sectional view taken along line C-C of the electron gun element in FIG.
! 9 is a cross-sectional view taken along line D of the electron gun element in FIG.
1O is a sectional view along line B-D' of the electron gun element of FIG. 6; FIG. 11 is a picture tube suitable for an embodiment of the invention using a 90' deflection angle. FIG. 12 is a diagram showing a picture tube funnel shape suitable for an embodiment of the present invention using a deflection angle of 110°;
FIG. 13 is a schematic diagram showing a modification of the electron gun structure in FIG.
4a and 14b are diagrams illustrating non-uniformity functions that may preferably be associated with one embodiment of the yoke structure of FIG. 2. 11N... Neck part, IIF... Reannel yoke, 13... Yoke structure, 13H... Horizontal deflection winding,
13v... Vertical deflection winding, 18... Main focusing lens, 27.29... Main focusing electrode, 2'7a, 29a
... juxtaposed parts, 40.50... parts arranged perpendicular to the longitudinal axis, 42.52... adjacent parts,
44.54...Inline hole opening. Percentage Applicant R Cini Corporation Agent Tetsu Shimizu and 2 others 2 flashes 3rd mouth 4th closing 51st 6th off diagram o'fafa 8th diagram uv. Procedural Amendment (Spontaneous) September 6, 1980 `` Commissioner of the Japan Patent Office Kazuo Wakasugi1, Indication of Case Patent Application No. 119660/1982, Title of Invention Color Image Display Device 3, Person Making Amendment Case and Relationship Patent applicant address New York, United States 1002
05. The "Claims" and "Detailed Description of the Invention" columns of the specification to be amended. 6. Contents of amendment (1) The scope of claims is amended as shown in the attached sheet. (2) "Horizontal isotropic aberration and positive vertical isotropic aberration" on page 3, lines 19-20 of the specification is corrected to "horizontal axial aberration and positive vertical axial aberration." (3) "Less than" in line 4 of page 4 of the above is corrected to "less than". (4) Delete "guidance to" on page 5, line 4 of the same. (5) Same as above, page 7, “I” in the first line “s, oa,,”
Correct it to "less than 5.081111." (6) “8.15” on page 7, line 12 of the same as “al”
, correct it as J. (7) In the 1st line of page 8 of the same page, change “to that” to “
"Ashi, that again," he corrected. (8) In the same page, page 11, line 17, ``5.08+o+'' is corrected to ``15.08 period)''. (9) Correct "inner diameter" in line 10 of page 14 as above to "inner diameter f5". Attached documents Claims Claims (1) A vacuum envelope including a screen portion for housing a display screen, a cylindrical neck portion, and a funnel portion connecting the screen portion and the neck portion, and a vacuum envelope installed in the neck portion. a display raster surrounding three in-line military abutments to substantially concentrate the beam over the entire screen, with a predetermined deflection angle between the beam paths terminating at opposite diagonal corners of the raster; The device generates a deflection magnetic field to set the beam, and includes a saddle-shaped horizontal deflection winding and a toroid-shaped vertical deflection winding, each forming a window. and a compact deflection yoke structure for setting the deflection center. a portion having three in-line apertures through which each of the main beams passes, and an adjacent portion extending longitudinally therefrom to form a common enclosure in the path of all said beams, said juxtaposed and said three in-line apertures; The distance between the centers of adjacent ones of the apertures is approximately 5.0 Btr in a plane perpendicular to the axis through the deflection center.
an (200 mm) or less, and the shapes of the juxtaposed portions are such that the major axis perpendicular to the axis of the main focusing lens is set to be larger than three times the center-to-center distance between the adjacent apertures,
A color image display device characterized in that the diameter of the neck portion is sufficiently large so that the inner surface thereof is separated from the outer surface of the juxtaposed surrounding walls, and the compact yoke structure is formed.
Claims (1)
ネック部および上記スクリーン部とネック部を連結する
ファンネル部を含む真空外囲器と、上記ネック部内に取
付けられて3本のインライン型電子ビームを生成する電
子銃構体と、上記ネック部およびファンネル部の隣接部
分を包囲して上記スクリーン全体に上記ビームを実質的
に集中しつつ表示ラスタを描かせ、そのラスタの対角線
の両端偶で終るビーム径路間に所定の偏向角を設定する
偏向磁界を発生するもので、それぞれ窓部を形成する鞍
型形状の水平偏向巻線とトロイド型形状の垂直偏向巻線
とを含み上記外囲器の包囲領域内に上記ビームの各偏向
中心を設定するコンパクトな偏向ヨーク構体とを具備し
、上記電子銃構体はそのビーム放出端に異なる電位に保
たれた2つの主集束電極を含み、この主集束電極はそれ
ぞれ上記ネック部の長手軸に垂直な方向に配置され、上
記3本のビームがそれぞれ通過する3個のインライン開
孔を有する部分と、それから長手方向に延びて上記ビー
ム全部の径路に共通の囲壁を形成する隣接部分とを含み
、上記各電極の各隣接部分は、その間に上記ビームがそ
こから収斂型に離れて行く共通の主集束レンズを形成す
るように並置され。 上記3個の開孔の各隣接するもの\中心間距離は、上記
ビームの隣接するものの中心間距離を上記偏向中心を通
シ軸に垂直な平面内において約5.0Bfl(200ミ
ル)未満に限定し、上記並置された各部分の形状は、上
記主集束レンズに対する軸に垂直な長径を上記隣接開孔
間の中心間距離の3倍よシ著しく大きく設定し、上記ネ
ック部の直径は、その内面が上記並置された囲壁の外面
から離れるように充分大きく、上記コンパクトなヨーク
構体の内径は、上記窓部のビーム出口において上記偏向
角の1厘当シ約0.76mtt (so ミル)未満に
なるようにされていることを特徴とするカラー画像表示
装置。(1) A vacuum envelope including a screen portion that accommodates a display screen, a cylindrical neck portion, and a funnel portion that connects the screen portion and the neck portion, and a vacuum envelope that is installed within the neck portion and emits three in-line electron beams. a beam path that surrounds the electron gun assembly and adjacent portions of the neck and funnel to draw a display raster while substantially concentrating the beam over the entire screen, terminating at both ends of the diagonal of the raster; The device generates a deflection magnetic field that sets a predetermined deflection angle between the enclosure areas of the envelope, and includes a saddle-shaped horizontal deflection winding and a toroid-shaped vertical deflection winding, each forming a window. and a compact deflection yoke structure for setting each deflection center of the beam within the electron gun structure. a section having three in-line apertures, each perpendicular to the longitudinal axis of the neck, through which each of the three beams passes, and an enclosure extending longitudinally therefrom and common to the path of all of the beams; and adjacent portions of each electrode are juxtaposed to form a common main focusing lens between which the beam departs in a converging manner. The center-to-center spacing of each of the three apertures is such that the center-to-center spacing of adjacent ones of the beams is less than about 5.0 Bfl (200 mils) in a plane perpendicular to the transverse axis through the deflection center. The shapes of the juxtaposed portions are such that the major axis perpendicular to the axis relative to the main focusing lens is significantly larger than three times the center-to-center distance between the adjacent apertures, and the diameter of the neck portion is The inner diameter of the compact yoke structure is sufficiently large so that its inner surface is spaced from the outer surface of the juxtaposed enclosure, and the inner diameter of the compact yoke structure is less than about 0.76 mtt (so mils) per centimeter of the deflection angle at the beam exit of the window. A color image display device characterized in that:
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28223481A | 1981-07-10 | 1981-07-10 | |
US282234 | 1981-07-10 | ||
US343734 | 1982-01-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5823148A true JPS5823148A (en) | 1983-02-10 |
JPH0312422B2 JPH0312422B2 (en) | 1991-02-20 |
Family
ID=23080615
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57119660A Granted JPS5823148A (en) | 1981-07-10 | 1982-07-08 | Color picture display unit |
JP60018490A Granted JPS60216430A (en) | 1981-07-10 | 1985-01-31 | Electron gun structure |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60018490A Granted JPS60216430A (en) | 1981-07-10 | 1985-01-31 | Electron gun structure |
Country Status (3)
Country | Link |
---|---|
JP (2) | JPS5823148A (en) |
BE (1) | BE893804A (en) |
ZA (1) | ZA824780B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS609036A (en) * | 1983-06-27 | 1985-01-18 | Nec Corp | Electron gun electrode assembly |
JPS60216430A (en) * | 1981-07-10 | 1985-10-29 | アールシーエー トムソン ライセンシング コーポレイシヨン | Electron gun structure |
JPS6240137A (en) * | 1985-08-14 | 1987-02-21 | Mitsubishi Electric Corp | Inline-type electron gun |
JPS6369128A (en) * | 1986-09-10 | 1988-03-29 | Nec Corp | Electron gun electrode structure |
JPS6438949A (en) * | 1987-07-20 | 1989-02-09 | Rca Licensing Corp | Color image tube |
JPS6438950A (en) * | 1987-07-20 | 1989-02-09 | Rca Licensing Corp | Color image tube |
JPH03152834A (en) * | 1989-11-08 | 1991-06-28 | Matsushita Electron Corp | Color image receiving electron gun |
JPH0582048A (en) * | 1991-09-24 | 1993-04-02 | Mitsubishi Electric Corp | In-line type electron gun |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2918888B2 (en) * | 1988-07-04 | 1999-07-12 | 日本電気株式会社 | In-line type electron gun |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6020864B2 (en) * | 1975-01-24 | 1985-05-24 | 松下電子工業株式会社 | Color picture tube device |
US4086513A (en) * | 1975-03-03 | 1978-04-25 | Rca Corporation | Plural gun cathode ray tube having parallel plates adjacent grid apertures |
JPS6019103B2 (en) * | 1975-11-19 | 1985-05-14 | 三菱電機株式会社 | In-line electron gun for color picture tube |
JPS5449862U (en) * | 1977-09-14 | 1979-04-06 | ||
US4234814A (en) * | 1978-09-25 | 1980-11-18 | Rca Corporation | Electron gun with astigmatic flare-reducing beam forming region |
ZA824780B (en) * | 1981-07-10 | 1983-05-25 | Rca Corp | Color image display systems |
-
1982
- 1982-07-05 ZA ZA824780A patent/ZA824780B/en unknown
- 1982-07-08 JP JP57119660A patent/JPS5823148A/en active Granted
- 1982-07-08 BE BE0/208562A patent/BE893804A/en not_active IP Right Cessation
-
1985
- 1985-01-31 JP JP60018490A patent/JPS60216430A/en active Granted
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60216430A (en) * | 1981-07-10 | 1985-10-29 | アールシーエー トムソン ライセンシング コーポレイシヨン | Electron gun structure |
JPH041455B2 (en) * | 1981-07-10 | 1992-01-13 | Rca Licensing Corp | |
JPS609036A (en) * | 1983-06-27 | 1985-01-18 | Nec Corp | Electron gun electrode assembly |
JPH0418664B2 (en) * | 1983-06-27 | 1992-03-27 | Nippon Electric Co | |
JPS6240137A (en) * | 1985-08-14 | 1987-02-21 | Mitsubishi Electric Corp | Inline-type electron gun |
JPH0546656B2 (en) * | 1985-08-14 | 1993-07-14 | Mitsubishi Electric Corp | |
JPS6369128A (en) * | 1986-09-10 | 1988-03-29 | Nec Corp | Electron gun electrode structure |
JPS6438949A (en) * | 1987-07-20 | 1989-02-09 | Rca Licensing Corp | Color image tube |
JPS6438950A (en) * | 1987-07-20 | 1989-02-09 | Rca Licensing Corp | Color image tube |
JPH03152834A (en) * | 1989-11-08 | 1991-06-28 | Matsushita Electron Corp | Color image receiving electron gun |
JPH0582048A (en) * | 1991-09-24 | 1993-04-02 | Mitsubishi Electric Corp | In-line type electron gun |
Also Published As
Publication number | Publication date |
---|---|
JPS60216430A (en) | 1985-10-29 |
BE893804A (en) | 1982-11-03 |
JPH041455B2 (en) | 1992-01-13 |
ZA824780B (en) | 1983-05-25 |
JPH0312422B2 (en) | 1991-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4599534A (en) | Electron gun for color picture tube | |
CA1213304A (en) | Color image display systems | |
JPH0427656B2 (en) | ||
US3970890A (en) | Plural beam cathode ray tube including an astigmatic electron lens and self-converging | |
JPS5823148A (en) | Color picture display unit | |
KR0131870B1 (en) | Electron gun and cathode-ray tube | |
KR100201762B1 (en) | Color cathode ray tube having improved focus | |
US5659225A (en) | Color cathode ray tube with improved main lens | |
KR910001462B1 (en) | Color image display systems | |
US5177399A (en) | Color cathode ray tube apparatus | |
JPS61253749A (en) | Cathode ray tube | |
US4399388A (en) | Picture tube with an electron gun having non-circular aperture | |
US4754189A (en) | Color television display tube with coma correction | |
JPH021344B2 (en) | ||
KR100221926B1 (en) | Color cathode ray tube having improved resolution | |
US6342758B1 (en) | Inline type color picture tube | |
EP0348912A2 (en) | Color cathode ray tube apparatus | |
JPS63198241A (en) | Color cathode tube | |
FI70097B (en) | SJAELVKONVERGERANDE FAERGTELEVISIONSAOTERGIVNINGSANORDNING | |
KR100232156B1 (en) | Electron gun for color crt | |
JP2645071B2 (en) | Color picture tube equipment | |
JPH08250037A (en) | Cathode-ray tube | |
JPH0127252Y2 (en) | ||
JP3074179B2 (en) | Cathode ray tube | |
JPH0562610A (en) | Picture tube |