JPS5822983B2 - Line phase detection device - Google Patents

Line phase detection device

Info

Publication number
JPS5822983B2
JPS5822983B2 JP51076185A JP7618576A JPS5822983B2 JP S5822983 B2 JPS5822983 B2 JP S5822983B2 JP 51076185 A JP51076185 A JP 51076185A JP 7618576 A JP7618576 A JP 7618576A JP S5822983 B2 JPS5822983 B2 JP S5822983B2
Authority
JP
Japan
Prior art keywords
phase
line
phase detection
power transmission
under test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51076185A
Other languages
Japanese (ja)
Other versions
JPS531886A (en
Inventor
橋本直己
小川漠美
水野良勝
浮田義也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Aichi Denki Seisakusho KK
Original Assignee
Chubu Electric Power Co Inc
Aichi Denki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Aichi Denki Seisakusho KK filed Critical Chubu Electric Power Co Inc
Priority to JP51076185A priority Critical patent/JPS5822983B2/en
Publication of JPS531886A publication Critical patent/JPS531886A/en
Publication of JPS5822983B2 publication Critical patent/JPS5822983B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Electric Cable Installation (AREA)

Description

【発明の詳細な説明】 本発明は多回線が併架された架空送電線路の検相装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a phase detection device for an overhead power transmission line in which multiple circuits are installed together.

従来、架空送電線路の新設、増設又は張替等が行なわれ
た時、送電開始に先立ってその始端側と終端側とが対応
しているかどうかの確認が行なわれ、この確認作業を検
相と称している。
Conventionally, when an overhead power transmission line is newly installed, expanded, or replaced, it is checked whether the start and end sides correspond to each other before starting power transmission. It is called.

この架空送電線路の検相にあたってはメガ−フィルタ法
やラインスイッチを一相毎に投入して線路電圧を印加す
る方法がよく知られているが1.これらの検相方法では
、多回線が併架されているとき送電中の線路からの誘導
電圧が高く、それによって検相が不確実となり、又、作
業時間も長くなって手間を要すると共に、高圧に対する
安全面での保護が要求される等の問題があった。
The mega-filter method and the method of applying a line voltage by turning on a line switch for each phase are well known for phase detection of overhead power transmission lines.1. In these phase detection methods, when multiple circuits are installed together, the induced voltage from the line during power transmission is high, which makes phase detection uncertain, and the work is time consuming and labor-intensive. There were problems such as the need for safety protection against

このため、一般には架空送電線路の末端側の変電所の一
母線をあけて三相8ト器用変圧器を使用して検相を行う
方法が採用されているが、この方法によると系統の切替
が必要となり、系統切替は母線の容量さの関係や母線事
故時の切替操作の関連もあって大きな制約を受けて実施
できない場合が往々にしてあり、しかも被試験回線の送
電線路単独で検相することができない等の欠点を有して
いる。
For this reason, a method is generally adopted in which one busbar of the substation at the end of the overhead power transmission line is opened and a three-phase, eight-pin transformer is used for phase detection. However, system switching is often not possible due to major constraints due to the capacity of the bus and the switching operation in the event of a bus fault, and it is not possible to carry out phase detection on the transmission line of the line under test alone. It has disadvantages such as being unable to do so.

本発明は上述した欠点を除き、その目的とするところは
、送電中の線路を停止することなく、破滅7験回線単独
で、しかも安全確実かつ短時間に検相することのできる
装置を提供することにあり、具体的には、送電線路に併
架された破滅1験回線を一端接地した場合、送電線路か
ら静電誘導によって破滅7験回線を介して誘導電流が大
地に流入し、その誘導電流は例えば2回線併架された架
空送電線路の場合、等何曲には第1図イのよ・うに示す
ことができ、今、破滅5験回線のa相を一端接地した時
、架空送電線路の幾何学的配置により多少の差はあるが
、大地に流入する静電誘導電流■。
The present invention eliminates the above-mentioned drawbacks, and its purpose is to provide a device that can safely and reliably perform phase detection on a single failure line in a short time without stopping the power transmission line. Specifically, when one end of a power line connected to a power transmission line is grounded, an induced current flows from the power transmission line through the power line through the power line due to electrostatic induction, and the induced current flows into the ground. For example, in the case of an overhead power transmission line with two circuits running side by side, the current can be shown as shown in Figure 1 A. Now, when one end of the A phase of the circuit is grounded, the overhead power transmission line There are some differences depending on the geometrical arrangement of the track, but the electrostatically induced current flowing into the ground■.

はi+常次式によって示される。is shown by the i+ constant formula.

ここで Ea:送電中の健全回線a相の太地間電王 Caa・Cba・CCa:送電中の健全回線a相吉破滅
1験回線a、b、c各相間の 静電容量 今、275 KVの架空送電線路で亘長が70/anと
した場合、上記(1)式の静電容量の和(Caa+Cb
a十Cca)は0.1.63μFとい・う値が報告され
ており、この場合の静電誘導電流I。
Here, Ea: Healthy circuit during power transmission A-phase Taiji Denoh Caa, Cba, CCa: Healthy circuit during power transmission a Saikichi failure 1 trial circuit a, b, c The capacitance between each phase is now 275 KV. When the length of the overhead power transmission line is 70/an, the sum of the capacitances (Caa + Cb
A value of 0.1.63 μF has been reported for a+Cca), and the electrostatic induced current I in this case.

はに記(1)式より2.03Aとなる。From formula (1), it becomes 2.03A.

通常検相を行う際に考慮しなければならない静電誘導電
流1゜の値は破滅1験回線の亘長にもよるが最大3Aと
考えられている。
The value of an electrostatically induced current of 1°, which must be taken into consideration when performing normal phase detection, is considered to be a maximum of 3A, although it depends on the length of the circuit.

上記破滅1験回線には静電誘導の他に両端を接地した場
合、送電線路に流れる負荷電流によって電磁誘導電流が
大地を帰路し7て流れることになり、この電磁誘導電流
は例えば2回線併架された架空送電線路の場合、等何曲
には第1図口のように示すことができる。
In addition to electrostatic induction, if both ends of the circuit are grounded, electromagnetic induction current will return to the earth due to the load current flowing through the power transmission line, and this electromagnetic induction current will flow, for example, in both circuits. In the case of an overhead power transmission line, it can be shown as shown in Figure 1.

このときの電磁誘導電流1.は架空送電線路の幾何学的
配置により多少の差はあるが、通常次式によって概算す
ることが可能とされている。
Electromagnetic induction current at this time 1. Although there are some differences depending on the geometrical arrangement of the overhead power transmission line, it is generally possible to roughly estimate it using the following formula.

即ち、ここで 1■7:送電中の健全回線に流れる負荷
電流 通常、検相を行う場合に考慮しなければならない電磁誘
導電流■2の最大値は20OA(最大負荷電流1■4m
ax−200OAとして)が大地を帰路として流れると
想定されている。
That is, here 1■7: Load current flowing through a healthy line during power transmission Normally, the maximum value of electromagnetic induction current ■2 that must be taken into consideration when performing phase detection is 20OA (maximum load current 1■4m
ax-200OA) is assumed to flow through the earth as a return route.

」=述したように、多回線が併架された破滅1験回線に
は静電誘導電流並びに電磁誘導電流が流れるので、被試
験回線を一端接地あるいは両端接地することによって該
試験回線の各相に流れる誘導電流が静電誘導電流分のみ
かあるいは静電誘導電流と電磁誘導電流の和の電流分か
を弁別することにより、被試験回線の始端側と終端側の
各相が対応しているかどうかの確認即ち検相ができるこ
とになる。
” = As mentioned above, since electrostatic induction current and electromagnetic induction current flow in the failure test line where multiple circuits are installed together, each phase of the test line can be grounded by grounding the line under test at one end or both ends. By determining whether the induced current flowing in the circuit is only the electrostatic induced current or the sum of the electrostatic induced current and the electromagnetic induced current, it is possible to check whether each phase on the starting and ending sides of the line under test corresponds. This allows confirmation, that is, phase detection.

本発明はこの点に着目してなされたもので、以下2回線
併架された架空送電線路に実施した例を第2図によって
説明すると、1は図示しない鉄塔に架設された送電中の
線路(以下健全回線と呼称する)、2は新設、増設ある
いは張替等によって新たに架設されて健全回線1と併架
された被試験回線で、その始端側の各相をa + b
+ cとし、終端側の各相をX、 、 Y 、 Zとす
る。
The present invention has been made with attention to this point, and below, an example in which it is applied to an overhead power transmission line where two circuits are installed together will be explained with reference to FIG. (hereinafter referred to as the healthy line), 2 is the line under test that has been newly installed, expanded, or replaced, and is installed alongside the healthy line 1, and each phase on the starting end side is a + b.
+c, and the phases on the terminal side are X, , Y, and Z.

3は被試験回線2の終端側X、Y、Zの各相と大地間に
それぞれ挿入接続された接地用スイッチ、4a、4b。
Reference numeral 3 denotes grounding switches 4a and 4b inserted and connected between each phase of the terminal side X, Y, and Z of the line under test 2 and the ground, respectively.

4cは上言己破滅5験回線2の始端側a、b、cの各相
とそれぞれ接続された相別検相回路で、該相別検相回路
4a 、4b 、4cの入力側には、被試験回線2の始
端側a、b、cの各相とそれぞれ接続されてこれを接地
し、静電誘導電流並びに電磁誘導電流を低電圧化しッて
導出するようにしたシャント抵抗からなる誘導電圧低減
要素5a 、 5b 。
4c is a phase-specific phase detection circuit connected to each phase of the starting end side a, b, and c of the above-mentioned self-destructive circuit 2, and the input side of the phase-specific phase detection circuits 4a, 4b, and 4c is as follows. An induced voltage consisting of a shunt resistor that is connected to each phase of the starting end side a, b, and c of the line under test 2 and grounded, so that the electrostatic induced current and electromagnetic induced current are derived at a low voltage. Reduction elements 5a, 5b.

5cを設け、この誘導電圧低減要素5a 、 5b 。5c, and the induced voltage reducing elements 5a, 5b.

5cのシャント抵抗の端子間には、入力電圧を整流して
これを平滑しッた直流レベルに変換する整流要素(ia
、5b、5cを介して、入力が所定値に達したら増幅度
を変換する折線近似圧縮回路等からなる圧縮要素7 a
+ 71) l 7 cをそれぞれ接続し、この圧縮
要素7a、7b、7cの出力端に、電圧計からなる表示
要素8a、8b、8cをそれぞれ接続して、該圧縮要素
7a 、7b 、7cの出力により指示するようになっ
ている。
Between the terminals of the shunt resistor 5c is a rectifier element (ia
, 5b, 5c, a compression element 7a consisting of a linear approximation compression circuit, etc., which converts the amplification degree when the input reaches a predetermined value.
+ 71) l7c are connected to the output terminals of the compression elements 7a, 7b, 7c, respectively, and display elements 8a, 8b, 8c consisting of voltmeters are connected to the output terminals of the compression elements 7a, 7b, 7c. The instructions are given by output.

而して、圧縮要素γa、7b、7cの増幅度を変換する
所定値は、例えば静電誘導電流の想定される最大値を今
3Aとすれば、その2倍程度の入力によって変換するよ
うに設定され、この圧縮要素7a、γb。
Therefore, the predetermined value for converting the amplification degree of the compression elements γa, 7b, and 7c is such that, for example, if the assumed maximum value of the electrostatic induced current is 3A, the conversion is performed by an input of about twice that value. The compression elements 7a and γb are set.

7cの出力をうける表示要素g a 、 8 +) 、
8cの電圧計の目盛は上記圧縮要素γa、7b、7c
の所定値と対応して該所定値までは拡大目盛とし、しか
も入力電圧を電流目盛によって表示して指示値の弁別が
容易ならしめるように構成されておる。
Display element g a , 8 +) receiving the output of 7c,
The scale of the voltmeter 8c is the compression element γa, 7b, 7c.
The scale is enlarged up to the predetermined value corresponding to the predetermined value of , and the input voltage is displayed on the current scale so that the indicated value can be easily distinguished.

なお、表示要素8a 、sb 、8cの電8E計を最大
指示釘付にすれば指示値の弁別が更に容易となる。
Note that if the display elements 8a, sb, and 8c are set to the maximum indication value, the indication values can be distinguished even more easily.

又、圧縮要素7a、7b、7cは入力が所定値に達した
ら増幅度を変換するように形成してあればよいので対数
増幅回路によって構成されたものであってもよい。
Furthermore, the compression elements 7a, 7b, and 7c may be configured as logarithmic amplifier circuits, since they may be formed to convert the amplification degree when the input reaches a predetermined value.

次に、検相動作について説明すると、破滅、験回線2の
始端側a、b、Cの各相に、相別検相回路4a、4b、
4cの誘導電圧低減要素5 a + 5 b +50の
入力側をそれぞれ接続し、上記破滅1験回線2の終端側
X、Y、Zの各相に挿設された接地用スイッチ3を投入
して被試験回線2の両端を各相共接地する。
Next, to explain the phase detection operation, phase-specific phase detection circuits 4a, 4b,
Connect the input sides of the induced voltage reduction elements 5a + 5b +50 of 4c, respectively, and turn on the grounding switch 3 inserted into each phase of the terminal side X, Y, Z of the above-mentioned catastrophic circuit 2. Ground both ends of the line under test 2 for each phase.

この両端接地により、健全回線1によって誘導電圧低減
要素5a、5b、5cのシャント抵抗には大地に流入す
る静電誘導電流と大地を帰路として流れる電磁誘導電流
との和の電流が流れることになるので上記シャント抵抗
の端子間に生ずる端子間電圧を入力としてうける整流要
素5a、5b、5cはこれを整流して平滑した直流レベ
ルの出力電圧を王縮−要素7a、7b、7cにそれぞれ
印加する。
By grounding both ends, a current equal to the sum of the electrostatic induced current flowing into the ground and the electromagnetic induced current flowing through the ground as a return path flows through the shunt resistors of the induced voltage reduction elements 5a, 5b, and 5c due to the healthy line 1. Therefore, the rectifying elements 5a, 5b, and 5c, which receive the inter-terminal voltage generated between the terminals of the shunt resistor as input, rectify this and apply a smoothed DC level output voltage to the rectifying elements 7a, 7b, and 7c, respectively. .

これをうけた用縮要素7a。7b、7cは入力電圧に応
じてあらかじめ設定された増幅度により増幅した出力電
圧を表示要素8a 、8b 、8cにそれぞれ供給する
ことになるので、これにより表示要素F3 a 、 8
b 、 8(?、の電圧計はそれぞれ入力に応じて指示
する。
The reduction element 7a receives this. 7b and 7c supply the display elements 8a, 8b, and 8c with output voltages amplified by a preset amplification degree according to the input voltage, so that the display elements F3a, 8
The voltmeters b, 8(?,) each indicate according to the input.

この指示値を記録等して記憶しておき、次に、被試験回
線2の終端側X相に接続された接地用スイッチ3を開路
する。
This instruction value is recorded and stored, and then the grounding switch 3 connected to the terminal side X phase of the line under test 2 is opened.

この開路により、今、被試験回線2の始端側のa相と終
端側のX相とが同相であると仮定すれば、被試験回線2
の始端側a相と終端91+I X相とは両端接地から一
端接地に切替えられたことになるので、該被試験回線2
の始端側a相に接続された相別検相回路4aの表示要素
8aの電圧計には、一端接地による静電誘導電流分のみ
が指示されることになり、この指示値が例えは200A
から3A−に指示された場合は同相であることが確認即
検相される。
Due to this open circuit, if we assume that the a phase on the starting end side of the line under test 2 and the X phase on the terminating side are in phase, then the line under test 2
Since the starting end side A phase and the terminal end 91+I X phase have been switched from both ends grounded to one end grounded,
The voltmeter of the display element 8a of the phase-specific phase detection circuit 4a connected to the starting end side a-phase of the
If 3A- is specified from 3A-, it is confirmed that they are in phase and the phase is immediately detected.

このとき、他の相別検相回路4b、4cの表示要素sb
、8cの電Fモ計の指示値は、被試験回線2の始端側
す、cの各相と終端側Y、Zの各相とが両端接地の状態
にあるので、殆んど変化しない指示値例えば200Aを
示すことになる。
At this time, the display element sb of the other phase-specific phase detection circuits 4b and 4c
, 8c, the readings on the electric frequency meter of 8c are indications that hardly change because each phase of the start end side, c, and each phase of the end side, Y, Z, of the line under test 2 are grounded at both ends. For example, the value is 200A.

又、上記被試験同線2の始端側a相と終端側X相とが同
相でない場合は、上記終端側X相に挿設された接地用ス
イッチ3の開路により、今例えば破滅1験回線2の始端
側す相に接続された相別検相回路4aの表示要素8bの
電圧計の指示値が静電誘導電流値(例えば3 A−)に
変化し、他の相別検相回路4a、4cの表示要素8a、
8Cの電圧計の指示が上述同様殆んど変化しなかった場
合は、破滅1験回線2の始端側す相と終端側X相とが同
相であることが検相されることになる。
In addition, if the starting end side a phase and the terminating end side The indicated value of the voltmeter on the display element 8b of the phase-specific phase detection circuit 4a connected to the starting end side of the phase changes to an electrostatic induction current value (for example, 3 A-), and the other phase-specific phase detection circuits 4a, 4c display element 8a,
If the indication of the 8C voltmeter does not change much as described above, it is determined that the starting end side phase and the terminating end side X phase of the failed circuit 2 are in phase.

以降、上述同様に、被試験回線2の終端側X、 、 Y
Thereafter, as described above, the terminal side X, , Y of the line under test 2
.

Zの各相に挿入された接地用スイッチ3を順次開路する
ことにより、相別検相回路4 a + 4 b +40
の表示要素8a 、sb 、8cの電圧計の指示値の変
化により弁別して検相される。
By sequentially opening the grounding switches 3 inserted in each phase of Z, phase-specific phase detection circuit 4 a + 4 b + 40
The phase is detected by discrimination based on changes in the indicated values of the voltmeters of the display elements 8a, sb, and 8c.

なお、実施例は2回線併架された架空送電線路について
説明したが、多回線併架された架空送電線路に適用でき
ることは勿論である。
Although the embodiment has been described with respect to an overhead power transmission line in which two circuits are installed together, it is of course applicable to an overhead power transmission line in which multiple circuits are installed in parallel.

又、実施例にあって、相別検相回路は、誘導電圧低減要
素の電FFを、電圧計によって指示するように説明した
が、上記誘導電圧低減要素に電圧−電流変換要素を介し
てデジタル表示によって指示することができるこみは云
うまでもない。
In addition, in the embodiment, the phase-specific phase detection circuit has been described as indicating the electric FF of the induced voltage reduction element using a voltmeter, but it is explained that the electric FF of the induced voltage reduction element is indicated by a digital FF via the voltage-current conversion element. Needless to say, the dirt can be indicated by display.

本発明は上述したように、多回線併架された送電線路の
被試験回線の始端側各相、し友地1間に、誘導電流を低
電圧化して検出表示するようにした相別検相回路をそれ
ぞれ接続し、−1−開被試験回線の終端側の各相を接地
あるいは非接地すること1こよって静電誘導電流と、静
電誘導電流、、シ:M:磁誘導電。
As described above, the present invention provides phase-by-phase detection in which induced current is detected and displayed at a low voltage between each phase on the starting end side of the line under test of a multi-line power transmission line, and between Shitomochi 1. Connect the circuits respectively and ground or unground each phase on the terminal side of the circuit under test.1 Therefore, the electrostatic induced current and the electrostatic induced current.

流との和の電流とを各相毎に検1”c’+ Lで弁別す
ることにより検相するようにしたもので、被試1験回線
に流才する誘導電流は低電FEfヒ[,7て検出−弓る
よ“うにシ7.であるので、検相時におt′Jる安全i
′セは(−11、めで高く、しかも被試験回線の終端側
を接地あるいは非接地する簡学な操作で検相力和賄しと
なるので検相に要する手間も著(ッく軽減すると吉がで
き、装置の電源も電圧計を1駆動する程度の小容量でよ
いので乾電池等の内蔵電源が可能となり、コードレス化
を図ることができる。
The phase is detected by distinguishing the sum of current and current for each phase by 1"c'+L, and the induced current flowing in the line under test is determined by the low current , 7 Detection - Bow 7. Therefore, it is safe to use during phase inspection.
'Se is (-11), which is relatively high, and since the power of phase detection can be reduced by a simple operation of grounding or ungrounding the terminal side of the line under test, the effort required for phase detection can be significantly reduced. Since the power supply for the device can be as small as one drive of a voltmeter, a built-in power source such as a dry battery can be used, and the device can be made cordless.

に、被試験回線単独で検相できるので送電中の線路を停
止器7たり、母線の系統、切替を行・う必彎も全くなく
、電力供給信頼度を一段と向トぜ(−7めることができ
、しかも検相は破滅1験回線の一端接地あるいは両端接
地によって明らかに変化する誘導電流を相別検相回路に
よって検出表示せしめて弁別するようにしであるので的
確な検相ができて弁別信頼度を向上せしめると共に、装
置は接地することによつ−C流れる誘導電流を検出表示
せしめ簡単な構成で製することができるので小形化して
携帯用としても最適なものを提供できる等著しい効果を
有するものである。
In addition, since phase detection can be performed on the line under test alone, there is no need to install a stop device on the line during power transmission or switch the busbar system, further improving the reliability of power supply (-7). Moreover, since the phase detection circuit uses a phase-specific phase detection circuit to detect and display the induced current that clearly changes due to grounding at one end or both ends of the circuit, accurate phase detection is possible. In addition to improving the discrimination reliability, the device detects and displays the induced current flowing through -C by grounding, and can be manufactured with a simple configuration, making it possible to provide a compact and optimally portable device. It is effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2回線併架された架空送電線路における誘導電
流の等価回路図で、同図イは静電誘導電流の場合を示し
、同図0(、を電磁誘導電流の場合を示したものである
。 第2図は2回線併架された架空送電線路における本発明
の実施例を示すブロック図である。 1・・・・・・健全回線、2・・・・・・被試験回線、
3・・・・・・接地用ス1′ツチ、4a、4b、4c・
・・・・・相別検相回路。
Figure 1 is an equivalent circuit diagram of induced current in an overhead power transmission line with two circuits running side by side. Fig. 2 is a block diagram showing an embodiment of the present invention in an overhead power transmission line where two circuits are installed together. 1... Healthy line, 2... Line under test,
3... Grounding switches 1', 4a, 4b, 4c.
...Phase-specific phase detection circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 送電線路に併架された被試験回線の終端側に接地用
スイッチを各相毎に挿設し、上記被試験回線の始端側に
は、大地間き接続されて誘導電流を低電順化して検出表
示せしめるようにした相別検相回路を各相に設けて、上
記接地用スイッチの開閉により誘導電流を弁別して検相
するようにしたことを特徴とする線路検相装置。
1. A grounding switch is installed for each phase on the terminal side of the line under test that is installed alongside the power transmission line, and a ground switch is installed on the starting end of the line under test to reduce the induced current. A line phase detection device characterized in that a phase-specific phase detection circuit is provided for each phase, and the induced current is discriminated and phase detected by opening and closing of the grounding switch.
JP51076185A 1976-06-28 1976-06-28 Line phase detection device Expired JPS5822983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51076185A JPS5822983B2 (en) 1976-06-28 1976-06-28 Line phase detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51076185A JPS5822983B2 (en) 1976-06-28 1976-06-28 Line phase detection device

Publications (2)

Publication Number Publication Date
JPS531886A JPS531886A (en) 1978-01-10
JPS5822983B2 true JPS5822983B2 (en) 1983-05-12

Family

ID=13598053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51076185A Expired JPS5822983B2 (en) 1976-06-28 1976-06-28 Line phase detection device

Country Status (1)

Country Link
JP (1) JPS5822983B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6440656B2 (en) 2016-07-12 2018-12-19 古河電気工業株式会社 Electrolytic copper foil

Also Published As

Publication number Publication date
JPS531886A (en) 1978-01-10

Similar Documents

Publication Publication Date Title
CN104969433B (en) Power conversion device and method for power conversion
JPS5822983B2 (en) Line phase detection device
JP3041207B2 (en) Oil-filled transformer insulation diagnostic device
JPS63265516A (en) Ground-fault detector for three-phase ac circuit
JPH04220573A (en) Low-voltage system line wire insulation monitoring method
JPS63290122A (en) Overcurrent releasing device for breaker
JPS6280567A (en) Deterioration diagnosing method for power converting element
JP3301627B2 (en) Apparatus and method for measuring insulation resistance of load equipment
JPS61189119A (en) Disconnection detector
CN114252673B (en) Method for detecting secondary circuit of voltage transformer of substation
SU1746331A1 (en) Method of and device for checking resistance of interphase insulation of windings of three-phase electric machine
JPH0428065Y2 (en)
JP3013488B2 (en) Ground fault fault location method
JPH071292B2 (en) Bus accident detector
JP3055339B2 (en) Method for checking breakage of switching element and / or switching element drive section in inverter
JP3013491B2 (en) Short-circuit fault location method
JPS63136922A (en) Grounding detector of three-phase ac exciting circuit
RU2136011C1 (en) Method determining active and capacitive components of insulation resistance of network phases to ground
JPS6223219Y2 (en)
SU659992A1 (en) Arrangement for measuring insulation resistance in networks with deadearthed neutral wire
JPS60135775A (en) Detection system for insulating level to the earth of low-voltage facility
JPH09304468A (en) Method for locating fault-point of parallel two line system
JPS608465B2 (en) Cable insulation resistance monitoring method
JPS5852836Y2 (en) Earth leakage breaker
JPH0145589B2 (en)