JPS5822941A - Surface defect inspecting device - Google Patents

Surface defect inspecting device

Info

Publication number
JPS5822941A
JPS5822941A JP12209081A JP12209081A JPS5822941A JP S5822941 A JPS5822941 A JP S5822941A JP 12209081 A JP12209081 A JP 12209081A JP 12209081 A JP12209081 A JP 12209081A JP S5822941 A JPS5822941 A JP S5822941A
Authority
JP
Japan
Prior art keywords
signal
width
time width
defect
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12209081A
Other languages
Japanese (ja)
Other versions
JPH0239737B2 (en
Inventor
Mitsuhito Kamei
光仁 亀井
Toshiro Nakajima
利郎 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12209081A priority Critical patent/JPS5822941A/en
Publication of JPS5822941A publication Critical patent/JPS5822941A/en
Publication of JPH0239737B2 publication Critical patent/JPH0239737B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles

Abstract

PURPOSE:To specify the same defect even in case when a sample is vibrating, by standardizing a measured time width and a standard signal width. CONSTITUTION:Reflected rays from a sample by scanning light are photodetected by a photoelectric element 21, are processed by a rise detector 24, a signal width detector 26 and a defective position detector 27, and a signal width T and a time width DELTAT to a defective position are detected. In accordance with these width T and DELTAT, time width DELTAT0 corresponding to a standard signal width T0 is operated and calculated in a defect generated position standardizing circuit 28, and even in case when the sample vibrates and the width T and DELTAT are varied to T', DELTAT', etc., the time width DELTAT0 is specified.

Description

【発明の詳細な説明】 この発明は、被検査物体に光を照射して表面の欠陥を検
査する表面欠陥検査装置に係り、*に被測定物体の振動
に影響されずに欠陥発生位置を特定し、同一欠陥である
と認定するための信号処理法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface defect inspection device that inspects surface defects by irradiating light onto an object to be inspected. However, it relates to a signal processing method for determining that the defects are the same.

従来の表面欠陥検査装置とし【第1図に示すものがある
A conventional surface defect inspection device is shown in FIG.

第1図は従来の表面欠陥検査装置の構成を示す概念図で
、1は被検査物体の物体面を示し、2a。
FIG. 1 is a conceptual diagram showing the configuration of a conventional surface defect inspection apparatus, in which 1 indicates the object surface of the object to be inspected, and 2a.

2bは前記被検査物体を支持し、その変位を押える支持
部材で、例えばローラ、ダイスなどで構成され、被検査
物体が変位するときはこの支持された点2cを回転中心
として図示のように変位する。
Reference numeral 2b denotes a support member that supports the object to be inspected and suppresses its displacement, and is composed of, for example, a roller, a die, etc. When the object to be inspected is displaced, it is displaced as shown in the figure with this supported point 2c as the center of rotation. do.

3は光源、4は入射光、5は前記物体面1への照射点、
6は反射光、Tは光検出器、11は被検査物体を正の方
向に角度θ、傾斜させたときの物体面、51はそのとき
の入射光4の照射点、8は前記照射点5mを通る物体面
1と平行な面、61はそのときの反射光をあられす。ま
た、被検査物体を負の方向に角度0.傾斜させたときの
物体面を1b、その照射点を5b、この照射点5bを通
る平行な面を9、そのときの反射光を6bであられす。
3 is a light source, 4 is incident light, 5 is an irradiation point on the object surface 1,
6 is the reflected light, T is the photodetector, 11 is the object surface when the object to be inspected is tilted at an angle θ in the positive direction, 51 is the irradiation point of the incident light 4 at that time, 8 is the irradiation point 5 m A surface 61 parallel to the object plane 1 that passes through receives the reflected light at that time. Also, move the object to be inspected at an angle of 0. The object surface when tilted is 1b, its irradiation point is 5b, the parallel plane passing through this irradiation point 5b is 9, and the reflected light at that time is 6b.

次に、この装置の動作を説明する。Next, the operation of this device will be explained.

いま、被検査物体が支持点2cを中心として正の方向に
角度θ1傾斜したとき反射光6aの径路をみると、入射
光4は物体面1aKα−〇、の角度で照射点5aに入射
し、平行な面8に対してα−201の角度で反射される
。また、このときの照射点51はり、だけ光検出器Tの
側に移動する。
Now, when the inspected object is tilted at an angle θ1 in the positive direction about the support point 2c, looking at the path of the reflected light 6a, the incident light 4 enters the irradiation point 5a at an angle of object surface 1aKα-〇, It is reflected at an angle α-201 with respect to the parallel plane 8. Further, at this time, the irradiation point 51 moves toward the photodetector T by only the beam.

すなわち、照射点51の移動は反射光6星が光検出器7
に入射する位置なhlだけ上方に変位させるのに対し、
反射角の減少は反射光6aの入射位置を下方移動させる
ため、両者は互いに打ち消し合うよう作用し、反射光6
と6aとはある点で交叉する。
That is, the movement of the irradiation point 51 causes the reflected light 6 stars to reach the photodetector 7.
While it is displaced upward by hl at the incident position,
Since the decrease in the reflection angle moves the incident position of the reflected light 6a downward, the two act to cancel each other out, and the reflected light 6a
and 6a intersect at a certain point.

次に、物体面1が支持点2cを中心に負の方向に角度0
.傾斜したときの反射光6bの径路をみると、照射点5
bの位置は下方向K h、移動するのに対し、反射光6
bの反射角はα+20.となり上方に向けるので互に打
消し合い、反射光6と6bとはある点で交叉する。
Next, the object plane 1 moves at an angle of 0 in the negative direction around the support point 2c.
.. Looking at the path of the reflected light 6b when tilted, the irradiation point 5
The position of b moves downward Kh, while the reflected light 6
The reflection angle of b is α+20. Since they are directed upward, they cancel each other out, and the reflected lights 6 and 6b intersect at a certain point.

この二つの交叉点は、光源3と支持点2Cの位置関係を
適当に選定することにより接近させることができ、物体
面1が正、負の方向に傾斜した場合、反射光の径路が狭
い面域内を通過するようにすることができる。従って光
検出器1をこの位置に配設すれば、小さい検出面積の光
検出器で反射光を検出することができ、物体面1の振動
に対して反射光を効率良く集めることが可能となった。
These two intersection points can be brought close by appropriately selecting the positional relationship between the light source 3 and the support point 2C, and when the object surface 1 is tilted in the positive or negative direction, the path of the reflected light is a narrow surface. It can be made to pass through the area. Therefore, by arranging the photodetector 1 at this position, the reflected light can be detected by a photodetector with a small detection area, and the reflected light can be efficiently collected against vibrations of the object surface 1. Ta.

しかしながら、実際に物体面1に光を走査して欠陥検出
をする場合、多くの例では光の走査が物体面1に向って
集束もしくは広がる形状で行われるため、物体面1の振
動に影響されずに反射光を受光しても、信号幅が変化し
欠陥の発生位置の認識もしくは連続する走査線からの同
一欠陥の判定が困難となる。この様子を示したのが第2
図である。
However, when detecting defects by actually scanning the object surface 1 with light, in many cases the light is converged or spread toward the object surface 1, so it is not affected by the vibrations of the object surface 1. Even if the reflected light is received without being detected, the signal width changes, making it difficult to recognize the location of a defect or to determine whether the same defect is detected from consecutive scanning lines. The second one shows this situation.
It is a diagram.

第2図においては説明の都合上、試料は板材とし、光走
査は1点から扇状に広がる走査で走査角速度は一定とす
る。また、図中のt、mは走査線幅、dは板幅な示す。
In FIG. 2, for convenience of explanation, the sample is a plate material, and the optical scanning is a scanning that spreads out in a fan shape from one point, and the scanning angular velocity is constant. In addition, t and m in the figure indicate the scanning line width, and d indicates the plate width.

第3図A、 Bは光電素子(図示せず)の出力を示す図
である。
FIGS. 3A and 3B are diagrams showing the output of a photoelectric element (not shown).

wLz図において、物体面1で得られる信号幅Tは光の
全走査線幅lに対する板幅dの比率分の信号となり第3
図BのようKなる。ところが、物体面1が正方向に角度
θ1傾斜した位置に物体面1鳳がくると信号幅は光の全
走査線幅mに対する板幅dの比率分の信号幅T′として
第3図人のようになり、17m 倍パルス幅が広がる。
In the wLz diagram, the signal width T obtained at the object plane 1 is the signal corresponding to the ratio of the plate width d to the total scanning line width l of the light, and the third
K as shown in Figure B. However, when the object plane 1 comes to a position where the object plane 1 is inclined at an angle θ1 in the positive direction, the signal width is calculated as the signal width T' corresponding to the ratio of the plate width d to the total scanning line width m of the light. As a result, the pulse width is expanded by 17 m.

従って物体面1の振動があった場合、パルス幅の変化が
発生する。このため、欠陥の発生位置を信号幅内の時間
的な発生位置で検出する手法や、その結果の累積として
連続する走査線から同一欠陥を特定する手法が利用でき
なくなり、欠陥検査としての信号処理法に新しい方式を
必要としていた。
Therefore, when there is vibration of the object surface 1, a change in pulse width occurs. For this reason, it is no longer possible to use a method that detects the location of a defect based on the temporal location within the signal width, or a method that identifies the same defect from consecutive scanning lines as a cumulative result. A new form of law was needed.

この発明は、かかる現状に対してなされたもので、時間
測定を全てフローティングに、すなわち測定された時間
幅を信号幅に対する割合で規格化するととKより欠陥の
発生位置を特定する方法で上述の問題点を解決した信号
処理手段を有する欠陥検査装置を提供するものである。
This invention was made in response to the current situation, and is based on the above-mentioned method of specifying the location of defects from K when all time measurements are made floating, that is, when the measured time width is normalized as a ratio to the signal width. The present invention provides a defect inspection device having a signal processing means that solves the problem.

以下、図面に基づいてこの発明の一実施例を説明する。An embodiment of the present invention will be described below based on the drawings.

第4図は時間幅測定を70−ティングにする信号処理回
路のブロック図、第5図は第4図のブロック図の各人・
出力信号で、第4図の信号路に付しである記号と同一記
号がその部分の信号を示す。
Figure 4 is a block diagram of a signal processing circuit that makes time width measurement 70-tings.
In the output signal, the same symbol as the symbol attached to the signal path in FIG. 4 indicates the signal of that part.

第4図において、21は光電素子、22は増幅器、23
は波形整形器1.24は波形の正方向の立上り検知器、
25は同じく負方向の立下り検知器、26は信号幅を検
知する第1の時間幅検知手段である信号幅検知器、2T
は黍萄同期信号Sの始点から欠陥の発生位置までの時間
幅を検知する第2の時間幅検知手段である欠陥位置検知
器、28は前記信号幅検知器2@の出力を規定値に修正
するとともに、この規定値と、前記信号幅検知器26の
出力と欠陥位置検知器21の出力に補正を加え、この補
正結果に基づく時間的な位置に前記修正された規定値出
力内に欠陥信号を付与する手段である欠陥発生位置規格
化回路である。なお、説明の都合上、欠陥は1個だけ存
在するものとする。
In FIG. 4, 21 is a photoelectric element, 22 is an amplifier, and 23 is a photoelectric element.
is a waveform shaper 1.24 is a rising edge detector in the positive direction of the waveform,
25 is also a falling detector in the negative direction, 26 is a signal width detector which is a first time width detection means for detecting the signal width, 2T
28 is a defect position detector which is a second time width detection means for detecting the time width from the start point of the millet synchronization signal S to the defect occurrence position; and 28 is a defect position detector that corrects the output of the signal width detector 2@ to a specified value. At the same time, correction is made to this specified value, the output of the signal width detector 26, and the output of the defect position detector 21, and the defect signal is placed within the corrected specified value output at a temporal position based on the correction result. This is a defect occurrence position normalization circuit which is a means for giving Note that for convenience of explanation, it is assumed that only one defect exists.

第4図、第5図において、光電素子21からの出力は増
幅622で増幅されて第5図りのような欠陥ディップを
含む信号となる。ここで、信号りは時系列的に第3図A
、BK相当する変化があったものとする。信号りは適当
なスライドレベルを持つ波形整形器23で2値化され第
5図Eのような信号となる。ここで、正方向の立上り検
知器24は信号全体の立上りと、欠陥ディップの立上り
を検知して第5図Fのような信号を、また、立下り検知
器25は信号全体の立下りと、欠陥ディップの立下りを
検知して第5図Gのような信号を各々出力する。信号幅
検知器26は同期信号Sと前記信号F、Gの出力を受け
て同期信号Sの範囲内で最初の立上り信号から最後の立
下り信号までの時間幅を検出し、それぞれT’、 Tの
時間幅パルスを有する第5図Hのような信号を出力する
。同様に欠陥位置検知器27では最初の立上り信号から
最初の立下り信号までの時間幅を検出し、それぞれΔT
′、ΔTの時間幅パルスを有する第5図Jのような信号
を発生する。かくして信号H,Jを受けた欠陥発生位置
規格化回路28では、まず、信号幅を無条件にT・とい
うあらかじめ定まった規格値として同期信号Sと一定の
関係をもって発生させ、 ΔT′o=(ΔτXTe)/τ ΔT0=(ΔTXT、)/T の演算を実施し、ΔTl、ΔT0の該当位置に各々ディ
ップを持たせた第5図にのような信号を発生する。かか
る構成において、もし欠陥信号が同一欠陥からのもので
あるならば光走査の角速度が一定であるため、物体面振
動による信号全体幅の変化が補正され、信号Inおける
Δ(+1.、 =ΔT6となることは明らかであり、従
って本補正回路により物体面1の振動があっても欠陥を
特定することが可能である。
In FIGS. 4 and 5, the output from the photoelectric element 21 is amplified by an amplifier 622 to become a signal including defective dips as shown in FIG. Here, the signal is chronologically shown in Figure 3A.
, BK. It is assumed that there has been a change corresponding to BK. The signal is binarized by a waveform shaper 23 having an appropriate slide level, resulting in a signal as shown in FIG. 5E. Here, the positive rising edge detector 24 detects the rising edge of the entire signal and the rising edge of the defective dip, and outputs a signal as shown in FIG. 5F, and the falling detector 25 detects the falling edge of the entire signal, The fall of the defective dip is detected and a signal as shown in FIG. 5G is outputted. The signal width detector 26 receives the output of the synchronization signal S and the signals F and G, detects the time width from the first rising signal to the last falling signal within the range of the synchronization signal S, and detects the time width T' and T, respectively. A signal as shown in FIG. 5H having a time width pulse of . Similarly, the defect position detector 27 detects the time width from the first rising signal to the first falling signal, and each detects ΔT.
', a signal as shown in FIG. 5J having a time width pulse of ΔT is generated. In the defect occurrence position standardization circuit 28 that receives the signals H and J, the signal width is first unconditionally generated as a predetermined standard value of T· with a certain relationship with the synchronization signal S, and ΔT′o=( The following calculation is performed: ΔτXTe)/τ ΔT0=(ΔTXT, )/T, and a signal as shown in FIG. 5 is generated with dips at the corresponding positions of ΔTl and ΔT0. In such a configuration, if the defect signals are from the same defect, the angular velocity of optical scanning is constant, so changes in the overall signal width due to object plane vibration are corrected, and Δ(+1., =ΔT6) in the signal In It is clear that the correction circuit 1 can identify defects even if there is vibration of the object surface 1.

なお、上記実施例では説明の都合上、物体面1を板材の
ものとして説明したが、これは円筒等その他の形状の物
体面検査にもそのまま適用できることは明らかであり、
光走査が収束方向で実施される鳩舎においても、同一の
補正原理で補正できることはいうまでもない。
In addition, in the above embodiment, for convenience of explanation, the object surface 1 was explained as being of a plate material, but it is clear that this can be directly applied to the inspection of object surfaces of other shapes such as cylinders.
It goes without saying that the same correction principle can be applied to pigeon lofts where optical scanning is performed in the convergent direction.

また、欠陥のデイクプ幅に関しても同一の方法で規格化
した測定ができることは原理上明らかである。
Furthermore, it is clear in principle that the same method can be used to standardize and measure the depth of the defect.

さらに欠陥が複数個発生する鳩舎、欠陥発生位置検出器
27に記憶機能を持たせ複数の時間幅を記憶させるとと
Kより対処できることは明らかである。なお、この補正
回路の出力にへ受けて欠陥の信号処理を行う回路技術に
関しては周知である。
Furthermore, it is clear that a pigeon coop where a plurality of defects occur can be dealt with by providing a memory function to the defect occurrence position detector 27 and storing a plurality of time widths. Note that circuit technology for performing defect signal processing based on the output of this correction circuit is well known.

以上、説明したようにこの発明においては、欠陥の信号
処理において測定された時間を全て、信号幅に対する割
合で規格化し、標準信号幅のパルスに欠陥信号を発生さ
せることにより物体面の振動があっても欠陥を特定する
ことができ、実用上の効果が得られるものである。
As explained above, in this invention, all the times measured in defect signal processing are normalized by the ratio to the signal width, and the vibration of the object surface is suppressed by generating a defect signal in a pulse with a standard signal width. Defects can be identified even when using the method, and practical effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の表面欠陥検査装置の構成を示す概略図、
第2図は第1図の表面欠陥検査装置を具体的に適用した
例を示す説明図、第3図A、Bは第2図で得られる信号
幅を示す波形図、514図はこの発明の一実施例を示す
表面欠陥検査装置のプpツク図、第5図は第4図の各グ
ロックにおける信号波形例を示す図である。 図中、21は光電素子、22は増幅器、23は波形整形
器、24は立上り検知器、25は立下り検知器、プロは
信号幅検知器、2Tは欠陥位置検知器、28は欠陥発生
位置規格化回路である。なお、図中の同一符号は同一ま
たは相当部分を示す。 代理人 葛野信−(外1名) 第2図 Zc 943図 第5図
FIG. 1 is a schematic diagram showing the configuration of a conventional surface defect inspection device.
FIG. 2 is an explanatory diagram showing an example in which the surface defect inspection apparatus of FIG. 1 is specifically applied, FIGS. 3A and 3B are waveform diagrams showing the signal width obtained in FIG. FIG. 5 is a diagram showing an example of a signal waveform in each Glock shown in FIG. 4. In the figure, 21 is a photoelectric element, 22 is an amplifier, 23 is a waveform shaper, 24 is a rise detector, 25 is a fall detector, Pro is a signal width detector, 2T is a defect position detector, and 28 is a defect occurrence position. It is a standardized circuit. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kuzuno (1 other person) Figure 2 Zc 943 Figure 5

Claims (1)

【特許請求の範囲】 0)物体の表WK対して光を照射走査してその反射光を
検出し、その検出信号の変化から前記物走査ごとに得ら
れる検出信号との信号幅を検知する第1の時間幅検知手
段と;前記同期信号内において前記同期信号の始点から
欠陥の発生位置までの時間幅を検知する第2の時間幅検
知手段と;前記第1の時間幅検知手段の出力を規定値に
修正するとともに、前記規定値と前記第1の時間幅検知
手段の出力と前記第2の時間幅検知手段の出力との間に
おいて一定の比例関係をもって前記第2の時間幅検知手
段の出力に補正を加えこの補正結果に基づく時間的な位
置に前記修正された規定値出力内に欠陥信号を位置決め
する手段と:を備えたことを特徴とする表面欠陥検査装
置。 (2)位置決めする手段は、欠陥信号幅を検知し欠陥信
号幅と前記第1の時間幅検知手段の出力と前記規定値と
の間で一定の補正を加える手段を備えたことを特徴とす
る特許請求の範囲第(11項記載の表面欠陥検査装置。 (3)第2の時間幅検知手段は、記憶機能を有し、複数
の欠陥に対する補正ができることを特徴とする特許請求
の範囲第(1)項記載の表面欠陥検査装置。
[Claims] 0) Scanning the surface WK of the object by irradiating it with light, detecting the reflected light, and detecting the signal width between the detection signal obtained each time the object is scanned and the change in the detection signal. 1 time width detection means; a second time width detection means for detecting the time width from the starting point of the synchronization signal to the defect occurrence position in the synchronization signal; The output of the second time width detection means is corrected to a specified value, and the output of the second time width detection means is maintained with a certain proportional relationship between the specified value, the output of the first time width detection means, and the output of the second time width detection means. A surface defect inspection apparatus comprising: means for correcting the output and positioning the defect signal within the corrected specified value output at a temporal position based on the correction result. (2) The positioning means is characterized by comprising means for detecting a defect signal width and applying a certain correction between the defect signal width, the output of the first time width detection means, and the specified value. Claim 1 (Surface defect inspection device according to claim 11). (3) The second time width detection means has a memory function and can correct a plurality of defects. 1) The surface defect inspection device described in item 1).
JP12209081A 1981-08-03 1981-08-03 Surface defect inspecting device Granted JPS5822941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12209081A JPS5822941A (en) 1981-08-03 1981-08-03 Surface defect inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12209081A JPS5822941A (en) 1981-08-03 1981-08-03 Surface defect inspecting device

Publications (2)

Publication Number Publication Date
JPS5822941A true JPS5822941A (en) 1983-02-10
JPH0239737B2 JPH0239737B2 (en) 1990-09-06

Family

ID=14827398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12209081A Granted JPS5822941A (en) 1981-08-03 1981-08-03 Surface defect inspecting device

Country Status (1)

Country Link
JP (1) JPS5822941A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198851U (en) * 1985-05-30 1986-12-12

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4848180A (en) * 1971-10-20 1973-07-07
JPS5312218A (en) * 1976-07-20 1978-02-03 Fujitsu Ltd Automatic detection range setting circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4848180A (en) * 1971-10-20 1973-07-07
JPS5312218A (en) * 1976-07-20 1978-02-03 Fujitsu Ltd Automatic detection range setting circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198851U (en) * 1985-05-30 1986-12-12

Also Published As

Publication number Publication date
JPH0239737B2 (en) 1990-09-06

Similar Documents

Publication Publication Date Title
JP5312033B2 (en) Method and apparatus for evaluating the joint location of a workpiece
JPH03267745A (en) Surface property detecting method
JP2009515705A5 (en)
JPH01143945A (en) Detecting method for defect in tape
KR100738809B1 (en) Surface inspection system and method of controlling system
JP5048558B2 (en) Substrate inspection method and substrate inspection apparatus
JPS5822941A (en) Surface defect inspecting device
JPH0694642A (en) Method and equipment for inspecting surface defect
JPH06281593A (en) Method and apparatus for inspecting surface
JPH0769272B2 (en) Foreign matter inspection device
JP3570488B2 (en) Measurement method of alloying degree of galvanized steel sheet using laser beam
JP2001041719A (en) Inspection device and method of transparent material and storage medium
JP3340879B2 (en) Surface defect detection method and apparatus
JP2000121333A (en) Appearance inspection apparatus and method
JPH05332745A (en) Inspecting device for cream solder printed appearance
JPH08220001A (en) Surface-flam inspecting method
JP2694814B2 (en) Solder height inspection device
JPH0769271B2 (en) Defect inspection equipment
JPH01406A (en) Sample shape measuring device
JPH0821711A (en) Waviness detector for surface of sheet board
JP2705458B2 (en) Mounting board appearance inspection device
JPH0618230A (en) Thickness measuring apparatus
JPH08338785A (en) Surface inspection equipment
JPH0121883B2 (en)
JPS58744A (en) Inspecting method of bottle or the like