JPS58225730A - Synchronous oscillation type automatic frequency controller - Google Patents

Synchronous oscillation type automatic frequency controller

Info

Publication number
JPS58225730A
JPS58225730A JP11030882A JP11030882A JPS58225730A JP S58225730 A JPS58225730 A JP S58225730A JP 11030882 A JP11030882 A JP 11030882A JP 11030882 A JP11030882 A JP 11030882A JP S58225730 A JPS58225730 A JP S58225730A
Authority
JP
Japan
Prior art keywords
circuit
output
input signal
frequency
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11030882A
Other languages
Japanese (ja)
Inventor
Akio Kagohara
篭原 秋穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11030882A priority Critical patent/JPS58225730A/en
Publication of JPS58225730A publication Critical patent/JPS58225730A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/02Automatic control of frequency or phase; Synchronisation using a frequency discriminator comprising a passive frequency-determining element

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

PURPOSE:To complete synchronous oscillation AFC operation at a high speed even when the number of input signals (number of hits) is small, by providing a control system which operates so that the one-round DC gain of a syncrhonous oscillation AFC device is equal to the PRF of the input signals. CONSTITUTION:A control error is generated at the output 106 of a zero-order holding part 4 by the 1st input signal and the system carries on control until the 2nd input signal 101 arrives, so the control error to the 2nd input signal 101 is reduced, so that an output 104 has a stepwise difference owing to the control error when the 2nd input signal 101 arrives. A timing signal generating circuit 15 is so set by the output 111 of a detecting and amplifying circuit 14 to extract both sides of the step of the output 104 of a zero-order holding circuit 4. A one- round gain adjusting circuit 12 outputs a control voltage which has such a direction and a level that the one-round DC gain is equal to the input signal PRF.

Description

【発明の詳細な説明】 この発明は同期発振自動周波数制御装置に関し、入力が
パルス変調波であり、入力信号の数(ヒツト数)が非常
に少ない状況においても、同期発振自動周波数制御動作
を高速に行うようにしたものである。
[Detailed Description of the Invention] The present invention relates to a synchronous oscillation automatic frequency control device that can perform synchronous oscillation automatic frequency control operation at high speed even when the input is a pulse modulated wave and the number of input signals (number of hits) is very small. It was designed to be carried out in the following manner.

従来、この種の装置として第1図に示すものがあった。Conventionally, there has been a device of this type as shown in FIG.

第1図(a)において、(1)は搬送周波数finのパ
ルス変調された入力信号(101)と、電圧制御発振器
(以下vCOと称する)(8)の基準発振周波数f。
In FIG. 1(a), (1) represents a pulse-modulated input signal (101) with a carrier frequency fin and a reference oscillation frequency f of a voltage controlled oscillator (hereinafter referred to as vCO) (8).

のCW比出力102)とをミキシングし、その二つの周
波数の差fsを搬送波とする(103)を出力する第1
ミキサー、(2)は第1ミキサー(2)のIF比出力1
03)を周波数弁別する周波数弁別回路、(3)は周波
数弁別回路(3)の出力(10りの所定部をサンプリン
グするサンプリング回路、(4)はサンプリングされた
誤差信号(los)を次のパルス変調波が到来するまで
保持する零次ホールド回路、(6)は零次ホールド回路
(4)の出力(loりを一次積分する一次積分回路、(
6)は零次ホールド回路(4)と−次積分回路(5)か
ら構成される演算処理部、(7)は−次積分回路(5)
の出力(107)を増幅する増幅回路、(8)は増幅回
路(7)の出力(1041)によって発振周波数が制御
されるVCO1(9)は発振周波数が周波数弁別回路(
2)のヌルポイントに相等する周波数に等しい固定発振
器、α4は固定発振器(9)の出力(102)とvco
 (s)の出力(102)の和の周波数を出力する第二
ミキサー、ODは固定発振器(9)と第二ミキサー00
で構成される入力周波数再生部である。
CW ratio output 102) and outputs (103) using the difference fs between the two frequencies as a carrier wave.
mixer, (2) is the IF ratio output 1 of the first mixer (2)
(3) is a sampling circuit that samples the output (10 predetermined portions) of the frequency discrimination circuit (3); (4) is a sampling circuit that samples the sampled error signal (LOS) to the next pulse. (6) is a zero-order hold circuit that holds the modulated wave until it arrives;
6) is an arithmetic processing unit consisting of a zero-order hold circuit (4) and a -order integration circuit (5), and (7) is a -order integration circuit (5).
The amplifier circuit (8) amplifies the output (107) of the amplifier circuit (7), the oscillation frequency of which is controlled by the output (1041) of the VCO1 (9).
2) a fixed oscillator whose frequency is equal to the null point of α4 is the output (102) of the fixed oscillator (9) and vco
The second mixer outputs the frequency of the sum of the outputs (102) of (s), OD is the fixed oscillator (9) and the second mixer 00
This is an input frequency reproducing section consisting of:

次に動作について説明する。この同期発振自動周波数制
御袋ml(以下同期発振AFCと称する)の入力信号は
パルス変調波を対象としている。第1図(b)に周波数
弁別器(2)の周波数弁別特性を示す、周波数弁別器(
2)のヌルポイントはf8になっている。
Next, the operation will be explained. The input signal of this synchronous oscillation automatic frequency control bag ml (hereinafter referred to as synchronous oscillation AFC) is a pulse modulated wave. Figure 1(b) shows the frequency discrimination characteristics of the frequency discriminator (2).
The null point of 2) is f8.

入力信号(lOl)の搬送周波数finとVCO(8)
の基準発振周波数fOが第1ミキ・リー(1)によりミ
キシングされてその出力(103)には搬送周波数カ月
fin−fo l=fmなるパルス変調波を発生する。
Carrier frequency fin of input signal (lOl) and VCO (8)
The reference oscillation frequency fO is mixed by the first Miki Lee (1), and a pulse modulated wave having a carrier frequency fin-fo l=fm is generated at its output (103).

周波数弁別回路(2)の出力(10りにはfmのf8か
らの偏移に対応した振幅を持つビデオパルス波形が得ら
れる、これを第2図(bl)(cl)(dl)に示す。
At the output of the frequency discrimination circuit (2) (10), a video pulse waveform having an amplitude corresponding to the deviation of fm from f8 is obtained, which is shown in FIG. 2 (bl), (cl), and (dl).

一般にパルスレータ−等で使用されるパルス幅は数マイ
クロ秒以下であり、この時間内にAFCを完了するのは
不可能である。
Generally, the pulse width used in a pulse generator or the like is several microseconds or less, and it is impossible to complete AFC within this time.

サンプリング回路(3)によって周波数弁別回路(2)
の出力(loりの所定の位置(例えはパルス立上りから
、100ns )をサンプリングする。サンプリング回
路(3)の出力(loa)は第1図(blXctXdt
)に矢印で示すようなその大きさが周波数弁別回路(2
)の出力(103)の振幅に対応したインパルス列にな
る。零次ホールド回路(4)はこのサンプリング信号を
次の入力信号を次の入力信号が到来するまでホールドす
る。零次ホールド回路(4)の出力(log)を第2図
(bl)(c2)(dz)に示す。−次積分回路(5)
により零次ホールド回路(4)の出力(lOa)は−次
積分される。その出力(107)を   1第2図(b
3XcaXd3)に示す。−次積分回路(5)の出力(
107)は増幅回路(7)によって所定の値まで増幅さ
れVCO(8)を制御する。vcouはl fin−f
o l=fmがf8に近づくようにその発振周波数fO
を変える。一方、入力信号再生部0めにおいては、固定
発振器(9)はfsで発振しており、VCO(8)の出
力(102)と第二ミキサーα1によってミキシングさ
れて、その出力(11G)には周波数fs+fo=fo
utなる連続波が得られる。第2図(b4)(c4)(
d4)に第二ミキサーαQの出力(tto)が入力周波
数finに近づく変化を示す。
Frequency discrimination circuit (2) by sampling circuit (3)
The output (loa) of the sampling circuit (3) is sampled at a predetermined position (for example, 100 ns from the pulse rise) as shown in Figure 1 (blXctXdt
), the size of which is indicated by the arrow in the frequency discrimination circuit (2
) becomes an impulse train corresponding to the amplitude of the output (103). The zero-order hold circuit (4) holds this sampling signal until the next input signal arrives. The output (log) of the zero-order hold circuit (4) is shown in FIG. 2 (bl) (c2) (dz). -order integral circuit (5)
Accordingly, the output (lOa) of the zero-order hold circuit (4) is subjected to negative-order integration. The output (107) is 1Figure 2 (b
3XcaXd3). The output of the -order integration circuit (5) (
107) is amplified to a predetermined value by the amplifier circuit (7) and controls the VCO (8). vcou is l fin-f
o The oscillation frequency fO so that l=fm approaches f8
change. On the other hand, in the input signal reproducing section 0, the fixed oscillator (9) is oscillating at fs, and the output (102) of the VCO (8) is mixed by the second mixer α1, and its output (11G) is Frequency fs+fo=fo
A continuous wave called ut is obtained. Figure 2 (b4) (c4) (
d4) shows a change in the output (tto) of the second mixer αQ approaching the input frequency fin.

尚、第2図にはパルス変調された入力信号(第2図(a
))とともに、下記8つの場合の各部の出力波形を示す
。サンプル値制御理論によれば、AFCの一巡伝達関数
の直流利得にと入力信号の周期Tの2    2   
 2 関係が(A)T〉−(B)T−一 (C)TくKの時に
、K      K AFCは異った制御動作を行う。つまり(A)の場合、
制御は指数関数的に完了する(第2図(bl)−(b4
) )、(B)の場合、制御は第2発註の入力信号到来
時点で完了する(第2図(clHc4)) 、 (C)
の場合、制御はダンピングを起こして完了する(第2図
(dl)〜(d4))。
In addition, Fig. 2 shows a pulse-modulated input signal (Fig. 2(a)
)) as well as the output waveforms of each part in the following eight cases. According to the sample value control theory, the DC gain of the AFC open loop transfer function is 2 2 of the period T of the input signal.
2 When the relationship is (A)T〉−(B)T−1 (C)T×K, K K AFC performs different control actions. In other words, in the case of (A),
Control is completed exponentially (Fig. 2 (bl)-(b4)
)), (B), the control is completed at the time of arrival of the input signal of the second annotation (Fig. 2 (clHc4)), (C)
In this case, the control is completed by causing damping ((dl) to (d4) in FIG. 2).

従来の同期発振AFCの場合、入力信号の周期TとAF
Cの一巡直流利得が上記(A)と(C)の場合、AFC
動作が完了するためには多数の信号(ヒツト数)を必要
とし、多数の信号(ヒツト数)が得られない場合はAF
C動作が完了しないという欠点があった。
In the case of conventional synchronous oscillation AFC, the input signal period T and AF
When the open circuit DC gain of C is (A) and (C) above, AFC
A large number of signals (number of hits) are required to complete the operation, and if a large number of signals (number of hits) cannot be obtained, AF
There was a drawback that the C operation was not completed.

この発明は上記のような従来の同期発振AFC装置の欠
点を解消すべくなされたもので、従来の同期発振AFC
の制御ループの中に電気的に利得可変の増幅部を設け、
入力信号の繰り返し周波数(以下PRFと称する)に応
じて増幅部の利得を変えて、AFC系の一巡直流利得が
常に入力信号のPRFに等しくなるように動作する一巡
直流利得調整部を持ち、その結果従来のものに比べ、制
御動作が高速で、少ない入力信号(ヒツト数)でもAF
C動作を完了できる同期発振AFC装置を提供すること
を目的としている。
This invention was made to eliminate the drawbacks of the conventional synchronous oscillation AFC device as described above.
An electrically variable gain amplifier is provided in the control loop of
It has a one-round DC gain adjustment part that changes the gain of the amplification part according to the repetition frequency (hereinafter referred to as PRF) of the input signal, and operates so that the one-round DC gain of the AFC system is always equal to the PRF of the input signal. As a result, the control operation is faster than conventional ones, and AF is possible even with a small number of input signals (number of hits).
It is an object of the present invention to provide a synchronous oscillation AFC device that can complete C operation.

以下この発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第8図において、@は本発明の特徴である一巡利得調整
回路である。Qlは一巡利得調整回路(6)の出力によ
りその利得を変えることのできる利得可変増幅回路、(
至)は入力信号の到来を検出する検波増幅回路、04は
検波増幅回路(至)の情報を得て一巡利得調整部(6)
に対するタイミング信号を発生するタイミング信号発生
回路である。また第4図に一巡利得調整回路埠の具体的
構成を示す。第4図において、Q→は零次ホールド回路
出力(106)を第1ゲート信号(112)に従ってゲ
ートする第1ゲート回路、Q7)は零次ホールド回路出
力(106)を第2ゲート信号Ua)に従ってゲートす
る第2ゲート回路、(ト)は第1ゲート回路0ゆの出力
(11りの極性を判別してその結果を次の入力信号が到
来するまで保持する第1極性判定回路、0呻は第2ゲー
ト回路07)の出力(115)の極性を判別して、その
結果を次の入力信号が到来するまで保持する第2極性判
定回路、に)は第1極性判定回路(ト)の出力(us)
と、第2極性判定回路(1・の出力(117)の掛算を
行う第1掛算回路、Ql)は零次ホールド回路出力(1
06)の絶対値を出力する絶対値回路、(イ)は第1掛
算回路(ホ)の出力(US)と絶対値回路Q])の出力
(US)の積を演算する第2掛算回路、@は第2掛算回
路(2)の出力(120)を増幅する増幅回路、(ハ)
は−巡直流利得の制御方向を識別する制御方向識別回路
である。尚、第1極性判定回路(ト)、第2極性判定回
路α呻、第1掛算回路(ホ)の出力(116X117)
(118)は正、負、もしくは0〔■〕の単位電圧であ
る。
In FIG. 8, @ is a one-turn gain adjustment circuit which is a feature of the present invention. Ql is a variable gain amplifier circuit whose gain can be changed by the output of the loop gain adjustment circuit (6);
04 is a detection amplifier circuit that detects the arrival of the input signal, and 04 is a round-trip gain adjustment unit (6) that obtains information from the detection amplifier circuit (to).
This is a timing signal generation circuit that generates a timing signal for. Further, FIG. 4 shows a specific configuration of the open circuit gain adjustment circuit. In FIG. 4, Q → is the first gate circuit that gates the zero-order hold circuit output (106) according to the first gate signal (112), and Q7) is the first gate circuit that gates the zero-order hold circuit output (106) according to the second gate signal Ua). (g) is a first polarity determination circuit that determines the polarity of the output of the first gate circuit (11) and holds the result until the next input signal arrives; is a second polarity determination circuit that determines the polarity of the output (115) of the second gate circuit 07) and holds the result until the next input signal arrives; Output (us)
and the second polarity determination circuit (the first multiplier circuit, Ql, which multiplies the output (117) of 1), the zero-order hold circuit output (1
06) An absolute value circuit that outputs the absolute value of (A), a second multiplication circuit that calculates the product of the output (US) of the first multiplication circuit (E) and the output (US) of the absolute value circuit Q]); @ is an amplifier circuit that amplifies the output (120) of the second multiplier circuit (2), (c)
- is a control direction identification circuit that identifies the control direction of the circular DC gain. In addition, the outputs (116X117) of the first polarity determination circuit (G), the second polarity determination circuit α, and the first multiplication circuit (E)
(118) is a positive, negative, or 0 [■] unit voltage.

第8図において、−巡利得調整部Q功と検波増幅回路α
荀、タイミング信号発生回路(至)、利得可変増幅回路
(至)が追加されたこと以外は、この発明の機能は第1
図の従来の同期発振AFC方式と同じである。
In Fig. 8, the −circuit gain adjustment unit Q and the detection amplifier circuit α
Other than the addition of a timing signal generation circuit (to) and a variable gain amplification circuit (to), the functions of this invention are as follows.
This is the same as the conventional synchronous oscillation AFC method shown in the figure.

この発明による同期発振AFCの動作を第8図と第4図
に従って一巡利得調整部の機能を中心に説明する。第8
図の同期発振AFC方式において、−巡利得調整部(2
)の出力(122)をある電圧に固定してそれを基準に
したとき、・−巡直流利得KOは定数であり、パルス変
調された入力信号(101)のPRFより小さい時は、
系の出力(no)は指数関数的に入力償球の搬送周波数
に漸近し、逆にKOが入力信q 1ol)のPRFより
大きい時は系の出力(no)はダンピングしながら入力
信号の搬送周波数に漸近していく。
The operation of the synchronous oscillation AFC according to the present invention will be explained with reference to FIGS. 8 and 4, focusing on the function of the open loop gain adjustment section. 8th
In the synchronous oscillation AFC method shown in the figure, the -circuit gain adjustment section (2
)'s output (122) is fixed at a certain voltage and used as a reference, the circular DC gain KO is a constant, and when it is smaller than the PRF of the pulse-modulated input signal (101),
The output (no) of the system exponentially approaches the carrier frequency of the input compensation sphere, and conversely, when KO is larger than the PRF of the input signal q (1ol), the output (no) of the system will carry the input signal while damping it. Asymptotic to the frequency.

まず、本発明の同期発振AFC方式の制御系におい  
 ゛て一巡直流利得KOが入力償球lo l)のPRF
より小さい場合と大きい場合の各部の信号をそれぞれ第
    15図、第6図に示す。第5図、第6図におい
て(alは入力信号(101)、(b)は零次ホールド
回路(4)の出力(106)、(c)は検波増幅回路〔
荀の出力(m)、(d)は第1ゲート信号(112)、
(e)は第2ゲート信号(113)、(f)は第1ゲー
ト回路αQの出力(114)、(glは第2ゲート回路
αηの出力(115)、(b)は篤l極性判定回路(ト
)の出力(us)、(1)は第2極性判定回路1.11
の出力(117)、(j)は第1掛算回路(1)の出力
(11B)、(k)は第2掛算回路に)の出力(120
)である。
First, in the control system of the synchronous oscillation AFC method of the present invention,
PRF of input sphere lo l)
The signals of each part are shown in FIG. 15 and FIG. 6, respectively, when the value is smaller and when it is larger. In Figures 5 and 6, (al is the input signal (101), (b) is the output (106) of the zero-order hold circuit (4), and (c) is the detection amplifier circuit [
The outputs (m) and (d) of Xun are the first gate signal (112),
(e) is the second gate signal (113), (f) is the output (114) of the first gate circuit αQ, (gl is the output (115) of the second gate circuit αη, (b) is the polarity determination circuit (g) Output (us), (1) is the second polarity determination circuit 1.11
output (117), (j) is the output (11B) of the first multiplication circuit (1), (k) is the output (120) of the second multiplication circuit
).

零次ホールド部(4)の出力(106)には第1発註の
入力信号によって制御誤差が発生して、2発目の入力償
球(101)が到来するまで系は制御を続けているため
に、2発目の入力信号(101)に対して制御誤差は小
さくなっており、従って2発目の入力信号(lOl)の
到来時点で制御誤差(10りに段差が発生する。
A control error occurs in the output (106) of the zero-order hold section (4) due to the input signal of the first note, and the system continues to be controlled until the second input compensation ball (101) arrives. Therefore, the control error is smaller with respect to the second input signal (101), and therefore a control error (10 steps) occurs at the time of arrival of the second input signal (101).

タイミング信号発生回路(イ)は検波増幅回路α荀の出
力(m)から、第5図(dl (e)に示すように零次
ホールド回路(4)の出力(104)の段差の両側を抽
出するように設定される。
The timing signal generation circuit (a) extracts both sides of the step of the output (104) of the zero-order hold circuit (4) from the output (m) of the detection amplifier circuit α, as shown in Figure 5 (dl (e)). is set to

第4図でわかるように一巡利得調整回路の出力には一巡
直流利得が入力信号PRFに等しくなるように方向と大
きさを持った制御電圧が発生する。
As can be seen from FIG. 4, a control voltage having a direction and magnitude such that the open loop DC gain becomes equal to the input signal PRF is generated at the output of the open loop gain adjustment circuit.

−巡直流利得が入力信号PRFに等しくなると、第2図
の(cl)〜(Cりに示すような応答となり、AFC動
作が高速に完了できる。
- When the circular DC gain becomes equal to the input signal PRF, the responses shown in (cl) to (c) of FIG. 2 are obtained, and the AFC operation can be completed at high speed.

以上のように、この発明によれば同期発振AFC装置の
一巡直流利得を帛に入力信号のPRFに等しくなるよう
に動作する制御系を設けたことにより、この同期発振A
FC方式は高速に制御動作を行う。
As described above, according to the present invention, by providing a control system that operates to make the PRF of the input signal equal to the PRF of the input signal using the loop DC gain of the synchronous oscillation AFC device, the synchronous oscillation A
The FC method performs control operations at high speed.

従って入力信号の数(ヒツト数)が少ない場合でも高速
に同期発振ANC動作を完了することかできる。
Therefore, even when the number of input signals (number of hits) is small, the synchronous oscillation ANC operation can be completed at high speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の同期発振AFC装置を示し、(alはそ
のブロック図、(b)は周波数弁別回路の特性を示す説
明図、第2図は従来の同期発振ANC装置の制御動作を
示す説明図、第8図はこの発明の一実施例における同期
発振kFC装置を示すブロック図、第4図は、第8図の
中の一巡利得調整回路の詳細を示すブロック図、第5図
、第6図は−巡利得調製部の機能を説明する為の説明図
である。 図において、 (1)・・第1ミキサー、  (2)・・・周波数弁別
回路、(3)・・サンプリング回路、(4)・・零次ホ
ールド回路、(5)・・・−次積分回路、  (6)・
・・演算回路、(7)・・・増幅回路、    (8)
・・・電圧制御発振器、(9)・・固定発振器、   
α0・・・第2ミキサー、α→・・・利得可変増幅回路
、(6)・・−巡利得調整回路、(至)・・・検波増幅
回路、   04)・・タイミング信号発生回路、(至
)・・第1ゲート回路、 0・・・・第2ゲート回路、
αη・・第1極性判定回路、(至)・・・第2極性判定
回路、α呻・第1掛算回路、  (イ)・・絶対値回路
、シη・・−第2掛算回路、  に)・・・増幅回路。 なお、図中同一符号は同一または相等部品を示す。 代理人 葛野信−
FIG. 1 shows a conventional synchronous oscillation AFC device, (al is its block diagram, (b) is an explanatory diagram showing the characteristics of the frequency discrimination circuit, and FIG. 2 is an explanation showing the control operation of the conventional synchronous oscillation ANC device. 8 is a block diagram showing a synchronous oscillation kFC device in an embodiment of the present invention, FIG. 4 is a block diagram showing details of the open loop gain adjustment circuit in FIG. 8, and FIGS. The figure is an explanatory diagram for explaining the function of the -circuit gain adjustment section. In the figure, (1)...first mixer, (2)...frequency discrimination circuit, (3)...sampling circuit, ( 4)...Zero-order hold circuit, (5)...--order integration circuit, (6)...
...Arithmetic circuit, (7)...Amplification circuit, (8)
...voltage controlled oscillator, (9)...fixed oscillator,
α0...Second mixer, α→...Variable gain amplifier circuit, (6)...-Return gain adjustment circuit, (To)...Detection amplifier circuit, 04)...Timing signal generation circuit, (To )...first gate circuit, 0...second gate circuit,
αη...First polarity judgment circuit, (To)...Second polarity judgment circuit, αAnne/First multiplication circuit, (A)...Absolute value circuit, η...-Second multiplication circuit, To) ...Amplification circuit. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Makoto Kuzuno

Claims (1)

【特許請求の範囲】[Claims] パルス変調された入力信号をRF大入力電圧制御発振器
の出力をLO大入力する第1のミキサーと、このミキサ
ーのIF比出力周波数弁別する周波数弁別回路と、この
周波数弁別回路の出方の所定部をサンプリングするサン
プリング回路と、このサンプリング回路によりサンプリ
ングされた信号を次の入力信号が到来するまで保持する
零次ホールド回路と、この零次ホールド回路の出力を積
分し、上記電圧制御発振器の発振周波数を制御する為の
出力を生ずる一次積分回路と、上記周波数弁別回路のヌ
ルポイントに相等する周波数で発振する固定発振器と、
この固定発振器の出力をRF大入力しかつ上記電圧制御
発振器の出力をLO大入力する第2のミキサーを有する
自動周波数制御装置において、電気的に利得制御可能な
利得可変増幅回路と、上記零次ホールド回路の出方信号
を用い、上記入力信号の繰り返し周波数に対する一巡直
流利得の大小を判断し、−巡直流利得が常に入力信号の
繰り返し周波数に一致するように一巡直流利得を制御す
る一巡利得調整部を設けたことを特徴とする同期発振自
動周波数制御装置。
A first mixer that receives a pulse-modulated input signal as an LO large input of the output of an RF large input voltage controlled oscillator, a frequency discrimination circuit that discriminates the IF ratio output frequency of this mixer, and a predetermined part of the output of this frequency discrimination circuit. A sampling circuit that samples the signal, a zero-order hold circuit that holds the signal sampled by this sampling circuit until the next input signal arrives, and an oscillation frequency of the voltage-controlled oscillator that integrates the output of this zero-order hold circuit. a fixed oscillator that oscillates at a frequency equivalent to the null point of the frequency discrimination circuit;
In an automatic frequency control device having a second mixer which inputs the output of the fixed oscillator as a large RF input and receives the output of the voltage controlled oscillator as a large LO input, the automatic frequency control device includes a variable gain amplifier circuit whose gain can be electrically controlled; A loop gain adjustment that uses the output signal of the hold circuit to determine the magnitude of the loop DC gain with respect to the repetition frequency of the input signal, and controls the loop DC gain so that the loop DC gain always matches the repetition frequency of the input signal. 1. A synchronous oscillation automatic frequency control device comprising: a synchronous oscillation automatic frequency control device;
JP11030882A 1982-06-24 1982-06-24 Synchronous oscillation type automatic frequency controller Pending JPS58225730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11030882A JPS58225730A (en) 1982-06-24 1982-06-24 Synchronous oscillation type automatic frequency controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11030882A JPS58225730A (en) 1982-06-24 1982-06-24 Synchronous oscillation type automatic frequency controller

Publications (1)

Publication Number Publication Date
JPS58225730A true JPS58225730A (en) 1983-12-27

Family

ID=14532409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11030882A Pending JPS58225730A (en) 1982-06-24 1982-06-24 Synchronous oscillation type automatic frequency controller

Country Status (1)

Country Link
JP (1) JPS58225730A (en)

Similar Documents

Publication Publication Date Title
WO2006041042A1 (en) Small and low power consumption short pulse radar having time lag between transmission and reception arbitrarily variable with high time resolution and its control method
US4975660A (en) Method and apparatus for automatic phase adjustment in a phase locked loop
JPS58225730A (en) Synchronous oscillation type automatic frequency controller
KR930008746A (en) Track Traverse Detection Circuit
JPS6131431B2 (en)
US3710386A (en) Time-shared frequency tracking loop
JP3492836B2 (en) Pseudo geostationary satellite transponder
JPH06138222A (en) Distance tracking device
JPS5832412B2 (en) Reference signal formation method for phase synchronization in rotation control system
JPH04212081A (en) Orientation detection device
JPH062152Y2 (en) PLL system direction finder
RU62703U1 (en) SIGNAL PROCESSING SYSTEM
RU2193783C2 (en) Radar responder
JP2893719B2 (en) Phase compensation circuit
JPS585386B2 (en) How to detect angle error
JPH04298116A (en) Sampling signal generating circuit
JP2793879B2 (en) Continuous wave generation method and circuit
JPH0394518A (en) Negative feedback controller
JPH0418496B2 (en)
JPH0411184Y2 (en)
SU1354429A1 (en) Discriminator of clock unit
SU758480A1 (en) Band-pass filter
JPS6244623B2 (en)
JPS6357745B2 (en)
JPH01311639A (en) Receiver for spread spectrum signal