JPS5822556A - Eccentric motor - Google Patents

Eccentric motor

Info

Publication number
JPS5822556A
JPS5822556A JP11986681A JP11986681A JPS5822556A JP S5822556 A JPS5822556 A JP S5822556A JP 11986681 A JP11986681 A JP 11986681A JP 11986681 A JP11986681 A JP 11986681A JP S5822556 A JPS5822556 A JP S5822556A
Authority
JP
Japan
Prior art keywords
magnetic poles
rotor
stator
magnetic
poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11986681A
Other languages
Japanese (ja)
Inventor
Ichitaro Otsuka
大塚 一太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11986681A priority Critical patent/JPS5822556A/en
Publication of JPS5822556A publication Critical patent/JPS5822556A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/06Rolling motors, i.e. motors having the rotor axis parallel to the stator axis and following a circular path as the rotor rolls around the inside or outside of the stator ; Nutating motors, i.e. having the rotor axis parallel to the stator axis inclined with respect to the stator axis and performing a nutational movement as the rotor rolls on the stator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PURPOSE:To provide high output out of small power consumption, by a method wherein a rotor is mounted eccentrically to a rotary shaft, and the number of magnetic poles of the rotor is less than the number of magnetic poles of a stator so that the rotor performs rolling-like rotation. CONSTITUTION:A rotary output shaft 2 is rotatably supported by a bearing 10, an eccentric rod 3 is mounted to the rotary output shaft 2 with its center eccentric to the shaft 2, and a rotor 4 is mounted to the eccentric rod 3. A plurality of magnetic poles 5 are provided on the outer periphery of the rotor 4, facing magnetic poles 1 of a stator provided on the outside of the rotor 4. At that time, the number of magnetic poles 5 of the rotor is less than that of the stator. Further, gears 6 and 7 having the same gear ratio with the magnetic poles ratio of the rotor and stator are mounted to the ends of the rotary output shaft 2 so as to engage with each other. Then electric power is applied in such manner that the attractive force is provided to the stator poles 1 which face the half of crescent-shaped space 11 around the rotor 4, and the repulsive force is provided to the rest half.

Description

【発明の詳細な説明】 この発明は偏心した軸に磁極を(lfffえたローター
が外側P1形状に配置された磁極内周面に」−記ロータ
ー外周面の1部を接近しながら、転がるように自転と公
1獣をくり返して動力を得るようにしたモーターに関す
る。
DETAILED DESCRIPTION OF THE INVENTION This invention provides a rotor with magnetic poles arranged on an eccentric shaft (lffff) so that the rotor rolls while approaching a part of the outer circumferential surface of the rotor to the inner circumferential surface of the magnetic poles arranged in an outer P1 shape. It concerns a motor that obtains power by repeating rotation and rotation.

磁気力エネルギーを最大に利用する場合、磁力の中央で
、かつ上下方向に吸着9反発させることによって有効に
又強力な力が得られる。このような方法は広くされてお
9例へば鉄金属をつシ上げる電磁石、公知の乾電池1木
で人1人をつり上げるパワーなどが磁石板に垂直に利用
されている磁力を広範囲に吸収されている。この方法を
用いて本発明は回転動力機関をしようとしたものである
When utilizing magnetic force energy to the maximum, effective and strong force can be obtained by attracting and repelling the magnetic force in the vertical direction at the center of the magnetic force. This method is widely used, and examples include electromagnets that lift up ferrous metals, and the power that can lift a person with a single dry cell battery.The magnetic force used perpendicularly to the magnetic plate is absorbed over a wide range. . Using this method, the present invention attempts to develop a rotary power engine.

従来のモーターはロータが自転構造であるため外側の磁
極にローグーの磁極が吸着する場合双方磁力範囲m1l
1部同士であるから磁力の1部で行なわれ、かつ11°
IY方向にすれちがい連動のだめ起動力が弱く無だなエ
ネルギー放出で効率が悪かった。
In conventional motors, the rotor has an autorotating structure, so when the rogue magnetic pole is attracted to the outer magnetic pole, the magnetic force range of both sides is m1l.
Since they are two parts, it is done with one part of the magnetic force, and the angle is 11°.
It was inefficient because the starting force was weak due to the interlocking movement in the IY direction, and the energy was released in vain.

そこで本発明はその欠点をなくし磁力を粋人くそして平
面にほぼ乎直に吸着1反発を行ないつつそれを回転運動
にすることを目的とする。
Therefore, the object of the present invention is to eliminate this drawback and to make the magnetic force into a rotational motion while attracting and repelling the flat surface almost directly.

その構成は9円形状に配置された複数個の磁極(1、1
,01,、201,301,)の中心に偏心軸(3,1
+13゜203、 303’)を形成し、この偏心軸に
軸受(18)を介してローター(4,1,04,204
,304)を回転可能にはめ込み、そのローグーの周囲
には」二記外側の磁極数よりも少々い数の磁極(5,i
、05.205゜305)を配設し、このとき外側の磁
極内周面とローグーの磁極外周面の間は1部を接近させ
他方に三日月形空間(1,1,1,1,1,、211,
、R1,1,)を形成し、そしてローター側部に固着し
たギヤ(6)はハウジングに固定されたリングギヤ(7
)の内側でかみ合わされ、この両者のギヤ比は双方の磁
極数に比例して構成されている。そして三日月形空間の
ローター進行方向側約2分の1の向い合う磁極は吸着を
同時に残りの空間部の向い合う磁極は反発するように配
電装置を設けたものである。
Its configuration consists of multiple magnetic poles (1, 1
,01,,201,301,), an eccentric shaft (3,1
+13°203, 303'), and a rotor (4, 1, 04, 204) is connected to this eccentric shaft via a bearing (18).
, 304) is fitted in a rotatable manner, and a number of magnetic poles (5, i
, 05.205°305), and at this time, between the inner circumferential surface of the outer magnetic pole and the outer circumferential surface of the Rogue magnetic pole, one part is brought close to the other, and a crescent-shaped space (1, 1, 1, 1, 1, ,211,
, R1,1,), and the gear (6) fixed to the side of the rotor is connected to the ring gear (7) fixed to the housing.
), and the gear ratio of both is proportional to the number of magnetic poles of both. A power distribution device is provided so that the opposing magnetic poles in about one-half of the crescent-shaped space on the rotor moving direction side are attracted, while the opposing magnetic poles in the remaining space are repelled.

」―記構成を図面実施例に基づいて説明する。”--The configuration will be explained based on the drawing examples.

第1図は本発明第1実施例の横断面図で、第2図はり′
?1寮施例の第1図で示すT、 −T、線のたて断面ン
1で、同のように円形状に外側へ配置rqされてる6個
の電磁石(1)の中心に主軸(2)をハウジングに軸装
し、その市軸中央には偏心軸(3)を設けると共にこの
偏心軸に軸受(18)を介してローター(4)をはめ込
みこの周囲に永久磁石(5)を5個均(、・γ配置され
る。そして」−配性側の電磁石内周面とローグーの永久
磁石外周面間の1部はわずかな間を残して接近させ他の
部分で三日月形空間(11)を形成する。この空間の大
きさで出力が異なるが、これは偏心寸法または磁+、l
〆数や本体の大きさなどで自在に11−1成できる。
Figure 1 is a cross-sectional view of the first embodiment of the present invention, and Figure 2 is a cross-sectional view of the first embodiment of the present invention.
? In the vertical section 1 of the T, -T line shown in Figure 1 of the 1 dormitory example, the main axis (2 ) is mounted in a housing, and an eccentric shaft (3) is provided at the center of the center shaft, and a rotor (4) is fitted into this eccentric shaft via a bearing (18), and five permanent magnets (5) are placed around this shaft. The inner circumferential surface of the electromagnet on the distributing side and the outer circumferential surface of the permanent magnet on the rogue side are approached with a slight gap left in one part, and a crescent-shaped space (11) is formed in the other part. The output differs depending on the size of this space, but this is due to the eccentric dimension or magnetic +, l
You can freely create 11-1 depending on the number of ends and the size of the main body.

第3図は第1実施例の第1図で示すK −K線断面図で
才にギヤ構j告を示し、リングギヤ(7)は固定されて
おりギヤ(6)はローグーに固着されているカラローグ
ーと共にリングギヤの1か所にかみ合って回転され、こ
の両者のギヤ11.1数は外側磁e?が6個で回転磁極
は5個であるから6対5で(111成されれば双方の磁
極は接近された所で1個づつ同調して回転される。
Fig. 3 is a sectional view taken along the line K-K shown in Fig. 1 of the first embodiment, and clearly shows the gear arrangement, with the ring gear (7) being fixed and the gear (6) being fixed to the low gear. It is rotated by meshing with one part of the ring gear together with the coloro goo, and the gears of both of them are 11.1 and the number is the outer magnetic e? Since there are six rotating magnetic poles and five rotating magnetic poles, if the ratio is 6 to 5 (111), both magnetic poles will be rotated in synchrony one by one when they are brought close to each other.

第4図は第1実施例の第1図で示すJ−J線断面図で、
第1実施例の配電方法で機械的に構成する場合で、これ
には多種の方法があり9図面で示すように外方にのびた
電線(19)は図面第2図に接続されるもので、6個の
電磁石の電線中と一12本を中心部に集めたもので、こ
の電線に回転する整流子(1G)で配電されるもので整
流子は主軸からギヤの(12)、(13)、(1,4)
、(15)を経て2分の1に減速されたもので、これを
図面第5図、第6図で示す。
FIG. 4 is a sectional view taken along line J-J shown in FIG. 1 of the first embodiment.
In the case of mechanically configuring the power distribution method according to the first embodiment, there are various methods for this, and as shown in Figure 9, the electric wire (19) extending outward is connected as shown in Figure 2 of the diagram. One of the 112 electric wires of 6 electromagnets are gathered in the center, and power is distributed to this electric wire by a rotating commutator (1G).The commutator connects the main shaft to the gears (12) and (13). , (1,4)
, (15), and the speed is reduced to one-half, as shown in FIGS. 5 and 6.

第5図は分りやすくするだめ5対4の磁極から成る第2
実施例の略図で1回転磁極は除いてあり外側磁極の配電
法だけを示したものでA−Eは電磁コイルでこの+と−
の電線(t+9 )は中心部に配備債しされたカーボン
ブラシ(1,1,7)に接続され、そして2分の1で回
転する半弧形をしたー整流子(116−2)と十整流子
(1,1,fl −1,)に交互に接されてAからN、
S、  N、S、 Nの磁極になり、これをさらに分り
やすく第6図で示す。
Figure 5 shows a second section consisting of 5 to 4 magnetic poles for clarity.
This is a schematic diagram of the embodiment, excluding the one-turn magnetic pole and showing only the power distribution method for the outer magnetic pole. A-E are electromagnetic coils, and the + and -
The electric wire (t+9) is connected to carbon brushes (1, 1, 7) arranged in the center, and is connected to a half-arc-shaped commutator (116-2) rotating at a half rate. From A to N, alternately in contact with the commutator (1, 1, fl -1,),
The magnetic poles are S, N, S, N, and this is shown in Figure 6 for easier understanding.

第6図は第5図と同じ第2実施例で直線に示したもので
1図面右側イ〜トに整流イが移動した状態を示したもの
で、その間隔は5分の1回転つまり。
Fig. 6 shows the second embodiment, which is the same as Fig. 5, shown in a straight line, and shows a state in which rectifier I has moved from I to I on the right side of the drawing, and the interval is one-fifth of a turn, that is.

72度で矢印のように回転され、第5図の状態は第6図
イと同じである。
It is rotated by 72 degrees as shown by the arrow, and the state in FIG. 5 is the same as in FIG. 6A.

上記示しだ構成において、第2実施例で第7図の(イ)
〜(へ)の略図によって説明する。
In the configuration shown above, in the second embodiment, (a) in FIG.
This will be explained using a schematic diagram.

第7図の(イ)〜(へ)は第6図のイ〜へと同じ位置に
ある。
(A) to (F) in FIG. 7 are in the same position as A to B in FIG. 6.

第7図(イ)で示すように、磁極]3とす、CとCが吸
着し磁極Eとcl、、 DとCが反発されて5分の1回
転して第7図(ロ)になり、このとき磁1@BのS極は
li Iy4に変り磁極CとC,Dとdが吸着し、磁極
Eとd、Aとa、は反発して第7図(ハ)となり、Cの
磁極が変り磁極りとd−、Eとaが吸着し、磁極Aとa
、 Bとbが反発する。とのように(ニ)、(ホ)(へ
)と繰返して外側の磁極はロークーが5分の1回転する
ごとに1個づつ順次S F4’、がN極に変るようにさ
れると共に9回転方向の両極は吸着し合い、又反対側で
反発が行表われるように配電され双方の1個づつの極で
合わさりロークーは転がるように回転される。
As shown in Figure 7 (a), magnetic pole] 3, C and C attract, magnetic poles E and cl, D and C are repelled and rotate one-fifth, resulting in Figure 7 (b). At this time, the S pole of magnetic 1@B changes to li Iy4, magnetic poles C and C, D and d attract, and magnetic poles E and d, A and a repel, resulting in Figure 7 (C), and C The magnetic poles of change and the magnetic poles d-, E and a attract, and the magnetic poles A and a
, B and b repel. By repeating (d), (e), and (f), the outer magnetic poles are changed one by one each time the loco rotates one-fifth of the way. Electricity is distributed so that the two poles in the direction of rotation attract each other and repel each other on the opposite side, and one pole on each side meets each other, causing the loco to rotate as if rolling.

以−1−示した実施例は外側磁極が電磁石で回転磁極を
永久磁石にされたが、この逆にしてもよいし又は。
In the embodiment shown below, the outer magnetic pole is an electromagnet and the rotating magnetic pole is a permanent magnet, but this may be reversed.

両方を′「E′&J、石にされてもよい。Both 'E' & J, may be turned into stone.

第8図は第3実施例を示した略図で、磁極を9対8にし
だもので構成法は同じであるが効率がよいが少し複雑化
する。
FIG. 8 is a schematic diagram showing a third embodiment, in which the magnetic poles are arranged in a ratio of 9 to 8, and the construction method is the same, which is more efficient but slightly more complicated.

負′59図は第4実施例で、これは回転する磁極をすべ
て同磁極にし回転方向の三日月形空間部2分の1はすべ
て吸着する回磁にされ、他方空間部における磁極も寸だ
反発する同極としたものであるが、同時に2個を変え々
ければならない。この方法も強力である。
The negative '59 figure shows the fourth embodiment, in which all the rotating magnetic poles are made the same magnetic pole, and one-half of the crescent-shaped space in the rotation direction is made into a rotating magnet that attracts, while the magnetic poles in the other space are also extremely repulsive. However, the two must be changed at the same time. This method is also powerful.

以上示しだように、外側の磁極と回転する磁極はそれぞ
れ回転する側においては吸着を、そしてその反対側もそ
れぞれが反発を押すように、しかも磁石面の正面で、か
つほぼ直線に行なわれ双方の最大磁力範囲同士でもあり
、そして又1個の磁極が吸着から反発を完了するには主
軸は約半回転される。すなわち回転磁極は上下動、かつ
回転の距離と時間が要されるから、ねばりあるパワーが
出せると同時に主軸は偏心軸によりてこの現理が応用さ
れ、そして又偏心軸もロークーが自転しながら四〇tc
されるので減速効果が働きさらに強力である。又このよ
うに行程に時間と共に距離を要すためコイルのわずかな
残置も吸収され、従って小電力で有効にそして磁力を広
く深く完全に利用される少エネルギ一時代に変る新しい
モーターである。
As shown above, the outer magnetic poles and the rotating magnetic poles attract each other on the rotating side, and repel each other on the opposite side, in front of the magnet surface and in a nearly straight line. The maximum magnetic force range is also within the range of , and the main shaft must be rotated about half a rotation for one magnetic pole to complete the transition from attraction to repulsion. In other words, since the rotating magnetic pole moves up and down, and requires distance and time for rotation, this principle is applied to the main shaft by using an eccentric shaft, and at the same time, this principle is applied to the eccentric shaft. 〇tc
This makes the deceleration effect even more powerful. In addition, since the stroke requires time and distance, even the slightest remaining coil is absorbed, and therefore, it is a new motor that will usher in a new era of low energy consumption, where the magnetic force can be used effectively, widely and deeply with low electric power.

本発明を自動11キに利用されることは最適で大きなバ
ッテリーを要さず又本モーターの停止中のブレーキ効果
はげつぐんである。
The use of the present invention in an automatic 11 car is optimal because it does not require a large battery and the braking effect of the motor is excellent when the motor is stopped.

本発明に以ているのがロータリーエンジンであるがロー
タリーエンジンには反発だけで吸着がなく公pイが太き
い。
The present invention uses a rotary engine, but the rotary engine has only repulsion and no adsorption, and has a large public load.

本モーターを実施する場合複数機(7♂;にされた方が
安定した高出力が得られる。
When using this motor, it is better to use multiple motors (7♂;) to obtain stable and high output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1実施例を示しだ横断面1ソ1゜第2図は第
1実施例の第1図で示すT、 −T−・線1ねj面図。 第3図は第1実施例の第1図で示ずに−に線Il’li
面図。第4図は第1実施例の第1Mで示すJ−J線断面
図。 F5図は第2実施例による外側電磁石配電法の略図。 第6図は第2実施例で第5図を平面にした略図。第7図
(イ)〜(へ)は第2実施例作動状態の略図。 第8図は第3実施例を示しだ略図。第9図は第4実施例
を示した略図。1.、 1.nl、、  201. 3
旧は外側磁極。2. 1.(12,202,3112は
主軸。3.  to3゜203、 303は偏心軸。4
.、 1.04.、 2(14,307Iはロークー。 5,105,2r15,305はローター周囲の磁(1
′Ro6は平ギヤ。7はリングギヤ。8はハウジング。 10は軸受。1.1−、 1.1.i、  21.1.
、、.311は三日月形空間。12.  I3. 1.
4.、 15はギヤ。16は整流子。17,1.1.7
はカーボンブラシ。18は軸受。 19、 1.1.!1は電線。20はスプリング。21
は鉄心。 22は電源保持体。23は電源。A〜1℃は外側磁極。 a〜dはロークー側磁極。SはS磁極。NはN磁極。 特π「出願人  大塚−太部  9− オ′7田〜(4) (ハ) l峠 聾) lクエ
FIG. 1 shows the first embodiment, and FIG. 2 is a cross-sectional view of the first embodiment taken along the line T, -T- and line 1J shown in FIG. 1. FIG. 3 shows a line Il'li which is not shown in FIG. 1 of the first embodiment.
Surface diagram. FIG. 4 is a cross-sectional view taken along line J-J shown at 1M of the first embodiment. Figure F5 is a schematic diagram of the outer electromagnet power distribution method according to the second embodiment. FIG. 6 is a schematic plan view of FIG. 5 of the second embodiment. FIGS. 7A to 7F are schematic diagrams of the operating state of the second embodiment. FIG. 8 is a schematic diagram showing the third embodiment. FIG. 9 is a schematic diagram showing a fourth embodiment. 1. , 1. nl,, 201. 3
The old one was the outer magnetic pole. 2. 1. (12, 202, 3112 are main shafts. 3. to3゜203, 303 are eccentric shafts. 4
.. , 1.04. , 2 (14,307I is low-coupled. 5,105,2r15,305 is the magnet around the rotor (1
'Ro6 is a spur gear. 7 is the ring gear. 8 is the housing. 10 is a bearing. 1.1-, 1.1. i, 21.1.
,,. 311 is a crescent-shaped space. 12. I3. 1.
4. , 15 is gear. 16 is a commutator. 17, 1.1.7
is a carbon brush. 18 is a bearing. 19, 1.1. ! 1 is an electric wire. 20 is a spring. 21
is iron core. 22 is a power supply holder. 23 is the power supply. A~1℃ is the outer magnetic pole. a to d are low-coup side magnetic poles. S is S magnetic pole. N is N magnetic pole. special

Claims (1)

【特許請求の範囲】 中心で回転可能な主軸(2,1,02,202,311
2)の中央に偏心軸(3,108,13,303)を形
成し、この偏心軸に軸受(18)を介してローター(・
l、  1.04.、 204. 304 )をはめ込
み、そして周囲にはそのまわりに配置された磁極(1,
]旧。 2n1.、 3(11,)数よりも少ない数の磁極(5
,105゜205、 305 )を配設し、外側磁極内
周面とローグーの磁極外周面は1部接近し他方に三日月
形空間(1、i、、  1.1.1.、 21.1.、
 3]、1. )を設け、そしてロークー側部に固着し
たギヤ(6)はハウジングに固定されたリングギヤ(7
)内側1にかみ合わされ、との両者のギヤ比は双方の磁
極数に比例して構成され、そして三日月形空間の2分の
1の向い合う磁極は吸着を、残りの2分の1の向い合う
磁極は反発するように耐重されて成る偏心モーター。
[Claims] Main shaft (2, 1, 02, 202, 311
An eccentric shaft (3, 108, 13, 303) is formed in the center of the rotor (3, 108, 13, 303) through a bearing (18).
l, 1.04. , 204. 304), and the periphery is surrounded by magnetic poles (1, 304) arranged around it.
] Old. 2n1. , 3 (11,) number of magnetic poles (5
, 105° 205, 305), and the inner circumferential surface of the outer magnetic pole and the outer circumferential surface of the Rogue magnetic pole are partially close to each other, and a crescent-shaped space (1, i,, 1.1.1., 21.1. ,
3], 1. ), and the gear (6) fixed to the side of the loco is connected to the ring gear (7) fixed to the housing.
) are meshed with the inner side 1, and the gear ratio of both is configured in proportion to the number of magnetic poles on both sides, and the opposing magnetic poles in half of the crescent-shaped space are engaged with each other, and the opposing magnetic poles in the remaining half are engaged with each other. An eccentric motor that is made of weight-bearing material so that matching magnetic poles repel each other.
JP11986681A 1981-07-29 1981-07-29 Eccentric motor Pending JPS5822556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11986681A JPS5822556A (en) 1981-07-29 1981-07-29 Eccentric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11986681A JPS5822556A (en) 1981-07-29 1981-07-29 Eccentric motor

Publications (1)

Publication Number Publication Date
JPS5822556A true JPS5822556A (en) 1983-02-09

Family

ID=14772200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11986681A Pending JPS5822556A (en) 1981-07-29 1981-07-29 Eccentric motor

Country Status (1)

Country Link
JP (1) JPS5822556A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2554650A1 (en) * 1983-11-08 1985-05-10 Gillonnier Julien Brushless DC indexing motor device.
JPH02142958U (en) * 1989-04-28 1990-12-04
JPH0363045U (en) * 1989-10-18 1991-06-20
FR2659033A1 (en) * 1990-03-02 1991-09-06 Procedes Tech Construction ELECTROMECHANICAL VIBRATION GENERATOR AND DEVICE USING THE SAME.
RU2704308C1 (en) * 2019-02-18 2019-10-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Synchronous electric motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2554650A1 (en) * 1983-11-08 1985-05-10 Gillonnier Julien Brushless DC indexing motor device.
JPH02142958U (en) * 1989-04-28 1990-12-04
JPH0363045U (en) * 1989-10-18 1991-06-20
FR2659033A1 (en) * 1990-03-02 1991-09-06 Procedes Tech Construction ELECTROMECHANICAL VIBRATION GENERATOR AND DEVICE USING THE SAME.
RU2704308C1 (en) * 2019-02-18 2019-10-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Synchronous electric motor

Similar Documents

Publication Publication Date Title
US7235909B2 (en) Electromagnetic motor/generator
JPS6311863B2 (en)
JPS5822556A (en) Eccentric motor
JPS63206144A (en) Magnetically controllable pole induction generator
US4570092A (en) Driving apparatus useful in a movable toy
CN108110919A (en) Permanent magnetism driven rotor energy-saving motor
CN208797686U (en) Permanent magnetism driven rotor energy-saving motor
JPS58170355A (en) Magnetic power engine generator
JPH06335222A (en) Magnet/electromagnet repulsion/attraction continuous rotating device
JPS58224553A (en) Magnetic force rotary machine
CN218456383U (en) Miniature large power DC brush motor
CN221103180U (en) Limited corner vibration torque motor structure
RU15435U1 (en) PERMANENT MAGNET MOTOR
CN2279741Y (en) Brushless double-magnetic gap energy-saving DC motor
JPS60219960A (en) Prime mover apparatus
JPH11262239A (en) Magnetic force rotating apparatus
WO2020034975A1 (en) Magnetic propulsion device
WO2004010567A3 (en) Magnetic motor with diamagnetic and non-magnetic mask
JPH06105535A (en) Magnetic prime mover
JPS61244259A (en) Motor utilizing repulsive force and attractive force between magnets
JPH0919176A (en) Engine device
TW200425616A (en) Rotating electrical machine
JPS5818869B2 (en) "Motor"
JPS6318976A (en) Motor
CN1114475A (en) Induction type magnetic power machine