JPS58225340A - Circuit for treating knocking signal - Google Patents

Circuit for treating knocking signal

Info

Publication number
JPS58225340A
JPS58225340A JP10836182A JP10836182A JPS58225340A JP S58225340 A JPS58225340 A JP S58225340A JP 10836182 A JP10836182 A JP 10836182A JP 10836182 A JP10836182 A JP 10836182A JP S58225340 A JPS58225340 A JP S58225340A
Authority
JP
Japan
Prior art keywords
signal
knocking
voltage
crank angle
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10836182A
Other languages
Japanese (ja)
Inventor
Tsukasa Akaboshi
赤星 司
Bunshiro Tsuda
文史郎 津田
Tetsuo Yoshida
哲男 吉田
Takayoshi Nishimori
西森 高義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
NEC Corp
Tokin Corp
Original Assignee
Mazda Motor Corp
NEC Corp
Tohoku Metal Industries Ltd
Nippon Electric Co Ltd
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, NEC Corp, Tohoku Metal Industries Ltd, Nippon Electric Co Ltd, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP10836182A priority Critical patent/JPS58225340A/en
Publication of JPS58225340A publication Critical patent/JPS58225340A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/22Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines
    • G01L23/221Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines
    • G01L23/225Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines circuit arrangements therefor

Abstract

PURPOSE:To accurately judge knocking, by carrying out comparison by using a noise level in a partial region directly prior to ignition from an upper dead point through a crank angle of 90 deg. after a valve noise is generated. CONSTITUTION:By the output from a crank angle detector 50, a gate pulse generating circuit 51 fabricates a first gate pulse for sampling the space signal 64 of a definite time DELTAT1 directly after a lower dead point and a second pulse 62 for sampling the space signal 64 of a time DELTAT2 corresponding to a predetermined angle theta2 from an upper dead point. The output of a vibration detector 42 is divided into two parts through an amplifier 43 and a zone filter 44 and one of them is sampled by the gate pulse 62 to be inputted to the one side of a voltage comparator 47 through a rectification circuit 46 while the other is sampled by the gate pulse 61 to be inputted to the other side of the comparator 47 as reference voltage Vs through a rectification circuit 53, an integration circuit 54 and an amplifier circuit 55 to carry out the determination of knocking.

Description

【発明の詳細な説明】 本発明は内燃機関のノッキングの有無及びその程度を検
出するノッキング信号処理回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a knocking signal processing circuit for detecting the presence or absence of knocking in an internal combustion engine and its degree.

ノッキングは、内燃機関のある運転状態において、シリ
ンダ内の点火部で発生した火炎が末端の未燃焼部に伝播
しないうちにその未燃焼部が自然着火し、シリンダ内の
混合ガスが一時的に急激に燃焼する現象である。このよ
うなノッキング現象が発生すると内燃機関の出力低下及
びオーバヒートを招き好ましくないことば1うまでもな
い。
Knocking occurs when an internal combustion engine is in a certain operating state, and the flame generated at the ignition part in the cylinder spontaneously ignites before it propagates to the unburned part at the end, causing the mixed gas in the cylinder to suddenly suddenly ignite. This is a phenomenon in which the fuel burns. It goes without saying that when such a knocking phenomenon occurs, it causes a decrease in the output of the internal combustion engine and overheating, which is undesirable.

一般に、内燃機関の点火時期は、その運転状態において
、ノッキングを発生させない範囲でできるだけ進ませる
のが効率的である。点火時期を進め過ぎると負荷状態に
よってはノッキングを生じ。
Generally, it is efficient to advance the ignition timing of an internal combustion engine as much as possible under the operating conditions without causing knocking. If the ignition timing is advanced too far, knocking may occur depending on the load condition.

その場合には点火時期を遅らせる必要がある。このため
には、ノッキングの発生を正確に検出することが必要で
ある。
In that case, it is necessary to retard the ignition timing. For this purpose, it is necessary to accurately detect the occurrence of knocking.

ノッキングが発生するとシリンダ内圧及び内燃機関本体
が異常振動を起こし、5〜10 kHzの範囲の特定周
波数成分の振動がシリンダの上死点刊近で発生すること
が知られている。内燃機関の正常運転時には、内燃機関
本体の振動周波数は主に数十〜数百Hzの周波数成分を
含む。これ以外に吸胡気バルブの開閉によっても内燃機
関本体が振動し、この振動はノッキング時の振動と同じ
周波数成分も含むので、ノッキング検出の障害となる。
It is known that when knocking occurs, the cylinder internal pressure and the internal combustion engine body undergo abnormal vibrations, and vibrations with a specific frequency component in the range of 5 to 10 kHz occur near the top dead center of the cylinder. During normal operation of the internal combustion engine, the vibration frequency of the internal combustion engine body mainly includes frequency components of several tens to several hundred Hz. In addition to this, the internal combustion engine main body vibrates due to the opening and closing of the intake air valve, and this vibration includes the same frequency component as the vibration during knocking, which becomes an obstacle to knocking detection.

また点火による誘導ノイズもノッキング検出の障害とな
る。
Induction noise caused by ignition also becomes an obstacle to knocking detection.

従来、いくつかのノッキング信号処理回路が堤案されて
いるが、上述したノイズ成分をもノッキングとして検出
してしまうため、検出精度が悪く弱いノッキングを精度
良く検出することができなかった。
Conventionally, several knocking signal processing circuits have been proposed, but since the above-mentioned noise components are also detected as knocking, the detection accuracy is poor and weak knocking cannot be detected accurately.

このことを図面を参照しながら説明する。This will be explained with reference to the drawings.

第1図に従来のノッキング信号処理回路の一例のブ07
り図を示す。
Figure 1 shows block 07 of an example of a conventional knocking signal processing circuit.
A diagram is shown below.

第2図は第1図の各部の信号波形図である。FIG. 2 is a signal waveform diagram of each part of FIG. 1.

第1図の参照番号は、内燃機関本体Jに取り伺けられた
振動検出器であり、その出力信号中には第2図の信号2
1に示すように、多くの周波数成分が含まれている。・
この出力信号を増幅器3及びノッキング振動の周波数に
ほぼ等しい中心周波数をもつ帯域F波器4を通し、更に
整流回路5を通すことによシ、第2図の信号22のよう
な成分を抽出する。
The reference number in FIG. 1 is a vibration detector installed in the internal combustion engine main body J, and its output signal includes the signal 2 in FIG.
As shown in 1, many frequency components are included.・
This output signal is passed through an amplifier 3 and a band F wave generator 4 having a center frequency approximately equal to the frequency of the knocking vibration, and further passed through a rectifier circuit 5 to extract a component such as signal 22 in FIG. .

第2図中、22a、22cはそれぞれ1点火による誘導
ノイズ成分及びバルブ系による振動ノイズ成分を示して
おり、22bがノッキングによる振動ノイズ成分を示し
ている。
In FIG. 2, 22a and 22c represent the induced noise component due to one ignition and the vibration noise component due to the valve system, respectively, and 22b represents the vibration noise component due to knocking.

信号22は、2つの経路に分けられ、一方はその丑ま電
圧比較器6の一方の入力端子に入力さit。
The signal 22 is divided into two paths, one of which is input to one input terminal of the voltage comparator 6.

被ノッキング判定用信号電圧VNとなる。他方は。This becomes the knocking determination signal voltage VN. On the other hand.

低域P波器7.増幅回路8を経て第2図中破線22dに
示すような電圧■8に変換され、この電圧V8は基準電
圧として比較器6のもう一方の人力端子に人力される。
Low-frequency P wave device7. It is converted into a voltage V8 as shown by the broken line 22d in FIG. 2 through the amplifier circuit 8, and this voltage V8 is input to the other input terminal of the comparator 6 as a reference voltage.

なお基準電圧v8は2通常、ノッキングが無い時の信号
電圧VNのピーク電圧よシゎ   。
Note that the reference voltage v8 is normally equal to the peak voltage of the signal voltage VN when there is no knocking.

ずかに犬きくなるように増幅回路8の利得が調整さり、
ている。電圧比較器6へ入る2つの信号電Hi■N、V
Sのうち被ノッキング判定用信号電圧VNが基Q電圧v
8よシも大きくなっている間、電圧比較器6には出力が
生ずる。その出力は積分器9に蓄積され、ノッキング検
出電圧として第2図の信号23のように出力さノア、る
。この出力電圧は1次の点火が行なわれるまでの間適当
な時間維持され。
The gain of the amplifier circuit 8 is adjusted so that it becomes slightly louder,
ing. Two signal voltages Hi■N, V entering the voltage comparator 6
Of S, the knocking determination signal voltage VN is the base Q voltage v
8, an output is produced in the voltage comparator 6. The output is accumulated in the integrator 9 and outputted as a knocking detection voltage as signal 23 in FIG. This output voltage is maintained for an appropriate amount of time until the primary ignition occurs.

リセット信号SRによりリセットされる。11はJ曽幅
回路である。
It is reset by a reset signal SR. 11 is a J-wide circuit.

上aCの回路による場合、単発的に生ずるノッキングは
比較的良く検出できるが、ノッキングが連続して起こる
場合、基準電圧Vsが大きくなるため正しくノッキング
を検出できない場合がある。また加速及び減速時には、
低域P波器7の時定数による基準電圧V8の時間遅れの
ためノッキングの判定に誤まりを生ずる。更にノッキン
グ信号以外の同周波数成分が大きくなった場合例えば、
第2図22cの入力信号に対してあたかもノッキングが
あるように誤判定してしまう。
In the case of the circuit aC above, knocking that occurs singly can be detected relatively well, but if knocking occurs continuously, the reference voltage Vs becomes large, so knocking may not be detected correctly. Also, during acceleration and deceleration,
Because of the time delay of the reference voltage V8 due to the time constant of the low-pass P wave generator 7, an error occurs in the determination of knocking. Furthermore, if the same frequency components other than the knocking signal become larger, for example,
The input signal shown in FIG. 22c is erroneously judged as if there is knocking.

本発明は、上述したような欠点を解消して判別精度の高
いノッキング信号処理回路を提供しようとするものであ
る。
The present invention aims to eliminate the above-mentioned drawbacks and provide a knocking signal processing circuit with high discrimination accuracy.

器により抽出した後、該抽出信号に対して上死点から9
0゛のクランク角の直前あるいは直後の所定時間にわた
ってザンフ0リングし、該サンプリング信号を整流及び
積分したうえで整流電圧の所定倍の基準電圧とし、一方
、前記抽出信号に対し上死点例近の所定クランク角に対
応する所定時間にわたってサンプリングして得た被ノッ
キング検出用電圧を前記基準電圧と比較し、該被ノッキ
ング検出用電圧が前記基準電圧を越える時間に対応した
ノッキング検出信号電圧を発生することを特徴としてい
る。
9 from top dead center for the extracted signal.
Zeroing is performed for a predetermined period of time just before or after the crank angle of 0°, and the sampling signal is rectified and integrated, and then used as a reference voltage that is a predetermined times the rectified voltage. A knocking detection voltage obtained by sampling over a predetermined time period corresponding to a predetermined crank angle of is compared with the reference voltage, and a knocking detection signal voltage corresponding to the time when the knocking detection voltage exceeds the reference voltage is generated. It is characterized by

以下1本発明を実施例にもとづいて詳しく説明する。The present invention will be explained in detail below based on examples.

第3図は4気筒内燃機関のノッキングの発生状況を調べ
た実験結果である。ここでは軽いノッキングを発生させ
た状態で、内燃機関本体に取り付けた振動検出器から得
られる出力を帯域E波器を通した後の出力波形を内燃機
関の回転敷料に示している。波形は、横軸を等目盛の時
間軸にとってあり2点火ザイクル(クランク角180’
)1サイクルの時間は回転数に反比例して短かくなる。
FIG. 3 shows the results of an experiment investigating the occurrence of knocking in a four-cylinder internal combustion engine. Here, the output waveform obtained from a vibration detector attached to the internal combustion engine body is passed through a band E waveform generator with light knocking occurring, and the output waveform is shown on the rotating bedding of the internal combustion engine. The waveform has a time axis with equal graduations on the horizontal axis, and has two ignition cycles (crank angle 180').
) The time for one cycle becomes shorter in inverse proportion to the number of rotations.

これらの出力波形を詳しく分析した結果、以下のような
ことが明らかになった。
A detailed analysis of these output waveforms revealed the following.

(1)  ノッキング信号aの発生するタイミングは。(1) What is the timing at which knocking signal a is generated?

上死点直後の/’! ?!一定のクランク角θ1の範囲
であシ、クランク角θlの値は10°〜3()0の範囲
となる。
/' just after top dead center! ? ! The crank angle θ1 is within a constant range, and the value of the crank angle θ1 is within a range of 10° to 3()0.

Q)最も大きなノイズは、バルブノイズbであシ。Q) The loudest noise is valve noise b.

−に死点からほぼ一定のクランク角θ2(約600)に
対応する時間経過後に発生する。
- occurs after a period of time corresponding to a substantially constant crank angle θ2 (approximately 600 degrees) has elapsed from the dead center.

■ 、に死点前0〜60°のクランク角範囲に点火誘導
ノイズCが発生する。
(2) Ignition induction noise C occurs in the crank angle range of 0 to 60 degrees before dead center.

(!!9回転数が増加した場合にノッキング信号aのレ
ベルが大きくなると、ノイズb、c以外のノイズレベル
もほぼ比例して大きくなる。
(!!9 When the level of the knocking signal a increases when the number of revolutions increases, the noise levels other than the noises b and c also increase almost proportionally.

■ バルブノイズb及び点火誘導ノイズCの発生する時
刻は、内燃機関の回転数及び点火時期の制量によって変
化するが、いずれの回転数においてもバルブノイズbの
発生するクランク角θ2に対応する時点よシ上死点から
901゛のクランク角付近に対応する時点までの間には
特別のノイズは発生しない。
■ The times at which valve noise b and ignition induction noise C occur vary depending on the rotational speed of the internal combustion engine and the control of ignition timing, but at any rotational speed, the time corresponding to crank angle θ2 at which valve noise b occurs. No particular noise occurs from the top dead center to the point corresponding to around the crank angle of 901°.

このことから点火誘導ノイズや)、キング信号の含まれ
ない領域すなわち、上述したバルブノイズ発生時点よシ
上死点から90°のクランク角を経て点火直前までの一
部領域のノイズレベルヲ基準電圧として被ノッキング検
出用電圧と比較すれば。
From this, the reference voltage is the noise level in the area where the ignition induction noise (ignition induction noise) and king signal are not included, that is, the part of the area from the time when the above-mentioned valve noise occurs, through the crank angle of 90° from top dead center to just before ignition. If compared with the voltage for knocking detection.

回転数の変化した時でも正しくノッキングを判定できる
ことが理解できよう。
It will be understood that knocking can be accurately determined even when the rotation speed changes.

本発明はこのような観点にもとづいてなされたものであ
シ、バルブノイズbが終了してよシ、−ヒ死点から90
°のクランク角を経て点火に至るまでの間の一部領域の
ノイズレベルを数倍して基準電圧とし、上死点付近に発
生するノンキング信号aのレベルと比較することによシ
、ノッキングの判    へ定を行なおうとするもので
ある。
The present invention has been made based on this point of view.
By multiplying the noise level in a part of the region from the crank angle of ° to ignition by several times and using it as a reference voltage, and comparing it with the level of the non-king signal a generated near top dead center, it is possible to detect knocking. It is an attempt to make a judgment.

第4図は本発明によるノッキング信号処理回路のプロ、
り図であり、第5図はその各部の信号波形図である。
FIG. 4 shows a professional knocking signal processing circuit according to the present invention.
FIG. 5 is a signal waveform diagram of each part thereof.

第4図中、42は内燃機関41に取シ付けられた振動検
出器であシ2例えば圧電振動子を用いた加速度応答型の
振動検出器を用いる。振動検出器42の出力は、第5図
63に示すように、広い範囲の周波数成分を含んでい、
る。この信号63は増幅器43を通シ、ノッキング振動
周波数にほぼ等しい中心周波数をもちQが数十以下の帯
域r波器44を通過することによシ、第5図64に示す
ような波形となる。
In FIG. 4, reference numeral 42 indicates a vibration detector attached to the internal combustion engine 41. For example, an acceleration responsive vibration detector using a piezoelectric vibrator is used. The output of the vibration detector 42 includes frequency components in a wide range, as shown in FIG. 5 63,
Ru. This signal 63 is passed through the amplifier 43 and then through the band r wave generator 44, which has a center frequency approximately equal to the knocking vibration frequency and has a Q of several tens or less, and becomes a waveform as shown in FIG. 564. .

一方、内燃機関41に設けられたクランク角検出器50
からの出力信号をもとに、ケ゛−トパルス発生回路51
によシ下死点直後の一定時間ΔT1の開信号64をサン
プリングするための第1のり−ト・ぞルス61.及び−
上死点から前述したバルブノイズbが発生する時点まで
の所定クランク角θ2に対応する時間ΔT2の開信号6
4をサンプリングするだめの第2のケ゛−トパルス62
を作成する。
On the other hand, a crank angle detector 50 provided in the internal combustion engine 41
Based on the output signal from the gate pulse generation circuit 51
A first slide signal 61 for sampling the open signal 64 for a certain period of time ΔT1 immediately after bottom dead center. and-
An open signal 6 for a time ΔT2 corresponding to a predetermined crank angle θ2 from top dead center to the point at which the above-mentioned valve noise b occurs.
A second gate pulse 62 for sampling 4
Create.

イ[7域r波器44の信号64は2つの経路に分けられ
、一方は第2のダートパルス62で開となるスイッチン
グ回路45でサンプリングされ、第5図67に示すよう
な信号を得る。この信号67は。
A. The signal 64 from the 7-band r wave generator 44 is divided into two paths, one of which is sampled by the switching circuit 45 which is opened by the second dart pulse 62, to obtain a signal as shown in FIG. 567. This signal 67 is.

更に整流回路46を通すことによシ、第5図68に示す
ような半波整流された波形に変換され、電圧比較器47
の一方の入力端子に入力される。この信号68を被)、
キング検出用電圧vN(以下。
Further, by passing through the rectifier circuit 46, the waveform is converted into a half-wave rectified waveform as shown in FIG.
is input to one input terminal of received this signal 68),
King detection voltage vN (below).

被検出電圧と呼ぶ)とする。(referred to as the detected voltage).

信号64はまた。第1のり゛−トノクルス61で開とな
るスイッチング回路52でサンプリングされ。
Signal 64 also. The signal is sampled by the switching circuit 52 which is opened at the first node 61.

第5図65に示すような波形となる。信号65は。The waveform becomes as shown in FIG. 565. Signal 65 is.

更に整流回路53.第1の積分回路54及び増幅回路5
5を経て第5図66に示すような直流電圧に変換され、
第2のダートパルス62の立チ下カり時にリセットされ
るまで出力レベルを保持する。
Furthermore, a rectifier circuit 53. First integrating circuit 54 and amplifier circuit 5
5, it is converted into a DC voltage as shown in FIG. 566,
The output level is held until reset at the falling edge of the second dart pulse 62.

直流電圧66は、増幅回路55によシ適当に利得を調整
され、基準電圧V8として電圧比較器47の他方の入力
端子に入力される。増幅回路55の利得の調整は、内燃
機関の種類あるいは振動検出器42の大きなばらつきな
どを補正するために行なうもので、基準電圧VSの値は
最もノッキング検出精度を高くするように実験的に求め
られる。
The DC voltage 66 has its gain adjusted appropriately by the amplifier circuit 55, and is inputted to the other input terminal of the voltage comparator 47 as a reference voltage V8. The gain of the amplifier circuit 55 is adjusted to compensate for the type of internal combustion engine or large variations in the vibration detector 42, and the value of the reference voltage VS is determined experimentally to maximize knocking detection accuracy. It will be done.

A−D変換器としての電圧比較器47は、入力された2
つの信号VN、Vsのうち2図示のように被検出電圧V
Nが基準電圧Vsを越える時間に対応して第51剤69
に示すようなパルス列を出力する。
The voltage comparator 47 as an A-D converter receives the input 2
Two of the two signals VN and Vs are detected voltages V as shown in the figure.
The 51st agent 69 corresponds to the time when N exceeds the reference voltage Vs.
Outputs a pulse train as shown in .

このパルス列を第2の積分回路48により第2のりゞ−
トノクルス62が−・イレベルの間蓄積して直流電圧V
。をノッキング信号として出力し、第2のケ゛−ト・ξ
シス62の立ち下がシ時にリセットされるまで出力レベ
ルを保持する。この信号を第5図70に示す。この直流
電圧V。は、ノ母ルス列69のパルス数及び・ぐルス幅
によってレベルが変化し。
This pulse train is converted into a second pulse train by a second integrating circuit 48.
The DC voltage V accumulates while the tonacle 62 is at - level.
. is output as a knocking signal, and the second gate ξ
The output level is held until reset when the signal 62 falls. This signal is shown in FIG. 570. This DC voltage V. The level changes depending on the pulse number and pulse width of the pulse train 69.

・やルス列69の数及びパルス幅は被検出電圧VNの高
低に対応している。したがって電圧vNに応じ/こ直流
′電圧V。が終段の増幅回路49から出力される。そし
てこの電圧V。の高低でノンキングの程度も知ることが
できる。
The number and pulse width of the pulse train 69 correspond to the level of the detected voltage VN. Therefore, depending on the voltage vN, the DC' voltage V. is output from the final stage amplifier circuit 49. And this voltage V. You can also know the degree of non-king by checking the height of.

以上2本発明について説明したが、第3図に示した結果
にもとづき、第5図に示しだ第1のケ゛−トハルス61
のハイレベル時間ΔT1 のfill ’& 0.5m
s r M’r 2のf” −) /(’シス62のハ
イレベル時間ΔT2の上死点からクランク角θ2の値で
およそ50°に相当する時間に対応させることにょシ、
広い運転状態にわたって、第1のケゝ−トノクルス61
が・・イレペルの時間内に)、キング振動信号。
Although the two inventions have been described above, based on the results shown in FIG.
High level time ΔT1 fill '& 0.5m
s r M'r 2's f" -) / (' It is decided to correspond to the time corresponding to approximately 50 degrees in terms of the value of crank angle θ2 from the top dead center of the high level time ΔT2 of cis62,
Over a wide range of operating conditions, the first cell noculus 61
But... within the time period), King vibration signal.

点火誘導ノイズ、バルブ振動ノイズを含まないようにす
ることが可能であり、同時に第2のケ+  ) 、、O
シス62がハイレペルノR開山に:はノッキング振動の
みで点火誘導ノイズやバルブ振動ノイズを含まないよう
にすることができる。
It is possible to eliminate ignition induction noise and valve vibration noise, and at the same time, the second
System 62 is now available for Hireperno R: It is possible to make it so that only the knocking vibrations are generated and do not include ignition induction noise or valve vibration noise.

本発明では、前述したように基準電圧Vsを得るための
信号を振動検出器の出力からつくるので、内燃機関の種
類及び振動検出器の感度のばらつきを補正することがで
きる。また基準信号をつくるだめのサンプリング時間内
に2点火誘導ノイズやバルブ振動ノイズなどの特別のノ
イズ成分   jを含まないので、これらのノイズの影
響を受けることがなく、更にサンプリング時間ΔT1を
一定としているので回転数が変化しても回転数による補
正が不要である。
In the present invention, as described above, since the signal for obtaining the reference voltage Vs is generated from the output of the vibration detector, variations in the type of internal combustion engine and the sensitivity of the vibration detector can be corrected. In addition, since special noise components such as ignition induction noise and valve vibration noise are not included within the sampling time for creating the reference signal, there is no influence from these noises, and the sampling time ΔT1 is kept constant. Therefore, even if the rotational speed changes, correction based on the rotational speed is not necessary.

また被検出電圧信号としてノッキングが発生し易いクラ
ンク角範囲の信号をクランク角に対応した時間ΔT2に
より選択しているので2回転数が変化した場合にも特別
のノイズ信号の影響を受けるこ走が無(S/N比が大幅
に向上する。更に本発明によるノッキング信号処理回路
は、1点火サイクルの中でノッキングの検出を終了する
ので加速。
In addition, since the signal in the crank angle range where knocking is likely to occur is selected as the voltage signal to be detected by the time ΔT2 corresponding to the crank angle, even if the rotation speed changes, the running will not be affected by special noise signals. None (The S/N ratio is greatly improved. Furthermore, the knocking signal processing circuit according to the present invention finishes detecting knocking within one ignition cycle, resulting in acceleration.

減速時の回転数の変動にも十分対応できる。It can also adequately handle fluctuations in rotational speed during deceleration.

ところで前述の実施例では、基準電圧作成のためのサン
プリングのタイミングを上死点から90゜のクランク角
から一定時間ΔT!にわたって行なう場合について説明
したが、前述の如く、特別なノイズが含まれない領域は
上死点から90°のクランク角直前にも存在するので、
上死点から90″のクランク角直前の一定時間でサンプ
リングするようにしても良い。このようなダートパルス
を作成するには、クランク角検出器50の信号の他に回
転数を検出して下死点から一定時間ΔTl前の時点すな
わち、第1のケ8−トパルス61の立ち上がシのタイミ
ングを設定すれば良い。
By the way, in the above-mentioned embodiment, the sampling timing for creating the reference voltage is set at a certain time ΔT! from a crank angle of 90 degrees from top dead center. Although we have explained the case where it is carried out over the entire range, as mentioned above, there is a region where no special noise is included even just before the crank angle of 90° from top dead center, so
It is also possible to sample at a fixed time just before the crank angle of 90'' from top dead center. It is sufficient to set the timing a certain time ΔTl before the dead center, that is, the timing of the rise of the first gate pulse 61.

以上説明したように9本発明の)、キング信号処理回路
によれば誤動作が少なく高い精度でノ、ソキングの検出
が可能であり、これを用いて内燃機関の点火時期の制御
を適切に行なうことが可能となシ、実用上極めて有用で
ある。
As explained above, according to the king signal processing circuit (9) of the present invention, it is possible to detect the sinking with high accuracy with few malfunctions, and this can be used to appropriately control the ignition timing of the internal combustion engine. This is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のノッキング信号処理回路の一例のブロッ
ク図、第2図はその各部の信号波形の時間変化を示した
図、第3図はエンジンの回転数を変化させた場合の各種
ノイズの時間変化を示した図、第4図は本発明によるノ
ッキング信号処理回路のブロック図、第5図はその各部
の信号波形の時間変化を示しだ図である。 図中、1.41は内燃機関、2.32は振動検出器、 
3 、43は増幅器、4.4/1は帯域r波器。 5 、4.6 、53は整流回路、 (i 、 47は
電圧比較器、7は低域p波器、8,11./19.55
は増幅回路、9は積分器、45.52はスイッチング回
路、48.54は積分回路、50はクランク角検出器、
51Fiケ゛−トパルス発生回路。
Figure 1 is a block diagram of an example of a conventional knocking signal processing circuit, Figure 2 is a diagram showing changes in signal waveforms in each part over time, and Figure 3 is a diagram showing various types of noise when the engine speed is changed. FIG. 4 is a block diagram of a knocking signal processing circuit according to the present invention, and FIG. 5 is a diagram showing changes over time in signal waveforms of various parts thereof. In the figure, 1.41 is an internal combustion engine, 2.32 is a vibration detector,
3 and 43 are amplifiers, and 4.4/1 is a band R wave amplifier. 5, 4.6, 53 are rectifier circuits, (i, 47 is a voltage comparator, 7 is a low-frequency p-wave generator, 8, 11./19.55
is an amplifier circuit, 9 is an integrator, 45.52 is a switching circuit, 48.54 is an integration circuit, 50 is a crank angle detector,
51Fi gate pulse generation circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 内燃機関本体に設けられた振動検出器の出力信号を
用いてノッキングを検出するノッキング信号処理回路に
おいて、前記出力信号から特定周波数成分を抽出する手
段と、クランク角検出器の出力信号により上死点から9
00のクランク角の直前あるいは直後における所定時間
ΔTlにわたる第1のり−1・信号と上死点近くにおけ
る所定クランク角に対応する所定時間ΔT2にわたる第
2のり−1・信号とを作成する手段と、前記抽出された
特定周波数信号に対し、前記第1のケ8−ト信号でサン
プリングを行ない該サンプリング信号から基準電圧を得
る手段及び前記第2のケ゛−ト信号でサンプリングを行
ない該サンプリング信号から被ノッキング検出用電圧を
得る手段と、前記基準電圧と被ノッキング検出用電圧と
を比較してノッキング検出信号を出力する手段とを備え
たことを特徴とするノッキング信号処理回路。
1. In a knocking signal processing circuit that detects knocking using the output signal of a vibration detector provided in the internal combustion engine body, there is a means for extracting a specific frequency component from the output signal, and a top dead end detection circuit that detects knocking using the output signal of a crank angle detector. 9 from the point
means for creating a first slope-1 signal for a predetermined time period ΔTl immediately before or immediately after a crank angle of 00, and a second slope-1 signal for a predetermined time period ΔT2 corresponding to a predetermined crank angle near top dead center; Means for sampling the extracted specific frequency signal using the first gate signal to obtain a reference voltage from the sampling signal; and means for sampling the extracted specific frequency signal using the second gate signal and obtaining a reference voltage from the sampling signal. A knocking signal processing circuit comprising: means for obtaining a knocking detection voltage; and means for comparing the reference voltage with the knocking detection voltage and outputting a knocking detection signal.
JP10836182A 1982-06-25 1982-06-25 Circuit for treating knocking signal Pending JPS58225340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10836182A JPS58225340A (en) 1982-06-25 1982-06-25 Circuit for treating knocking signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10836182A JPS58225340A (en) 1982-06-25 1982-06-25 Circuit for treating knocking signal

Publications (1)

Publication Number Publication Date
JPS58225340A true JPS58225340A (en) 1983-12-27

Family

ID=14482784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10836182A Pending JPS58225340A (en) 1982-06-25 1982-06-25 Circuit for treating knocking signal

Country Status (1)

Country Link
JP (1) JPS58225340A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164939A (en) * 1983-03-10 1984-09-18 Tohoku Metal Ind Ltd Knocking signal processing circuit
EP0175915A2 (en) * 1984-09-22 1986-04-02 Robert Bosch Gmbh Method of controlling knock in an internal-combustion engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487307A (en) * 1977-12-22 1979-07-11 Nippon Denso Co Ltd Knocking detector for internal combustion engine
JPS5487308A (en) * 1977-12-22 1979-07-11 Nippon Denso Co Ltd Knocking detector for internal combustion engine
JPS555467A (en) * 1978-06-27 1980-01-16 Nissan Motor Co Ltd Ignition time controller
JPS5593028A (en) * 1979-01-05 1980-07-15 Matsushita Electric Ind Co Ltd Knocking detector
JPS5666727A (en) * 1979-11-05 1981-06-05 Nissan Motor Co Ltd Knocking detection system
JPS56104161A (en) * 1979-11-30 1981-08-19 Hitachi Ltd Mask signal generation circuit
JPS56148034A (en) * 1980-04-18 1981-11-17 Matsushita Electric Ind Co Ltd Knock controller

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487307A (en) * 1977-12-22 1979-07-11 Nippon Denso Co Ltd Knocking detector for internal combustion engine
JPS5487308A (en) * 1977-12-22 1979-07-11 Nippon Denso Co Ltd Knocking detector for internal combustion engine
JPS555467A (en) * 1978-06-27 1980-01-16 Nissan Motor Co Ltd Ignition time controller
JPS5593028A (en) * 1979-01-05 1980-07-15 Matsushita Electric Ind Co Ltd Knocking detector
JPS5666727A (en) * 1979-11-05 1981-06-05 Nissan Motor Co Ltd Knocking detection system
JPS56104161A (en) * 1979-11-30 1981-08-19 Hitachi Ltd Mask signal generation circuit
JPS56148034A (en) * 1980-04-18 1981-11-17 Matsushita Electric Ind Co Ltd Knock controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164939A (en) * 1983-03-10 1984-09-18 Tohoku Metal Ind Ltd Knocking signal processing circuit
EP0175915A2 (en) * 1984-09-22 1986-04-02 Robert Bosch Gmbh Method of controlling knock in an internal-combustion engine
JPS6193271A (en) * 1984-09-22 1986-05-12 ローベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method of adjusting knocking of internal combustion engine

Similar Documents

Publication Publication Date Title
KR100225993B1 (en) Method and device for detecting knocking in an internal-combustion engine
JPS62195463A (en) Ignition timing control device for internal combustion engine
KR900014744A (en) Knock control device of internal combustion engine
US4423621A (en) Knocking detector
US4290398A (en) Ignition timing control system for internal combustion engine
JPH0749056A (en) Misfire detector
US4440129A (en) Ignition timing control system for internal combustion engine
JPS55144520A (en) Knocking detector for internal combustion engine
JPH0244011B2 (en)
JPS58225340A (en) Circuit for treating knocking signal
JPH0347449A (en) Knocking sensing device and engine control device
JPS6359095B2 (en)
US4454750A (en) Apparatus for generating a knock signal for use with an internal combustion engine
JPH06505805A (en) Internal combustion engine knocking detection device
JP2004068701A (en) Combustion state detecting device of internal combustion engine
JPS5973750A (en) Knocking detecting apparatus
JPS55156263A (en) Ignition timing controller for internal combustion engine
JPS58187831A (en) Knocking signal processing circuit
JPS59164939A (en) Knocking signal processing circuit
US4499877A (en) Ignition timing control device for an internal combustion engine
JPS6225872B2 (en)
JPS6113125A (en) Knocking detector for internal-combustion engine
JP2510770B2 (en) Engine knock detection method
JPH0466754A (en) Knocking detecting device
JPH0374571A (en) Knock control device for internal combustion engine and method thereof