JPS58223102A - Optical fiber conserving plane of polarization and its manufacture - Google Patents

Optical fiber conserving plane of polarization and its manufacture

Info

Publication number
JPS58223102A
JPS58223102A JP57106438A JP10643882A JPS58223102A JP S58223102 A JPS58223102 A JP S58223102A JP 57106438 A JP57106438 A JP 57106438A JP 10643882 A JP10643882 A JP 10643882A JP S58223102 A JPS58223102 A JP S58223102A
Authority
JP
Japan
Prior art keywords
polarization
optical fiber
core
light
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57106438A
Other languages
Japanese (ja)
Inventor
Masaharu Niizawa
新沢 正治
Toshihide Tokunaga
徳永 利秀
Hiroshi Kajioka
博 梶岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP57106438A priority Critical patent/JPS58223102A/en
Publication of JPS58223102A publication Critical patent/JPS58223102A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01861Means for changing or stabilising the diameter or form of tubes or rods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01884Means for supporting, rotating and translating tubes or rods being formed, e.g. lathes
    • C03B37/01892Deposition substrates, e.g. tubes, mandrels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/026Drawing fibres reinforced with a metal wire or with other non-glass material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/10Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres

Abstract

PURPOSE:To attenuate unnecessary light shifting to the other optical axis speedily and to obtain a large quenching rate by providing a light absorbing part which contains transition elements diffused onto either one of characteristic axes of polarization differing in light propagation constant to the outer circumference of a jacket enclosing a core. CONSTITUTION:A couple of grooves 2 are formed at facing positions in the internal surface of a quartz pipe support 1; and quartz wires 3 containing a large quantity of a transition metal such as Fe, Cu, and Pd are inserted into the grooves 2 and an SiO2 glass film is deposited in the support 1 to a specific thickness and heated to form an intermediate collapse. Then, the elliptic jacket 5 containing much B2O3, a clad 6 of SiO2, and the core 1 in the form of an SiO2 layer containing GeO2 are deposited successively in the collapse and while the pressure in the collapse is reduced, a base material made solid by being heated is drawn to obtain a polarization-plane conserving optical fiber which has light absorving parts 4a and 4b of the quartz wire 3 on the short axis of the jeacket 5. Then, a polarized signal coincident with the long-axis direction of the jacket 5 is sent as a less-noise polarized signal of good quality because the polarization in the short-axis direction of the jacekt 5 due to variation in external stress of the optical fiber, etc., is absorbed.

Description

【発明の詳細な説明】 本発明は光通信等に用いられる光ファイバに係り、特に
、偏波面保存光ファイバとその製造法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber used for optical communications, and more particularly to a polarization-maintaining optical fiber and a method for manufacturing the same.

シングルモード光ファイバのコアに非対称な応力を加え
、光伝播定数の異なる固有偏光軸(以下ファースト軸と
スロー軸という)を形成し、両軸間の光のカップリング
を減少させて入射偏光の偏波面を長距離間に亘って保持
することができる偏波面保存光ファイバは、両軸を通る
偏光の偏波面に関する情報が得られる等多くの特長をも
っているので計測用又は各種のセンサ用として広く用い
ることが可能である。
By applying asymmetrical stress to the core of a single-mode optical fiber, we create eigenpolarization axes (hereinafter referred to as fast and slow axes) with different optical propagation constants, reducing the coupling of light between the two axes and changing the polarization of the incident polarization. Polarization-maintaining optical fibers, which can maintain wavefronts over long distances, have many features such as the ability to obtain information about the polarization plane of light that passes through both axes, so they are widely used for measurement and various types of sensors. Is possible.

まず最も一般的な使用方法としてけ、ファースト軸又は
スロー軸方向に直線偏光を入射させ、この直線偏光に各
種の情報を載せて伝送することであるが、光ファイバの
長手方向の変化やコアとクラッド間の界面の不規則性、
或いは外部応力の変化等により多少の光カップリングが
生じてファースト軸からスロー軸へと光が滲み出るとい
う現象が発生する。
The most common method of use is to input linearly polarized light in the fast axis or slow axis direction, and transmit various information on this linearly polarized light. Irregularities in the interface between claddings,
Alternatively, a phenomenon occurs in which some optical coupling occurs due to changes in external stress, and light leaks from the fast axis to the slow axis.

なお、この一方の軸から他方の軸へ移る光量の割合をデ
ンベル換算した値を消光比と呼び、偏波面の保存性を示
すパラメータとしている。
Note that the value obtained by converting the amount of light transferred from one axis to the other axis in Denbel terms is called the extinction ratio, and is used as a parameter indicating the conservation of the plane of polarization.

このような光カップリングによって他軸に移った光は、
情報信号に対してノイズ的に作用するため、この量を極
力減少させる必要がある。従来の偏波面保存光ファイバ
はファースト軸を伝播する光もスロー軸を伝播する光も
伝送損失の割合は等しかったので、一旦他軸に移った雑
音光は仲々減衰しないので大きな消光比が得られず、い
つまでも光信号を防害するという欠点をもっていた。
The light transferred to the other axis due to such optical coupling is
Since it acts like noise on the information signal, it is necessary to reduce this amount as much as possible. In conventional polarization-maintaining optical fibers, the rate of transmission loss was the same for light propagating along the fast axis and light propagating along the slow axis, so noise light once transferred to other axes does not attenuate as much, so a large extinction ratio can be obtained. However, it has had the disadvantage of permanently preventing optical signals from being damaged.

本発明は前記した従来技術の欠点を解消し、他軸に移っ
た不用光を速やかに減衰させて大きな消光比を容易に得
ることができる偏波面保存光ファイバおよびその製造法
を提供することを目的としその第1の特徴とするところ
は、コアの周囲で光伝送軸以外のファースト軸又はスロ
ー軸のいずれか一方の軸上に光吸収部を設け、光カップ
リングによって漏洩してきた他軸の伝送光を吸収減衰さ
せるごとく構成したことにある。
The present invention solves the drawbacks of the prior art described above, and provides a polarization-maintaining optical fiber that can quickly attenuate unnecessary light transferred to other axes and easily obtain a large extinction ratio, and a method for manufacturing the same. The purpose and first feature is that a light absorption section is provided around the core on either the fast axis or the slow axis other than the optical transmission axis, and the light absorption part is installed on either the fast axis or the slow axis other than the optical transmission axis, and the light absorption part is installed on either the fast axis or the slow axis other than the optical transmission axis. The reason is that the structure is such that the transmitted light is absorbed and attenuated.

まだ、第2の特徴とするところは、最外層となるサポー
ト石英管の内面に一対の溝を軸方向に設け、この溝に遷
移元素を含む石英ガラス線を挿入した後、通常のMOV
D法によってジャケット、クラッドおよびコアとなる石
英ガラス層を順次堆積させ、コア層の内部を減圧し乍ら
加熱中実化した母材を線引きすることにある。
However, the second feature is that a pair of grooves are provided in the axial direction on the inner surface of the support quartz tube, which is the outermost layer, and after inserting a quartz glass wire containing a transition element into this groove, a normal MOV
The method consists of sequentially depositing a jacket, a cladding, and a silica glass layer as a core, and drawing a solid base material by heating while reducing the pressure inside the core layer.

第1図は本発明の一実施例である偏波面保存光ファイバ
の製造法の説明図で、石英管であるサポート1の内面の
対向位置に一対の溝2を設け、この溝2に遷移元素を含
む石英ガラス線6を挿入している。このサポート1を加
熱して石英ガラス線6を軟化させて溝2なじませ、サポ
ート1の内面を滑らかにしている。
FIG. 1 is an explanatory diagram of a method for manufacturing a polarization-maintaining optical fiber, which is an embodiment of the present invention. A quartz glass wire 6 containing the above is inserted. The support 1 is heated to soften the quartz glass wire 6 and fit into the groove 2, thereby making the inner surface of the support 1 smooth.

第2図は第1図のサポート1を用いて製造した偏波面保
存光ファイバの断面図で、サポート1の遷移元素を含む
石英ガラス線3は楕円ジャケット5の短軸上に一体的に
埋設されている。また、この楕円ジャケット5の中央部
にはクラッド6で被覆された円形のコア7が設置されて
いる。
FIG. 2 is a cross-sectional view of a polarization-maintaining optical fiber manufactured using the support 1 shown in FIG. ing. Further, a circular core 7 covered with a cladding 6 is installed in the center of the elliptical jacket 5.

このような偏波面保存光ファイバのコア7に偏光面が楕
円ジャケット5の長袖方向と一致する偏光信号を入射さ
せたときは、上記の原因による光カップリングによって
楕円ジャケット5の短軸方向に一致する偏光が生じる。
When a polarized signal whose polarization plane coincides with the long axis direction of the elliptical jacket 5 is input into the core 7 of such a polarization maintaining optical fiber, the polarization plane coincides with the short axis direction of the elliptical jacket 5 due to the optical coupling due to the above-mentioned causes. Polarized light is generated.

しかるにこの方向には光吸収部4a、4bが存在して光
を吸収するので、光カップリングした雑音信号は速やか
に減衰し、楕円ジャケット5の長軸方向に一致する正規
の信号のみが伝達されるので、雑音の少い良質の偏光信
号を伝送することが可能となる。即ち、消光比の大きな
信号が得られる。
However, since the light absorption parts 4a and 4b exist in this direction and absorb light, the optically coupled noise signal is quickly attenuated, and only the normal signal that coincides with the long axis direction of the elliptical jacket 5 is transmitted. Therefore, it is possible to transmit high-quality polarized signals with less noise. That is, a signal with a large extinction ratio can be obtained.

次に、この偏波面保存光ファイバの製造法をまとめて説
明する。第1図の出発石英管であるサポート1は外径2
0mm、内径17#の溶融石英管を用い、フッ化水素水
処理して0.2 rmO幅と深さをもつ溝2を作り、こ
の溝2にFe’、Ou、Pd等の遷移金属を多量に含ん
だ約0.15mm径の石英線を挿入する。この石英線は
通常の光フアイバ製造時に用いられるMC!VD法を用
い、出発材料であるPoC1Hに多量の遷移金属を不純
物として混入して母材を作り、これを線引きすることに
よって得られたもので一般に着色している。
Next, a method for manufacturing this polarization-maintaining optical fiber will be summarized. Support 1, which is the starting quartz tube in Figure 1, has an outer diameter of 2
Using a fused silica tube with a diameter of 0 mm and an inner diameter of 17#, a groove 2 having a width and depth of 0.2 rmO was made by treating it with hydrogen fluoride water, and a large amount of transition metals such as Fe', Ou, and Pd were added to this groove 2. Insert a quartz wire with a diameter of about 0.15 mm. This quartz wire is MC! which is used in normal optical fiber manufacturing. Using the VD method, a large amount of transition metal is mixed as an impurity into the starting material PoC1H to create a base material, which is then drawn into a wire, which is generally colored.

このようにして第1図のサポート1を形成した後、MC
vD法によって5i02ガラス膜をサポート1の内面に
20〜60μmの厚さに堆積させて高温で加熱する。こ
のときは出発石英管であるサポート1の外径は1〜2m
縮少するが、これを中間カラブスと呼んでいる。これに
よってサポート1の内面を円滑にすると共に、渭移金属
を含む石英ガラス線6中の成分をその付近に拡散させる
が、この部分は製品となった時は第2図に示す光吸収部
4a、4bとなり、その着色によって光を吸収する。
After forming support 1 in FIG. 1 in this way, MC
A 5i02 glass film is deposited on the inner surface of the support 1 to a thickness of 20 to 60 μm by the vD method and heated at a high temperature. In this case, the outer diameter of support 1, which is the starting quartz tube, is 1 to 2 m.
Although it is reduced in size, this is called the Intermediate Calabuse. This makes the inner surface of the support 1 smooth, and also diffuses the components of the quartz glass wire 6 containing the translucent metal into the vicinity, but when the product is manufactured, this part becomes the light absorption part 4a shown in FIG. , 4b, and absorbs light due to its coloring.

その後は通常の工程でB、08を多量に含みコア7に非
対称応力を与える楕円ジャケット5.8102層である
クラッド6、GeO2を含むSiO□層であるコア1を
順次に堆積し減圧カラブス作業を行うことによって、第
2図に示すような断面構造をもつ偏波面保存光ファイバ
の母材を得、これを線引きすると所望の偏波面保存光フ
ァイバが得られる。
After that, the cladding 6, which is an elliptical jacket 5.8102 layer containing a large amount of B and 08 and giving an asymmetrical stress to the core 7, and the core 1, which is a SiO By doing this, a base material for a polarization-maintaining optical fiber having a cross-sectional structure as shown in FIG. 2 is obtained, and when this is drawn, a desired polarization-maintaining optical fiber is obtained.

このようにして得られた偏波面保存光ファイバの一例を
示すと、0.86μmの波長光で使用する場合で、ファ
ースト軸を伝播する偏光の伝送損失が10dB/km 
、スロー軸を伝播する偏光の伝送損失が60dB/Km
程度のものが得られ、光カップリングして洩れてきた光
を速やかに吸収する。なお、偏波面の保存性を示すビー
ト長はo、63mmの波長光で6叫以下と小さく、消光
比は1Kr11で40dB以上であった。
An example of a polarization-maintaining optical fiber obtained in this way is that when used with light at a wavelength of 0.86 μm, the transmission loss of polarized light propagating along the first axis is 10 dB/km.
, the transmission loss of polarized light propagating along the slow axis is 60 dB/Km.
It quickly absorbs the light that leaks through optical coupling. The beat length, which indicates the preservation of the plane of polarization, was as small as 6 or less for light with a wavelength of 63 mm, and the extinction ratio was 40 dB or more at 1Kr11.

本実施例の偏波面保存光ファイバは、直交する2つの偏
光面を伝播する偏光の伝送損失を大幅に相違させること
ができるので、伝送線路に加わる外乱等により光カップ
リングを生じて他の偏波面に移行した光は速やかに減衰
する。したがって、消光比の大きな優れた光ファイバが
得られるという効果をもっている。
The polarization-maintaining optical fiber of this example can greatly differ the transmission loss of polarized light propagating in two orthogonal polarization planes, so disturbances applied to the transmission line can cause optical coupling and cause other polarization The light that has migrated to the wavefront is rapidly attenuated. Therefore, it has the effect that an excellent optical fiber with a large extinction ratio can be obtained.

本発明の偏波面保存光ファイバおよびその製造法は、他
の偏光面に移った不用な光を速やかに減衰させて大きな
消光比のものが容易に得られ、それを製造するには従来
の方法を用いて容易に可能であるという効果が得られる
The polarization-maintaining optical fiber of the present invention and its manufacturing method can quickly attenuate unnecessary light transferred to other polarization planes and easily obtain a large extinction ratio, and can be manufactured using conventional methods. The effect is that it is easily possible using .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であへる偏波面保存光ファイ
バの製造法の説明図、第2図は第1図のサポートを用い
て製造した偏波面保存光ファイバの断面図である。 1:サポート、2:溝、6:遷移元素を含む石英ガラス
線、4:光吸収部、5:楕円ジャケット、6:クラッド
、7:コア。 第 1 〕 第 2(2] ラン丈 /l □  l
FIG. 1 is an explanatory diagram of a method for manufacturing a polarization-maintaining optical fiber according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a polarization-maintaining optical fiber manufactured using the support shown in FIG. 1. . 1: Support, 2: Groove, 6: Silica glass wire containing transition element, 4: Light absorption section, 5: Elliptical jacket, 6: Clad, 7: Core. 1st] 2nd (2) Run length/l □ l

Claims (1)

【特許請求の範囲】 1、 シングルモード光ファイバのコアに非対称な応力
を加えて光伝播定数の異なる固有偏光軸を設けた偏波面
保存光ファイバにおいて、上記コアの周囲で上記固有偏
光軸のいずれか一方の軸上に光吸収部を設け、光カップ
リングによって漏洩してきた他軸の伝送光を吸収減衰さ
せるごとく構成したことを特徴とする偏波面保存光ファ
イバ。 2、上記光吸収部が、上部コアを包囲するジャケットの
外周の上記固有偏光軸上に拡散させた遷移元素を含む部
分である特許請求の範囲第1項記載の偏波面保存光ファ
イバ。 3、 シングルモード光ファイバのコアに非対称な一応
力を加えて光伝搬定数の異なる固有偏光軸を有する偏波
面保存光ファイバの製造法において、最外層となるサポ
ート石英管の内面に一対の溝を軸方向に設け、この溝に
遷移元素を含む石英ガラス線を挿入した後、通常のMO
VD法によってジャケット、クラッドおよびコアとなる
石英層を順次堆積させ、上記コア層の内部を減圧し乍ら
加熱中実化した母材を線引きすることを特徴とする偏波
面保存光ファイバの製造法。
[Claims] 1. In a polarization-maintaining optical fiber in which asymmetric stress is applied to the core of a single-mode optical fiber to provide intrinsic polarization axes with different light propagation constants, any of the intrinsic polarization axes around the core 1. A polarization-maintaining optical fiber characterized in that a light absorbing portion is provided on one axis so that transmitted light leaked from the other axis is absorbed and attenuated by optical coupling. 2. The polarization-maintaining optical fiber according to claim 1, wherein the light absorbing portion is a portion containing a transition element diffused on the intrinsic polarization axis on the outer periphery of a jacket surrounding the upper core. 3. In a method for manufacturing polarization-maintaining optical fibers that have unique polarization axes with different optical propagation constants by applying an asymmetric stress to the core of a single-mode optical fiber, a pair of grooves are formed on the inner surface of a support quartz tube that is the outermost layer. After inserting a silica glass wire containing a transition element into this groove, a normal MO
A method for manufacturing a polarization-maintaining optical fiber, which comprises sequentially depositing a jacket, a cladding, and a quartz layer as a core by a VD method, and drawing the heated solid base material while reducing the pressure inside the core layer. .
JP57106438A 1982-06-21 1982-06-21 Optical fiber conserving plane of polarization and its manufacture Pending JPS58223102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57106438A JPS58223102A (en) 1982-06-21 1982-06-21 Optical fiber conserving plane of polarization and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57106438A JPS58223102A (en) 1982-06-21 1982-06-21 Optical fiber conserving plane of polarization and its manufacture

Publications (1)

Publication Number Publication Date
JPS58223102A true JPS58223102A (en) 1983-12-24

Family

ID=14433641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57106438A Pending JPS58223102A (en) 1982-06-21 1982-06-21 Optical fiber conserving plane of polarization and its manufacture

Country Status (1)

Country Link
JP (1) JPS58223102A (en)

Similar Documents

Publication Publication Date Title
US4426129A (en) Optical fiber and method of producing the same
KR100315178B1 (en) Colorless fiber coupler
JPH06235841A (en) Manufacture of 1xn achromatic coupler, fiber optic coupler and 1xn fiber optic coupler
US3966300A (en) Light conducting fibers of quartz glass
US4493530A (en) Single polarization optical fibers
JPS58223102A (en) Optical fiber conserving plane of polarization and its manufacture
JPS61215225A (en) Production of optical fiber preserving plane of polarization
JPH0685005B2 (en) Constant polarization fiber and manufacturing method thereof
JPS5816203A (en) Constant polarization type optical fiber
JPH11119036A (en) Plastic clad fiber
JPS6150887B2 (en)
JPS5915905A (en) Optical fiber which maintains plane of plarization
JP2805533B2 (en) Fiber fusion type optical branch coupler
JP2828251B2 (en) Optical fiber coupler
JPH0612364B2 (en) Polarization-maintaining optical fiber base material
JPS6367168B2 (en)
JPH0350505A (en) Single polarization optical fiber
JPH0221563B2 (en)
JPS623402B2 (en)
JPS636501B2 (en)
JPS58214104A (en) Optical fiber for preserving plane of polarization
JPH04107511A (en) Production of polarization maintaining optical fiber coupler
JPS59135402A (en) Single polarization optical fiber
JPH0623805B2 (en) Polarization-maintaining optical fiber
JPH0242202B2 (en)