JPH0242202B2 - - Google Patents

Info

Publication number
JPH0242202B2
JPH0242202B2 JP58054293A JP5429383A JPH0242202B2 JP H0242202 B2 JPH0242202 B2 JP H0242202B2 JP 58054293 A JP58054293 A JP 58054293A JP 5429383 A JP5429383 A JP 5429383A JP H0242202 B2 JPH0242202 B2 JP H0242202B2
Authority
JP
Japan
Prior art keywords
core
cladding
refractive index
clad
single mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58054293A
Other languages
Japanese (ja)
Other versions
JPS59178404A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58054293A priority Critical patent/JPS59178404A/en
Publication of JPS59178404A publication Critical patent/JPS59178404A/en
Publication of JPH0242202B2 publication Critical patent/JPH0242202B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03655Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + +

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 本発明はシリカコア単一モード光フアイバに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a silica core single mode optical fiber.

光フアイバには、一般にコア材としてSiO2
屈折率を高めるためのGeO2やP2O5などを含むド
ープシリカが用いられている。
Optical fibers generally use doped silica containing SiO 2 as a core material and GeO 2 or P 2 O 5 to increase the refractive index.

これは、コアの外側のクラツドとしてシリカを
用いることが製造面からも最も容易であり、かつ
特性的にもそのような構造の光フアイバが比較的
優れた伝送特性を示していたためである。
This is because using silica as the cladding on the outside of the core is easiest from a manufacturing standpoint, and optical fibers with such a structure exhibit relatively excellent transmission characteristics.

ところが光フアイバの用途の拡大とともに放射
線の存在する場所において光フアイバが使用され
るケースが現われ、耐放射線性の要求が出されて
来はじめた。
However, as the uses of optical fibers have expanded, cases have arisen where optical fibers are used in places where radiation is present, and demands for radiation resistance have begun to emerge.

本発明者らの実験検討結果によれば、耐放射線
性をある程度充足するためには、光フアイバのコ
アが高純度SiO2であることが望ましいが、そう
するとクラツドとしてSiO2より屈折率の低いも
のを選択して構成しなければならず、現実にはこ
れが大きな問題点であつた。
According to the results of experiments conducted by the present inventors, it is desirable that the core of the optical fiber be made of high-purity SiO 2 in order to achieve a certain degree of radiation resistance. In reality, this was a major problem.

すなわち、製造面を考慮すると最外層は高純度
シリカであることが便利であるため、これを単一
モード光フアイバに当てはめると、第1図のよう
な屈折率分布を示すことになる。
That is, from a manufacturing standpoint, it is convenient for the outermost layer to be made of high-purity silica, so if this is applied to a single mode optical fiber, it will exhibit a refractive index distribution as shown in FIG.

もちろん最外層の高純度シリカはコアほどに高
純度である必要はないが、格別のドーパントを含
まないため屈折率はコアとほぼ等しくなる。
Of course, the high-purity silica in the outermost layer does not need to be as pure as the core, but since it does not contain any particular dopants, its refractive index is approximately equal to that of the core.

第1図において、11はコア、12は第1クラ
ツド、13は第2クラツドである。
In FIG. 1, 11 is a core, 12 is a first cladding, and 13 is a second cladding.

ここで励振される波は構造上漏洩波である。 The waves excited here are structurally leaky waves.

そのため低損失にするためには第1クラツドの
厚さをコア半径Tに対し十分とらねばならない。
具体的には正規化周波数を2.2とするとコア半径
の6倍以上とらねばいけない。この理由より太コ
ア径の光フアイバを製作しようとすると外径寸法
上制限される場合が生ずる。さらにコア径の長手
方向変動が漏洩波の減衰定数に与える影響が大き
く、均一で長尺なフアイバを作ることが難しい。
コア径を上記の理由で大きくできないためフアイ
バ同志の接続、光源との結合が難しいという問題
があつた。
Therefore, in order to achieve low loss, the thickness of the first cladding must be sufficiently large relative to the core radius T.
Specifically, if the normalized frequency is 2.2, it must be more than 6 times the core radius. For this reason, when attempting to manufacture an optical fiber with a large core diameter, there may be limitations in terms of the outer diameter. Furthermore, longitudinal variations in the core diameter have a large effect on the attenuation constant of leaky waves, making it difficult to produce a uniform and long fiber.
Because the core diameter cannot be increased for the reasons mentioned above, there is a problem in that it is difficult to connect the fibers to each other and to connect them to a light source.

本発明の目的は、前記した従来技術の欠点を解
消し、低損失なシリカコア単一モード光フアイバ
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art described above and provide a low loss silica core single mode optical fiber.

すなわち、本発明の要旨は、コア、第1クラツ
ド、第2クラツド及び第3クラツドを有する単一
モード光フアイバにおいて、コア及び第3クラツ
ドが高純度シリカであり、コアの屈折率n1、コア
に隣接する第1クラツドの屈折率n2、第2クラツ
ドツトの屈折率n3が n1>n3>n2 (n1−n2)2(n1−n3) なる関係にあり、コア半径をT、第1クラツド厚
さをδ1T、第1クラツドと第2クラツドとの合計
厚さをδ2Tとしたとき 0<δ11 3.5δ2<6 であることにある。
That is, the gist of the present invention is to provide a single mode optical fiber having a core, a first cladding, a second cladding, and a third cladding, in which the core and the third cladding are made of high-purity silica, the refractive index of the core is n 1 , the core is The refractive index n 2 of the first cladding and the refractive index n 3 of the second cladding adjacent to the core are n 1 > n 3 > n 2 (n 1 − n 2 )2 (n 1 − n 3 ), and the core When the radius is T, the thickness of the first cladding is δ 1 T, and the total thickness of the first cladding and the second cladding is δ 2 T, 0<δ 1 1 3.5 δ 2 <6.

本発明の構成を、一実施例を示す第2図を参照
して具体的に説明する。
The configuration of the present invention will be specifically explained with reference to FIG. 2 showing one embodiment.

第2図において、21はコア、22は第1クラ
ツド、23は第2クラツド、24は第3クラツド
であり、それぞれの屈折率をn1,n2,n3,n4とす
ると、 n1〜n4>n3>n2 (n1−n2)2(n1−n3) なる関係にある。
In FIG. 2, 21 is the core, 22 is the first cladding, 23 is the second cladding, and 24 is the third cladding. Letting their refractive indexes be n 1 , n 2 , n 3 , n 4 , n 1 ~n 4 > n 3 > n 2 (n 1 − n 2 ) 2 (n 1 − n 3 ).

ここでコアと第1クラツドの比屈接率差をΔ1
コアと第2クラツドの比屈接率差をΔ2とし、
(Δ1/Δ2)=2の関係にすると単一モードの動作
範囲は第3図に示す様に2.25<v´<4.3となる。た
だし、v´はv´=n1(2π/λ)T2√1で定義される
正規化周波数、λは使用波長、Tはコア半径であ
る。製造上の作り易さ、およびフアイバの径変動
等を考慮し、動作点をv´=3.5に設定した場合、第
1クラツドの厚さをδ1T、コアとサポート管間隔
すなわち第1クラツドと第2クラツドの合計厚さ
をδ2TとするとLP01モードとLP11モードの漏洩に
よる減衰定数は第4図の様になる。それ故、
LP11モードの漏洩による損失106dB/Km以上、
LP01モードの漏洩による損失は無視し得る条件
として0<δ11,δ23.5を得る。以上の条件
を満足するフアイバは長尺でも短尺(数cm)でも
単一モードである。δ1を1より大きくすれば長尺
(数百m)では単一モード、短尺では2モードで
ある場合が出てくる。これは第3図のδ2とLP11
ードの漏洩による減衰定数の関係より明らかであ
る。δ2を3.5より小さくすれば LP01モードも漏洩による減衰を受ける。
Here, the difference in specific refractive index between the core and the first cladding is Δ 1 ,
The difference in specific refractive index between the core and the second cladding is Δ 2 ,
When the relationship (Δ 12 )=2 is established, the single mode operating range becomes 2.25<v′<4.3 as shown in FIG. However, v' is the normalized frequency defined by v'=n 1 (2π/λ)T2√ 1 , λ is the wavelength used, and T is the core radius. When the operating point is set to v' = 3.5 in consideration of manufacturing ease and fiber diameter variation, the thickness of the first cladding is δ 1 T, the distance between the core and the support tube, or the distance between the first cladding and the first cladding. If the total thickness of the second cladding is δ 2 T, the attenuation constant due to leakage of the LP 01 mode and the LP 11 mode is as shown in FIG. Therefore,
Loss due to leakage in LP 11 mode 10 6 dB/Km or more,
We obtain 0<δ 1 1, δ 2 3.5 as conditions where the loss due to leakage of the LP 01 mode can be ignored. A fiber that satisfies the above conditions has a single mode, whether long or short (several centimeters). If δ 1 is made larger than 1, there will be cases where there is a single mode for long lengths (several hundred meters) and two modes for short lengths. This is clear from the relationship between δ 2 and the attenuation constant due to leakage of the LP 11 mode in FIG. 3. If δ 2 is made smaller than 3.5, the LP 01 mode will also be attenuated due to leakage.

第3図においてuはコア内の正規化横方向位相
数である。
In FIG. 3, u is the normalized lateral phase number within the core.

なお、(Δ1/Δ2)>2とすることにより、v´の動
作範囲は2.5/4.7、3.0〜5.5というように移向し、
実質的波長域は大幅に広くなる。
Note that by setting (Δ 12 )>2, the operating range of v' shifts to 2.5/4.7, 3.0 to 5.5,
The effective wavelength range becomes significantly wider.

δ2は3.5より大きければ伝送上の問題はないが、
コア径と光フアイバ外径との関係を考慮すると、
あまり大きいものは現実的でなく、3.5δ2<6
が適当な範囲である。
If δ 2 is larger than 3.5, there will be no transmission problem, but
Considering the relationship between the core diameter and the optical fiber outer diameter,
Too large is not realistic, 3.5δ 2 <6
is within an appropriate range.

以上説明したような本発明の単一モード光フア
イバであれば次のような顕著な効果を奏する。
The single mode optical fiber of the present invention as described above has the following remarkable effects.

(1) 従来構造に比べてコア径が大きくできるた
め、単一モード光フアイバ同志の接続及び光源
との結合が容易である。
(1) Since the core diameter can be made larger than in the conventional structure, it is easier to connect single mode optical fibers to each other and to couple with a light source.

(2) 界分布閉じ込めが良いため長手方向の径変動
による影響が小さい。
(2) Due to good field distribution confinement, the influence of longitudinal diameter fluctuations is small.

(3) 単一モード動作の波長域が広く、製造も容易
である。
(3) Single-mode operation has a wide wavelength range and is easy to manufacture.

(4) コアは高純度シリカであり、耐放射線性は良
好である。
(4) The core is made of high-purity silica and has good radiation resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のシリカコア単一モード光フアイ
バの屈折率分布及び断面を示す説明図、第2図は
本発明のシリカコア単一モード光フアイバの屈折
率分布及び断面を示す説明図、第3図は本発明の
シリカコア単一モード光フアイバの単一モード動
作域を示す線図であり、第4図はδ1とLP11モード
及びδ2とLP01モードの漏洩による損失の関係を示
す線図である。 21:コア、22:第1クラツド、23:第2
クラツド、24:第3クラツド。
FIG. 1 is an explanatory diagram showing the refractive index distribution and cross section of a conventional silica core single mode optical fiber, FIG. 2 is an explanatory diagram showing the refractive index distribution and cross section of the silica core single mode optical fiber of the present invention, and FIG. is a diagram showing the single mode operating range of the silica core single mode optical fiber of the present invention, and FIG. 4 is a diagram showing the relationship between loss due to leakage between δ 1 and LP 11 mode and between δ 2 and LP 01 mode. It is. 21: Core, 22: 1st Clad, 23: 2nd
Clad, 24: Third Clad.

Claims (1)

【特許請求の範囲】 1 コア、第1クラツド、第2クラツド及び第3
クラツドを有する単一モード光フアイバにおい
て、コア及び第3クラツドが高純度シリカであ
り、コアの屈折率n1、コアに隣接する第1クラツ
ドの屈折率n2、第2クラツドの屈折率n3が n1>n3>n2 (n1−n2)2(n1−n3) なる関係にあり、コア半径をT、第1クラツド厚
さをδ1T、第1クラツドと第2クラツドとの合計
厚さをδ2Tとしたとき 0<δ11 3.5δ2<6 であることを特徴とするシリカコア単一モード光
フアイバ。
[Claims] 1 core, first clad, second clad, and third clad
In a single mode optical fiber having a cladding, the core and the third cladding are high-purity silica, and the core has a refractive index n 1 , a first cladding adjacent to the core has a refractive index n 2 , and a second cladding has a refractive index n 3 . is in the relationship n 1 > n 3 > n 2 (n 1 − n 2 ) 2 (n 1 − n 3 ), where T is the core radius, δ 1 T is the thickness of the first clad, and δ 1 T is the thickness of the first clad and the second clad. A silica core single mode optical fiber characterized in that, where the total thickness with the cladding is δ 2 T, 0<δ 1 1 3.5δ 2 <6.
JP58054293A 1983-03-30 1983-03-30 Silica core single mode optical fiber Granted JPS59178404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58054293A JPS59178404A (en) 1983-03-30 1983-03-30 Silica core single mode optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58054293A JPS59178404A (en) 1983-03-30 1983-03-30 Silica core single mode optical fiber

Publications (2)

Publication Number Publication Date
JPS59178404A JPS59178404A (en) 1984-10-09
JPH0242202B2 true JPH0242202B2 (en) 1990-09-21

Family

ID=12966517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58054293A Granted JPS59178404A (en) 1983-03-30 1983-03-30 Silica core single mode optical fiber

Country Status (1)

Country Link
JP (1) JPS59178404A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101373238B (en) * 2008-08-20 2010-09-08 富通集团有限公司 Single-mode optical fiber with insensitive bending loss
EP3457183B1 (en) * 2016-05-12 2020-06-10 Sumitomo Electric Industries, Ltd. Multicore optical fiber, fiber bragg grating, and method for manufacturing a fiber bragg grating

Also Published As

Publication number Publication date
JPS59178404A (en) 1984-10-09

Similar Documents

Publication Publication Date Title
EP0674193B1 (en) Dispersion compensating optical fiber and optical transmission system including such fiber
US4447127A (en) Low loss single mode fiber
US7130514B1 (en) High SBS threshold optical fiber
EP1116968A1 (en) Multimode optical fiber with high-order mode removing function
JPH07168046A (en) Optical fiber for dividing and multiplexing wavelength
JP2002365464A (en) Positive dispersion optical fiber having large effective area
AU5015085A (en) Form birefringent fibers and method of fabrication
JPH0242202B2 (en)
JPS62187305A (en) Dual core single mode optical fiber with refractive index groove
JPS60154215A (en) Fiber type directional coupler
JPS6157606B2 (en)
JPS5816203A (en) Constant polarization type optical fiber
JPH0685005B2 (en) Constant polarization fiber and manufacturing method thereof
WO2001022134A1 (en) Optical transmission line
JPS636843B2 (en)
JP4304416B2 (en) Optical fiber filter and manufacturing method thereof
JPS6157603B2 (en)
JPS6157604B2 (en)
JPS61113007A (en) Optical fiber
JPS62283304A (en) Absolute single polarizing plane maintaining optical fiber
JPS6157605B2 (en)
JP2828251B2 (en) Optical fiber coupler
JPS61228404A (en) Optical fiber for constant polarized wave
JPH03204605A (en) Optical filter
JP2003084162A (en) Negative dispersion optical fiber, light amplifier and light transmission line