JPS62187305A - Dual core single mode optical fiber with refractive index groove - Google Patents

Dual core single mode optical fiber with refractive index groove

Info

Publication number
JPS62187305A
JPS62187305A JP61028971A JP2897186A JPS62187305A JP S62187305 A JPS62187305 A JP S62187305A JP 61028971 A JP61028971 A JP 61028971A JP 2897186 A JP2897186 A JP 2897186A JP S62187305 A JPS62187305 A JP S62187305A
Authority
JP
Japan
Prior art keywords
core
refractive index
optical fiber
intermediate layer
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61028971A
Other languages
Japanese (ja)
Inventor
Toshito Hosaka
保坂 敏人
Shoichi Sudo
昭一 須藤
Masaharu Horiguchi
堀口 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61028971A priority Critical patent/JPS62187305A/en
Publication of JPS62187305A publication Critical patent/JPS62187305A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To suppress an increase in transmission loss due to bending and microbend loss by using dual cores with a refractive index groove, making the refractive index of the 2nd core larger than that of a clad, and making the refractive index of the 1st core at the center part larger than that of the 2nd core. CONSTITUTION:An optical fiber is constituted by arranging the 1st core, the 2nd core 2, an intermediate layer 3, and the clad 4 concentricaly in order from the center and the refractive indexes of the respective layers are denoted as n1, n2, n3, and n4 respectively. The refractive index n1 of the 1st core 1 is largest and the refractive index n3 of the intermediate layer 3 is smallest. The refractive index n2 of the 2nd core 2 is an intermediate value between the refractive index n4 of the clad 4 and the refractive index n1 of the 1st core 1. Consequent ly, the optical fiber has a wide wavelength band of 1.5mum in wavelength where the smallest loss is expected, and the dual core single core optical fiber which is tolerant to bending loss and microbend loss is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、石英系光ファイバの損失が最小となる波長1
.56μmを中心とした広い波長領域において、分散に
基づく信号歪が少なく、かつ曲げ損失やマイクロベンド
損失が少ない単一モード光ファーイバに関するものであ
る。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to wavelength 1 at which the loss of a silica-based optical fiber is minimum.
.. The present invention relates to a single mode optical fiber that has less signal distortion due to dispersion and less bending loss and microbending loss in a wide wavelength range centered on 56 μm.

[従来の技術] 従来、広い波長領域にわたって広帯域(低分散)となる
光ファイバとしては、第7図(A)に示すようなファイ
バ断面をもち、その屈折率分布が第7図(B)に示すよ
うな屈折率溝付き(W形)単一モード光ファイバがあっ
た。
[Prior Art] Conventionally, an optical fiber having a wide band (low dispersion) over a wide wavelength range has a fiber cross section as shown in FIG. 7(A), and its refractive index distribution as shown in FIG. 7(B). There was an index grooved (W-shaped) single mode optical fiber as shown.

第7図において、中心部のコアlOの屈折率をn□ 、
最外層のクラッド4の屈折率をn4 、コアとクラッド
との間の中間層3の屈折率を13とすると、 n□ >
 14 > n3であり、コアとクラッドの屈折率差 Δ0千(no2 + n<2)/2no2クラッドと中
間層の屈折率差 Δ3 = (n32n42)/2n42をそれぞれ0.
5〜1.0%および−0,3〜−0,5%とし、中間層
の幅が上記中間層を含むコア半径の0.3〜0.7倍と
していた。
In FIG. 7, the refractive index of the central core lO is n□,
If the refractive index of the outermost layer cladding 4 is n4 and the refractive index of the intermediate layer 3 between the core and the cladding is 13, then n□ >
14 > n3, and the refractive index difference between the core and the cladding Δ0,000 (no2 + n<2)/2no2 The refractive index difference between the cladding and the intermediate layer Δ3 = (n32n42)/2n42 is set to 0.
5 to 1.0% and -0.3 to -0.5%, and the width of the intermediate layer was 0.3 to 0.7 times the core radius including the intermediate layer.

この従来形のファイバにおいては、確かに波長1.5μ
m帯において広い波長域にわたって零分散となるが、曲
げ損失やマイクロベンドに弱いという欠点があった。こ
れは、中間層をもうけ、屈折率の溝を付けることによっ
て、基本モードにもカットオフ波長が存在するようにな
り、カットオフ波長に近づくと導波能力が弱まるためで
ある。
In this conventional fiber, it is true that the wavelength is 1.5μ.
Although it has zero dispersion over a wide wavelength range in the m band, it has the drawback of being susceptible to bending loss and microbending. This is because by providing an intermediate layer and adding refractive index grooves, a cutoff wavelength also exists in the fundamental mode, and the waveguiding ability weakens as the fundamental mode approaches the cutoff wavelength.

ここで、第8図に、Δo−0,5%、Δ3−0.4机中
間層を含むコア半径4.86μm1中間層の幅1.94
μmの従来形ファイバを用いて伝送損失の波長依存性を
示し、また、第9図に、分散の波長依存性を示す。
Here, in FIG. 8, Δo-0.5%, Δ3-0.4, core radius including intermediate layer 4.86 μm, width of intermediate layer 1.94
The wavelength dependence of transmission loss is shown using a conventional .mu.m fiber, and FIG. 9 shows the wavelength dependence of dispersion.

第9図から明らかなように、波長1.5〜1.7μ−と
いう石英系ファイバで低損失となる広い波長域にわたっ
て分散が±lps/km/nmと広帯域となりている。
As is clear from FIG. 9, the dispersion has a wide band of ±lps/km/nm over a wide wavelength range of 1.5 to 1.7 μ-, which is a low loss in the silica fiber.

しかし、第8図から明らかなように、通常の1巻き1m
のドラムに巻いて測定した場合でも波長り、68厘以上
では曲げおよびマイクロベンド損失により伝送損失が増
加するという欠点が生じている。
However, as is clear from Figure 8, one roll of normal
Even when measured by winding it around a drum, there is a drawback that the transmission loss increases due to bending and microbend loss when the wavelength exceeds 68 mm.

[発明が解決しようとする問題点] そこで、本発明の目的は、従来のファイバで生じ易い曲
げ損失やマイクロベンド損失の増加を抑え、かつ低損失
化が可能な波長1.56μ讃を中心とする広い波長域に
わたって広帯域な伝送特性を有する屈折率溝付き二重コ
ア単一モード光ファイバを提供することにある。
[Problems to be Solved by the Invention] Therefore, the purpose of the present invention is to suppress the increase in bending loss and microbend loss that tend to occur in conventional fibers, and to reduce the loss by focusing on a wavelength of 1.56μ. An object of the present invention is to provide a double-core single-mode optical fiber with a refractive index groove that has broadband transmission characteristics over a wide wavelength range.

[問題点を解決するための手段] このような目的を達成するために、本発明は、屈折率の
異なる四層の誘電体が同心円状に形成された光ファイバ
において、最外層のクラッドは一様な屈折率を有し、ク
ラッドに続く中間層はクラッドよりも小さい一様な屈折
率を有し、中間層に続く第2コアはクラッドよりも大き
い屈折率を有し、中心部の第1コアは第2コアよりもさ
らに大きな屈折率を有するようにしたことを特徴とする
[Means for Solving the Problems] In order to achieve such an object, the present invention provides an optical fiber in which four layers of dielectric materials having different refractive indexes are formed concentrically, and the outermost cladding layer is one layer. The intermediate layer following the cladding has a uniform refractive index smaller than the cladding, the second core following the intermediate layer has a larger refractive index than the cladding, and the first core in the center has a uniform refractive index smaller than the cladding. The core is characterized in that it has a larger refractive index than the second core.

すなわち、本発明では、従来の屈折率溝付き単一モード
光フ、アイバ(第7図参照:大越、岡本。
That is, in the present invention, the conventional single-mode optical fiber with a refractive index groove, IVA (see FIG. 7: Ohkoshi, Okamoto).

保型、光ファイバ9.221オーム社)のコア中心部の
屈折率を高くした構造をとりでいる。
It has a structure with a high refractive index at the center of the core of a shape-retaining optical fiber (9.221 ohm).

[作 用] 本発明では、石英系光ファイバで最低損失が期待される
波長165μm帯において、広い波長域にわたって広帯
域であり、かつ曲げ損失、マイクロベンド損失に強い0
本発明によれば、石英系光ファイバの伝送損失が最低と
なる波長1.5μm帯において、1.5〜1.7μmの
広い波長領域にわたって、分散を±lps/に■・rv
以下にすることができ、しかも伝搬光のパワーをコア内
に強く閉じ込めることができるため、曲げおよびマイク
ロベンド損失にも強い。
[Function] The present invention provides a silica-based optical fiber that is broadband over a wide wavelength range in the wavelength band of 165 μm, where the lowest loss is expected, and is resistant to bending loss and microbending loss.
According to the present invention, in the 1.5 μm wavelength band where the transmission loss of a silica-based optical fiber is the lowest, the dispersion can be reduced to ±lps/■・rv over a wide wavelength range of 1.5 to 1.7 μm.
Moreover, since the power of propagating light can be strongly confined within the core, it is resistant to bending and microbending losses.

〔実施例〕〔Example〕

以下に図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

第1図(A)および(B)は本発明の一実施例を示す断
面図および各部の屈折率分布を、それぞれ示す。
FIGS. 1(A) and 1(B) respectively show a cross-sectional view and refractive index distribution of each part of an embodiment of the present invention.

第1図(A)において、中心から順次に第1コア1、第
2コア2、中間層3およびクラッド4を配置する。ここ
で、第1コア1の屈折率を11、第2コア2の屈折率を
n2 、中間層3の屈折率を口。およびクラッド4の屈
折率を14とする。第1図(B)に示すとおり、屈折率
はnlが最も大きく、 nsが最も小さいa  n2は
クラッド4の屈折率n4と第1コア1の屈折率n1との
中間の値とする。
In FIG. 1(A), a first core 1, a second core 2, an intermediate layer 3, and a cladding 4 are arranged sequentially from the center. Here, the refractive index of the first core 1 is 11, the refractive index of the second core 2 is n2, and the refractive index of the intermediate layer 3 is 11. And the refractive index of the cladding 4 is set to 14. As shown in FIG. 1(B), the refractive index nl is the largest, and ns is the smallest a.n2 is a value intermediate between the refractive index n4 of the cladding 4 and the refractive index n1 of the first core 1.

第1図(A)に示した本発明実施例の屈折率溝付き二重
コア単一モード光ファイバを以下のようなMCVD法に
より作製した。すなわち、まず、石英管(外径14mm
φ、内径12+amφ)の内壁面上に気相反応により約
1moJ1%のFおよび約2moI1%のと、0.を含
んだ5102膜を堆積させた後、Fおよび塙の代わりに
GeO2を約5moJZ%含んだ5i02膜を堆積し、
ざらにGeO2を約7moj2%含んだS i02膜を
堆積し、その後、当該石英管を約1900℃の高温で中
実化して得たプリフォームを約2100℃で加熱し線引
ぎすることによって屈折率溝付き二重コア単一モード光
ファイバを得た。第1コア1とクラッド4との屈折率差 Δ1 ’= (nl2−n22) /2n12=0.2
%第2コア2とクラッド4との屈折率差 Δ2=(n22−n42)/2n22=0−5%および
クラッド4と中間層3との屈折率差Δ3= (ns 2
−n4’ ) /2n32−0−4%であり、中間層3
を含むコア半径はa=4.86μm1中間層3の幅t 
= 1.9μm(第1コア1/第2コア2)径比は0.
2であった。
The double-core single-mode optical fiber with a refractive index groove according to the embodiment of the present invention shown in FIG. 1(A) was manufactured by the following MCVD method. That is, first, a quartz tube (outer diameter 14 mm)
φ, inner diameter 12+amφ) by gas phase reaction with about 1 moJ 1% F and about 2 moI 1% and 0. After depositing a 5102 film containing F and Hanawa, a 5i02 film containing about 5 moJZ% of GeO2 was deposited,
A Si02 film roughly containing about 7 moj2% of GeO2 is deposited, and then the quartz tube is solidified at a high temperature of about 1900°C, and the preform obtained is heated at about 2100°C and drawn to achieve refraction. A grooved double core single mode optical fiber was obtained. Refractive index difference Δ1' between the first core 1 and cladding 4 = (nl2-n22) /2n12=0.2
% refractive index difference Δ2 between the second core 2 and cladding 4 = (n22-n42)/2n22 = 0-5% and refractive index difference Δ3 between the cladding 4 and intermediate layer 3 = (ns 2
-n4') /2n32-0-4%, and the middle layer 3
The core radius including a = 4.86 μm1 the width t of the intermediate layer 3
= 1.9 μm (first core 1/second core 2) diameter ratio is 0.
It was 2.

第2図は、光フアイバ中を伝搬する光のパワー分布を光
フアイバ断面内で示したものである。本発明による第1
図(^)の屈折率溝付き二重コア単一モード光ファイバ
では、第2図に実線で示すように、従来の光ファイバで
ある。第2図の破線の場合に較べて、伝搬光がコア中心
に強く閉じ込められるようになる。従って、光ファイバ
に曲りやマイクロベンド等が生じた場合、それによる損
失増加が従来の屈折率の溝のみを付けた光ファイバに比
べて少なく抑えられる。
FIG. 2 shows the power distribution of light propagating through the optical fiber within the cross section of the optical fiber. First according to the present invention
The double-core single-mode optical fiber with a refractive index groove shown in FIG. 2 is a conventional optical fiber, as shown by the solid line in FIG. Compared to the case shown by the broken line in FIG. 2, the propagating light is more strongly confined to the center of the core. Therefore, when bends, micro-bends, etc. occur in the optical fiber, the increase in loss caused by this can be suppressed to a smaller level than in conventional optical fibers with only refractive index grooves.

波長1.5μ謹帯における広い波長域にわたって広帯域
となる特性は第9図に示すように従来の光ファイバ、す
なわち屈折率の溝を付けることによって実現され、本発
明による屈折率溝付き二重コア単一モード光ファイバに
もそのまま当てはまる。
The characteristic of broadband over a wide wavelength range in the wavelength band of 1.5μ can be achieved by using a conventional optical fiber, that is, by adding a refractive index groove, as shown in FIG. The same applies to single mode optical fibers.

本発明による光ファイバの損失波長依存特性を第3図に
示す。最低損失は波長1.56μmで0.2dB/km
である。また、この光ファイバは、曲げ損失およびマイ
クロベンドに強いため、第8図に示した従来の光ファイ
バのような波長1.6μm以上での損失の増加は認めら
れない。
FIG. 3 shows the loss wavelength dependence characteristics of the optical fiber according to the present invention. The minimum loss is 0.2 dB/km at a wavelength of 1.56 μm.
It is. Furthermore, since this optical fiber is resistant to bending loss and microbending, no increase in loss is observed at wavelengths of 1.6 μm or more, unlike the conventional optical fiber shown in FIG.

第4図は本実施例の光ファイバの分散の波長依存性を示
したものである。ここで、分散の測定はファイバラマン
レーザ法(大越、岡本、保立、光ファイバ 9.304
オ一ム社)を用い、本実施例の光ファイバにおける単位
長さ単位スペクトル拡がり当りの分散を、各波長におい
て測定されたパルスの遅延時間を波長で微分することに
よって求めた。第4図に示されるように、分散は波長1
.5〜1.71mの範囲で1 ps/ km−nm以下
になっており、低損失値が期待できる広い波長域にわた
フて広帯域にすることができる。
FIG. 4 shows the wavelength dependence of dispersion of the optical fiber of this example. Here, the dispersion is measured using the fiber Raman laser method (Okoshi, Okamoto, Hotate, Optical fiber 9.304
The dispersion per unit length and unit spectral spread in the optical fiber of this example was determined by differentiating the pulse delay time measured at each wavelength with respect to the wavelength. As shown in Figure 4, the dispersion is at wavelength 1
.. It is 1 ps/km-nm or less in the range of 5 to 1.71 m, and can be made into a wide band over a wide wavelength range where a low loss value can be expected.

次に、第5図に広い波長域で低分散を得るに必要な第2
コア2とクラッド4との屈折率差Δ2、(中間層3の幅
/第2コア2の半径)比t/r2および中間層3とクラ
ッド4との屈折率差Δ3との間の最適な関係を数値計算
によって求めた結果を示す。第5図に一例を示すように
、Δ3が−0,3〜−0,5%のときに低分散の領域を
最も広くするためには、Δ2を0.5〜1.0%とする
。従って、中間層3の幅は第2コア2の半径の0.4〜
1.8倍の範囲が最適であることが示される。
Next, Figure 5 shows the secondary
Optimal relationship between the refractive index difference Δ2 between the core 2 and the cladding 4, the (width of the intermediate layer 3/radius of the second core 2) ratio t/r2, and the refractive index difference Δ3 between the intermediate layer 3 and the cladding 4 The results obtained by numerical calculation are shown. As shown in an example in FIG. 5, in order to widen the low dispersion region when Δ3 is −0.3 to −0.5%, Δ2 is set to 0.5 to 1.0%. Therefore, the width of the intermediate layer 3 is 0.4 to 0.4 of the radius of the second core 2.
A range of 1.8 times is shown to be optimal.

第6図はΔ2.Δ3および(中間層3の幅/第2コア2
の半径)比を与えた場合に、これらに応じて低分散波長
域が最大となるときの、中間層3を含めたコア径の最適
値を示した図である。
Figure 6 shows Δ2. Δ3 and (width of intermediate layer 3/second core 2
FIG. 10 is a diagram showing the optimum value of the core diameter including the intermediate layer 3 when the low dispersion wavelength region is maximized according to the radius) ratio.

また、曲げ損失やマイクロベンドに対して強くするため
には、第1コア1と第2コア2との屈折率差が0.1%
以上、第1コア1の直径が第2コア2の直径の0.1倍
以上とすることが必要である。
In addition, in order to be strong against bending loss and microbending, the refractive index difference between the first core 1 and the second core 2 must be 0.1%.
As mentioned above, it is necessary that the diameter of the first core 1 is 0.1 times or more the diameter of the second core 2.

さらに、伝送損失を理論的に0.2dB/lv以下とい
う低損失値にするためには、第1コア1と第2コア2と
の屈折率差を0.5%以下にする必要がある。
Furthermore, in order to theoretically reduce the transmission loss to a low loss value of 0.2 dB/lv or less, the refractive index difference between the first core 1 and the second core 2 needs to be 0.5% or less.

広い波長領域で低分散とするための条件が大きく変わら
ないためには、第1コア1の直径を第2コア2の直径の
0.3倍以下とすることが必要である。
In order that the conditions for achieving low dispersion over a wide wavelength range do not change significantly, the diameter of the first core 1 must be 0.3 times or less the diameter of the second core 2.

[発明の効果] 以上説明したように、本発明によれば、石英系光ファイ
バの伝送損失が最低となる波長1.5μm帯において、
1.5〜1.7μmの広い波長領域にわたって、分散を
±1ps/kIIl−nI11以下にすることができ、
しかも伝搬光のパワーをコア内に強く閉じ込めることが
できるため、曲げおよびマイクロベンド損失にも強いと
いう利点がある。本発明のこのような利点を利用するこ
とにより、波長多重伝送技術によって超広帯域で長距離
の光フアイバ伝送を行うことができる。
[Effects of the Invention] As explained above, according to the present invention, in the wavelength band of 1.5 μm where the transmission loss of the silica-based optical fiber is the lowest,
The dispersion can be made less than ±1 ps/kIIl-nI11 over a wide wavelength range of 1.5 to 1.7 μm,
Furthermore, since the power of the propagating light can be strongly confined within the core, it has the advantage of being resistant to bending and microbending losses. By utilizing these advantages of the present invention, ultra-wideband and long-distance optical fiber transmission can be performed using wavelength division multiplexing transmission technology.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は本発明による光ファイバの一実施例を示
す断面図、 第1図(B)はその屈折率分布図、 第2図は従来および本発明による光ファイバのパワー分
布を示す図、 第3図および第4図はそれぞれ本発明によるファイバの
損失および分散の波長依存性を示す特性図、 第5図は中間層とクラッドの屈折率差をパラメータとし
たときの、中間層の幅対第2コアの半径と第2コアとク
ラッドの屈折率差との関係を示す特性図、 第6図は中間層の幅対第2コアの半径および中間層とク
ラッドの屈折率差をパラメータとしたときの中間層を含
めたコア径と第2コアとクラッドの屈折率差との関係を
示す特性図、 第7図(A)は従来の光ファイバの一例を示す断面図、 第7図(B)はその屈折率分布図、 第8図および第9図は、それぞれ、従来のファイバの損
失および分散の波長依存性を示す特性図である。 1・・・第1コア、 2・・・第2コア、 3・・・中間層、 4・・・クラッド、 10・・・コア、 n□”・コアの屈折率、 nl・・・第1コアの屈折率、 nl・・・第2コアの屈折率、 n3・・・中間層の屈折率、 n4・・・クラッドの屈折率、 a・・・中間層を含むコア半径、 rl・・・第1コアの半径、 rl・・・第2コアの半径、 t・・・中間層の厚さ、 Δ0・・・コアとクラッドの屈折率差、Δl・・・第1
コアと第2コアの屈折率差、Δ2・・・第2コアとクラ
ッドの屈折率差、Δ3・・・中間層とクラッドの屈折率
差。
FIG. 1(A) is a cross-sectional view showing an embodiment of the optical fiber according to the present invention, FIG. 1(B) is a refractive index distribution diagram thereof, and FIG. 2 is a power distribution of the conventional optical fiber and the optical fiber according to the present invention. 3 and 4 are characteristic diagrams showing the wavelength dependence of loss and dispersion of the fiber according to the present invention, respectively. A characteristic diagram showing the relationship between the width versus the radius of the second core and the refractive index difference between the second core and the cladding. Figure 6 shows the relationship between the width of the intermediate layer versus the radius of the second core and the refractive index difference between the intermediate layer and the cladding. A characteristic diagram showing the relationship between the core diameter including the intermediate layer and the refractive index difference between the second core and the cladding when (B) is a refractive index distribution diagram thereof, and FIGS. 8 and 9 are characteristic diagrams showing the wavelength dependence of loss and dispersion of a conventional fiber, respectively. DESCRIPTION OF SYMBOLS 1... First core, 2... Second core, 3... Intermediate layer, 4... Clad, 10... Core, n□'' core refractive index, nl... First refractive index of core, nl... refractive index of second core, n3... refractive index of intermediate layer, n4... refractive index of cladding, a... core radius including intermediate layer, rl... radius of the first core, rl... radius of the second core, t... thickness of the intermediate layer, Δ0... refractive index difference between the core and cladding, Δl... the first
Difference in refractive index between the core and second core, Δ2... Difference in refractive index between the second core and cladding, Δ3... Difference in refractive index between the intermediate layer and cladding.

Claims (1)

【特許請求の範囲】 1)屈折率の異なる四層の誘電体が同心円状に形成され
た光ファイバにおいて、最外層のクラッドは一様な屈折
率を有し、前記クラッドに続く中間層は前記クラッドよ
りも小さい一様な屈折率を有し、前記中間層に続く第2
コアは前記クラッドよりも大きい屈折率を有し、中心部
の第1コアは前記第2コアよりもさらに大きな屈折率を
有するようにしたことを特徴とする屈折率溝付き二重コ
ア単一モード光ファイバ。 2)前記第2コアと前記クラッドとの屈折率差を05〜
1.0%とし、前記中間層と前記クラッドとの屈折率を
−0.3〜−0.5%とし、前記第1コアと前記第2コ
アとの屈折率差を0.1〜0.5%とし、前記第1コア
の直径を前記第2コアの直径の0.1〜0.3倍とし、
前記中間層の幅を前記第2コアの半径の0.4〜1.8
倍とし、かつ、前記第2コアの半径が前記屈折率差およ
び前記中間層の幅に対応した大きさを有することを特徴
とする特許請求の範囲第1項記載の屈折率溝付き二重コ
ア単一モード光ファイバ。 3)前記クラッドの材料を石英ガラスとし、前記第1コ
アおよび前記第2コアをGeO_2あるいはP_2O_
5の単体、あるいは両者が石英ガラスに添加された材料
とし、前記中間層を石英ガラスにフッ素あるいは硼素が
石英ガラスに添加された材料とすることを特徴とする特
許請求の範囲第1項記載の屈折率溝付き二重コア単一モ
ード光ファイバ。
[Claims] 1) In an optical fiber in which four dielectric layers with different refractive indexes are formed concentrically, the outermost cladding has a uniform refractive index, and the intermediate layer following the cladding has a uniform refractive index. a second layer having a uniform refractive index smaller than that of the cladding and following the intermediate layer;
A double core single mode with a refractive index groove, wherein the core has a refractive index larger than the cladding, and the first core at the center has an even larger refractive index than the second core. optical fiber. 2) The refractive index difference between the second core and the cladding is 05~
1.0%, the refractive index of the intermediate layer and the cladding is -0.3% to -0.5%, and the refractive index difference between the first core and the second core is 0.1 to 0.0%. 5%, and the diameter of the first core is 0.1 to 0.3 times the diameter of the second core,
The width of the intermediate layer is 0.4 to 1.8 of the radius of the second core.
The double core with refractive index grooves according to claim 1, wherein the second core has a radius corresponding to the refractive index difference and the width of the intermediate layer. Single mode optical fiber. 3) The material of the cladding is quartz glass, and the first core and the second core are GeO_2 or P_2O_
5 alone or both are added to quartz glass, and the intermediate layer is made of quartz glass with fluorine or boron added to the quartz glass. Double core single mode optical fiber with refractive index groove.
JP61028971A 1986-02-14 1986-02-14 Dual core single mode optical fiber with refractive index groove Pending JPS62187305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61028971A JPS62187305A (en) 1986-02-14 1986-02-14 Dual core single mode optical fiber with refractive index groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61028971A JPS62187305A (en) 1986-02-14 1986-02-14 Dual core single mode optical fiber with refractive index groove

Publications (1)

Publication Number Publication Date
JPS62187305A true JPS62187305A (en) 1987-08-15

Family

ID=12263303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61028971A Pending JPS62187305A (en) 1986-02-14 1986-02-14 Dual core single mode optical fiber with refractive index groove

Country Status (1)

Country Link
JP (1) JPS62187305A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0327702A2 (en) * 1988-02-11 1989-08-16 KABEL RHEYDT Aktiengesellschaft Light wave guide
JPH02141704A (en) * 1988-11-22 1990-05-31 Fujikura Ltd Optical fiber
JPH0344604A (en) * 1989-07-13 1991-02-26 Fujikura Ltd 1.55mum dispersion shift fiber
US5940567A (en) * 1998-02-20 1999-08-17 Photon-X, Inc. Optical fibers having an inner core and an outer core
EP0851247A3 (en) * 1996-12-27 2000-06-14 Sumitomo Electric Industries, Ltd Dispersion-shifted optical fibre and method of manufacturing the same
WO2000052507A1 (en) * 1999-03-03 2000-09-08 Sumitomo Electric Industries, Ltd. Optical fiber
US6535679B2 (en) 1997-01-16 2003-03-18 Sumitomo Electric Industries, Ltd. Optical fiber and method of manufacturing the same
KR100638435B1 (en) 2004-11-02 2006-10-24 주식회사 효성 Step index plastic optical fiber and the method of preparing the same
CN100374888C (en) * 2003-04-11 2008-03-12 株式会社藤仓 Optical fiber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0327702A2 (en) * 1988-02-11 1989-08-16 KABEL RHEYDT Aktiengesellschaft Light wave guide
JPH02141704A (en) * 1988-11-22 1990-05-31 Fujikura Ltd Optical fiber
JPH0344604A (en) * 1989-07-13 1991-02-26 Fujikura Ltd 1.55mum dispersion shift fiber
EP0851247A3 (en) * 1996-12-27 2000-06-14 Sumitomo Electric Industries, Ltd Dispersion-shifted optical fibre and method of manufacturing the same
US6535679B2 (en) 1997-01-16 2003-03-18 Sumitomo Electric Industries, Ltd. Optical fiber and method of manufacturing the same
US5940567A (en) * 1998-02-20 1999-08-17 Photon-X, Inc. Optical fibers having an inner core and an outer core
WO2000052507A1 (en) * 1999-03-03 2000-09-08 Sumitomo Electric Industries, Ltd. Optical fiber
CN100374888C (en) * 2003-04-11 2008-03-12 株式会社藤仓 Optical fiber
KR100638435B1 (en) 2004-11-02 2006-10-24 주식회사 효성 Step index plastic optical fiber and the method of preparing the same

Similar Documents

Publication Publication Date Title
JP4065716B2 (en) Positive dispersion optical fiber with wide effective area
CA2237282C (en) Optical fiber having a low-dispersion slope in the erbium amplifier region
JP3320745B2 (en) Dispersion flat optical fiber
JP4101429B2 (en) Multimode optical fiber with higher-order mode rejection
US6317549B1 (en) Optical fiber having negative dispersion and low slope in the Erbium amplifier region
WO2011024808A1 (en) Multi-core fiber
EP1116968B1 (en) Multimode optical fiber with high-order mode removing function
WO2013021697A1 (en) Multi-core optical fiber and optical transmission system
US6904215B2 (en) Low macrobending loss optical fiber
JPH0318161B2 (en)
WO2012108467A1 (en) Optical fiber and optical transmission system
CN111443419B (en) Large-mode-field bending-resistant multi-core few-mode optical fiber
GB2116744A (en) Optical fiberguide
US4412722A (en) Single mode fiber with graded index of refraction
KR100342711B1 (en) Dispersion shifted fiber with triple clad
JP2014164269A (en) Multi-core fiber
JPS62187305A (en) Dual core single mode optical fiber with refractive index groove
JP2001264568A (en) Mono-mode optical fiber for optical fiber transmission network provided with wavelength division multiplexing
JPS61122612A (en) Optical fiber
JP4568485B2 (en) Single mode optical fiber and optical communication system
JP2000241650A (en) Step index type broad band optical fiber
JP2828251B2 (en) Optical fiber coupler
JP2003270469A (en) Dispersion-correction fiber with high figure of merit
JPH09258054A (en) Dispersion shift fiber
JP2023031727A (en) Multi-core fiber