WO2000052507A1 - Optical fiber - Google Patents

Optical fiber Download PDF

Info

Publication number
WO2000052507A1
WO2000052507A1 PCT/JP2000/001237 JP0001237W WO0052507A1 WO 2000052507 A1 WO2000052507 A1 WO 2000052507A1 JP 0001237 W JP0001237 W JP 0001237W WO 0052507 A1 WO0052507 A1 WO 0052507A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
refractive index
optical fiber
cladding
region
Prior art date
Application number
PCT/JP2000/001237
Other languages
French (fr)
Japanese (ja)
Inventor
Takatoshi Kato
Yuji Kubo
Yuji Takahashi
Michifumi Yoneda
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to AU28258/00A priority Critical patent/AU2825800A/en
Publication of WO2000052507A1 publication Critical patent/WO2000052507A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/0228Characterised by the wavelength dispersion slope properties around 1550 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -

Definitions

  • the present invention relates to an optical fiber applicable to an optical transmission line in an optical communication system or the like.
  • an optical fiber based on silica glass is applied to an optical transmission line in an optical communication system.
  • Silica glass has low transmission loss in the 1.55 m wavelength band, so light in this wavelength band is used as signal light.
  • wavelength division multiplexing WDM
  • WDM wavelength division multiplexing
  • the optical fiber applied to WDM transmission has a small dispersion and a small dispersion slope in the 1.55 ⁇ m wavelength band, and suppresses the occurrence of nonlinear optical phenomena. Therefore, it is desired that the effective area is large in the wavelength band.
  • the optical fiber disclosed in U.S. Pat. No. 5,327,516 has a dispersion slope in the 1.55 m wavelength band of not more than 0.4 OQ SpsZnm 2 / km.
  • Yanming Liu, et al "" Single-mode dispersion-shifted fibers with effective area larger than 80 m 2 and good bending performance ", ECOC'95, Tu ⁇ .2.4 (1995) comprising an optical fiber described in the literature ( The second conventional example) has an effective area of 80 / m 2 or more.
  • the inventors have studied the conventional optical fiber described above, and as a result, Problem was discovered. That is, although the optical fiber according to the first conventional example has a small dispersion slope, it also has a small effective cross-sectional area of 53 ⁇ m 2 , so that the occurrence of the nonlinear optical phenomenon cannot be sufficiently suppressed. On the other hand, although the optical fiber according to the second conventional example has a large effective area, the dispersion slope is also as large as 0.11 ps / nmS / km, so that the accumulated dispersion cannot be sufficiently reduced.
  • the present invention has been made to solve the above-described problems, and the effective cross-sectional area is reduced in a state in which the dispersion slope is suppressed to a small value in the 1.55 ⁇ m wavelength band, which is a frequently used signal light wavelength band.
  • the purpose is to provide an optical fiber with a structure that can be sufficiently expanded.
  • An optical fiber according to the present invention includes a core region extending along a predetermined axis, and a cladding region provided on an outer periphery of the core region.
  • the core region further includes an inner core and an outer core provided on an outer periphery of the inner core and having a smaller refractive index than the inner core.
  • the cladding region is provided on the outer periphery of the outer core and has a lower refractive index than the outer core.
  • the cladding region is composed of a single layer, and the refractive index profile of the optical fiber in which the cladding region is composed of a single layer is a matched cladding type refractive index profile. Called.
  • the optical fiber according to the first embodiment includes a depressed cladding type refractive index profile in which the cladding region surrounding the core region is composed of an inner cladding and an outer cladding, and the outer cladding (the cladding region surrounding the core region).
  • the optical fiber according to the first embodiment is characterized by satisfying the following conditions. Furthermore, when the relative refractive index difference between the outer cladding and the inner cladding is ⁇ 3 (), the optical fiber according to the first embodiment
  • the optical fiber according to the second embodiment has a matched clad type refractive index profile in which the clad region surrounding the core region is constituted by a single layer, and the relative refractive index difference of the inner core with respect to the clad region is ⁇ ⁇ .
  • the relative refractive index difference of the outer core to the cladding region is ⁇ 2 (%)
  • the outer diameter of the inner core is 2 a (jum)
  • the outer diameter of the outer core is 2 b ( ⁇ m).
  • Each of the optical fibers according to the first and second embodiments having the above-described structure has a sufficiently small dispersion slope and a sufficiently large effective area in the 1.55 ⁇ m wavelength band. In addition, other optical characteristics are good in such a wavelength band.
  • the effective area A eif is given by the following equation, as shown in JP-A- 8-248251 (EP0724171 A2).
  • E is the electric field associated with the propagating light
  • r is the radial distance from the core center.
  • the dispersion slope is given by the slope of a graph showing the wavelength dependence of dispersion.
  • FIG. 1A is a sectional view showing the structure of a first embodiment of the optical fiber according to the present invention
  • FIG. 1B is a refractive index profile of the optical fiber shown in FIG.
  • FIG. 2 is a graph showing the optical characteristics of the optical fiber according to the first embodiment, where the relative refractive index difference ⁇ 2 (%) of the outer core with respect to the outer cladding and the outer diameter 2 b (JUL m) of the outer layer core are shown.
  • 5 is a graph showing a relationship between an effective area A efi (urn) and a bending loss (dB / m) at a diameter of 20 mm for the optical fiber according to the first example.
  • FIG. 4 is a refractive index profile of a second embodiment of the optical fiber according to the present invention.
  • FIG. 5 is a graph showing the optical characteristics of the optical fiber according to the second embodiment, wherein the relative refractive index difference ⁇ 2 (%) of the outer core with respect to the cladding region and the outer diameter 2 b (um ) On the two-dimensional plane, with the cutoff wavelength ⁇ . (M), effective area A eff 'dispersion value (psZnm / km) ⁇ dispersion slope (ps / nmkm) and bending loss (dB / m).
  • FIGS. 1A, 1B, and FIGS. In the description of the drawings, the same elements are denoted by the same reference numerals. And duplicate explanations are omitted.
  • FIG. 1A is a sectional view showing the structure of an optical fiber according to a first embodiment of the present invention
  • FIG. 1B is a refractive index profile of the optical fiber 100 according to the first embodiment.
  • the optical fiber 100 according to the first embodiment has a refractive index profile 150 of a double core / depressed clad type.
  • the optical fiber 100 includes, as shown in FIG. 1A, a core region 110 and a cladding region 120 surrounding the core region.
  • the core region 1 10 includes an inner core 1 1 1 having an outer diameter 2 a having a refractive index including the center of the optical axis and an outer diameter 2 b surrounding the inner core 1 1 1 and having a refractive index n 2 ( ⁇ n!). And an outer core 1 1 2.
  • the cladding region 1 20 surrounds the outer core 1 12 and has an outer cladding 1 2 1 having an outer diameter 2 c having a refractive index n 3 ( ⁇ n 2 ), and an inner cladding 1 2 1 surrounding the inner cladding 1 2 1 and having a refractive index n 4 (> n 3 , ⁇ n 2 ).
  • the refractive index profile 150 shown in FIG. 1B is represented by the refractive index of each portion on the line L in FIG. 1A, and the region 151 is the inner core 111 on the line L.
  • the refractive index of each part is the refractive index of each part in the outer core 112 on the line L
  • the area 153 is the refractive index of each part in the inner cladding 121 on the line L
  • the area 154 is the line L This corresponds to the refractive index of each portion in the upper outer cladding 122.
  • the relative refractive index difference ⁇ ⁇ of the inner core 111 and the relative refractive index difference ⁇ 2 of the outer core 112 and the inner clad 1 is given as follows.
  • n 3 (n 3 -n 4 ) / n 4
  • the refractive index of the inner core 1 1 1, n 2 is the refractive index of the outer core 1 1 2, n 3 is the inner cladding 1 2 1 having a refractive index, n 4 is the refractive index of the outer cladding 1 2 2.
  • these relative refractive index differences are expressed as percentages, and the refractive indices of the respective regions in the above equation are not in any order (the same applies hereinafter). Therefore, it is considered that a region where the relative refractive index difference has a negative value with respect to the reference region has a lower refractive index than the reference region.
  • the outer diameter 2 b ( ⁇ m) of 2 satisfies the following conditions.
  • the relative refractive index difference ⁇ 3 (%) of the inner cladding 122 with respect to the outer cladding 122 preferably satisfies the following condition.
  • FIG. 2 is a graph showing optical characteristics of the optical fiber 1 0 0 according to the first embodiment, the outer clad 1 2 relative refractive index of the outer core 1 1 2 difference with respect to 2 delta eta 2 (%) And the outer diameter 2 b (urn) of the outer core 1 1 2 on a two-dimensional plane with the parameters being parallel, the cutoff wavelength c (1.1 1. ⁇ , 1.6 jm) Area A ef f (56 ⁇ m 2 , 66 ⁇ m 2 ), dispersion (+1.0 ps / nm / km, +6 O ps / nm / km) ⁇ Dispersion slope (0.06 ps / nm 2 / km s 0.08 ps / nm 2 / km) and bending loss at 20 mm diameter (S dBZm) FIG.
  • the characteristics shown in these graphs were calculated for a sample having the cross-sectional structure shown in FIG. 1A and having a refractive index profile as shown in FIG. 1B.
  • supposed sample is the specific refractive index difference ⁇ ⁇ ⁇ 0. 6 5% of the inner core with respect to the outer cladding, the inner clad relative refractive index difference .DELTA..eta 3 with respect to the outer clad - 0.05 % Is set.
  • the ratio (a / b) of the outer diameter 2a of the inner core to the outer diameter 2b of the outer core (a / b) is 0.21, and the ratio (c / c) of the outer diameter 2c of the inner clad to the outer diameter 2b of the outer core.
  • the cutoff wavelength c (urn) refers to the LPu mode cutoff wavelength measured when a 2 m long optical fiber is wrapped around a mandrel only once loosely to a radius of 140 mm ( The same applies to the following).
  • a hatched area is a preferable area.
  • This hatch ring range under the conditions described above, the specific refraction index difference .DELTA..eta 2 is 0.03% of the outer core to 0 with respect to the outer cladding.
  • a 09% the outer diameter 2 b of the outer core 2 5. 7 ⁇ M ⁇ 29. when a 8 ⁇ M, cutoff wavelength input c ( ⁇ M), the effective area a ef f ( ⁇ M 2), dispersion (ps / nm / miles), dispersion slope (ps / nm 2 / km) s and bending loss (dB / m) at a diameter of 20 mm.
  • the optical fiber according to the first embodiment has various characteristics at a wavelength of 1.55 ⁇ m. As sex, 5 6-6 6 ⁇ M 2 of effective area A ef f, + 1 ⁇ + 6 ps / nm / km in dispersion, 0. 06 ⁇ 0.
  • FIG. 3 is a graph showing the relationship between the effective area A eif (JLL m 2 ) and the bending loss (dB / m) at a diameter of 20 mm in the optical fiber according to the first embodiment.
  • a graph G100 in this figure shows the above relationship for the conventional optical fiber
  • a graph G200 shows the above relationship for the optical fiber according to the first embodiment.
  • These graphs G 1 00 as can be seen from the G 200, both the bending as effective area A ef f ( ⁇ M 2) is greater loss (dB / m) is increased.
  • the effective area A ef f becomes 5 6 ⁇ M 2 or more
  • the bending loss becomes 5 dB / m or more, it is likely that loss due to cable manufacturing is increased.
  • the bending loss is 5 dB / m or less if the effective area A efi is 56 zm 2 or more and 66 m 2 or less. The increase in loss due to the cable is effectively suppressed.
  • the manufactured sample has an inner core outer diameter 2a of 5.4 2m, an outer core outer diameter 2b of 27.2 ⁇ m, an inner cladding outer diameter 2c of 47.0 ⁇ m, and an outer diameter of 27.0 ⁇ m.
  • the ratio (a / b) of the outer diameter 2a of the inner core to the outer diameter 2a of the side core was 0.20.
  • the ratio of this sample, the relative refractive index difference delta gamma ⁇ is 0.62% of the inner core with respect to the outer cladding, the relative refractive index difference of the outer core with respect to the outer cladding .DELTA..eta 2 is 0.05%, the inner cladding with the outer cladding The refractive index difference ⁇ 3 was one 0.08%.
  • the sample with the above structure has various characteristics at a wavelength of 1.55 m, an effective area A ef f of 61 m 2 , a dispersion of +4.6 ps / nm / km, and ps It has a dispersion slope of / nm 2 / km, a polarization mode dispersion of 0.1 1 ps ⁇ km—1 / 2 , and a bending loss of 0.4 dB / m at a diameter of 20 mm.
  • the cutoff wavelength c was 1.34 m.
  • the optical fiber according to the first embodiment has a refractive index profile of a so-called “double core” depressed clad type and satisfies the above expressions (1) to (4).
  • a larger effective area A eff can be obtained with the dispersion slope kept low.
  • FIG. 4 is a refractive index profile of a second embodiment of the optical fiber according to the present invention.
  • the optical fiber according to the second embodiment has a matched clad type refractive index profile in which the clad region is composed of a single layer.
  • the structure of the core region has a double core structure as in the first embodiment shown in FIG. 1A.
  • the optical fiber according to the second embodiment includes an inner core having an outer diameter 2 a having a refractive index including the center of the optical axis, and an outer core having an outer diameter 2 b surrounding the inner core and having a refractive index ⁇ 2 ( ⁇ !).
  • the refractive index profile 250 of the optical fiber according to the second embodiment shown in FIG. 4 is the same as that of the first embodiment shown in FIG. Represent.
  • the region 251 is a refractive index of each portion on the line L of the inner core
  • the region 252 is a refractive index of each portion on the line L of the outer core
  • the region 253 is This corresponds to the refractive index of each part on the line L of the cladding region.
  • the relative refractive index difference ⁇ ⁇ (%) of the inner core and the relative refractive index difference ⁇ 2 (%) of the outer core with the cladding region as a reference region are given as follows.
  • ⁇ 2 is the refractive index of the outer core
  • ⁇ 3 is the refractive index of the cladding region.
  • the optical fiber having the structure described above, the relative refractive index difference of the inner co ⁇ respect to the cladding region .DELTA..eta 2 (%), the relative refractive index difference of the outer core with respect to the cladding region ⁇ eta and 2 (), the inner core region It is preferable that the following conditions are satisfied when the outer diameter of the outer layer is 2 a ( ⁇ m) and the outer diameter of the outer layer core region is 2 b (ju).
  • FIG. 5 is a graph showing the optical characteristics of the optical fiber according to the second embodiment.
  • the relative refractive index difference n 2 of the outer core to the cladding region is 0.05% to 0.13%, and the outer diameter of the outer core 2 b Is 2 1.l ⁇ m to 25.3 ⁇ m, the cutoff wavelength c ( ⁇ m), the effective area A ef f ( ⁇ M 2), dispersion (ps / nm / km), the dispersion slope (ps / nm 2 / km) , and the bending loss (dB / m), respectively can be seen to be preferred value.
  • engagement Ru optical fiber to the second embodiment has, as characteristics at a wavelength of 1. 55 ⁇ M, the 56 ⁇ 66 ⁇ M 2 effective area A ef f, +. 1 to ten 6 ps / nm / km in Dispersion, 0.06 to 08 ps / nm 2 / km Dispersion slope, 0.15 pskm-Polarization mode dispersion of 1/2 or less, Bending loss of 5 dB / m or less for 20 mm diameter Have.
  • the cut-off wavelength c is 1.1 to L. 6 zm.
  • the manufactured sample had an inner core outer diameter 2a of 6.0 / m, an outer core outer diameter 2b of 24.0 m, and an inner core outer diameter 2b of the outer core outer diameter 2b.
  • the ratio (a / b) of the outer diameter 2a was 0.25.
  • the relative refractive index difference ⁇ ⁇ of the inner core with respect to the cladding region was 0.72%
  • the relative refractive index difference ⁇ 2 of the outer core with respect to the cladding region was 0.08%.
  • the effective area A eff is 60 / m 2 s
  • the dispersion is +2.8 ps / nm / km
  • the dispersion slope is 0.072 ps / nm 2 / km
  • the polarization mode dispersion was 0.09 ps' km— 1 / 2
  • the bend diameter at a diameter of 20 mm was 0.5 dB / m.
  • the cutoff wavelength c was 1.38 m.
  • the optical fiber according to the second embodiment having the so-called double-core / matched-clad refractive index profile, by designing to satisfy the above equations (6) to (9), 1 In the 55 m wavelength band, the effective area can be made sufficiently large while effectively suppressing the increase of the dispersion slope. Also, Other optical properties are also good. Industrial applicability
  • an optical fiber having a dual-core Daveless-Trade-type refractive index profile is designed so as to satisfy the above equations (1) to (4).
  • An optical fiber having a heavy-core / matched-clad refractive index profile was designed to satisfy the above equations (6) to (9), thereby suppressing the increase in dispersion slope in the 1.55-m wavelength band. In this state, the effective area can be increased sufficiently.
  • the optical fiber according to the present invention can effectively suppress the occurrence of nonlinear optical phenomena and reduce the accumulated dispersion, so that it can be used in an optical transmission line in an optical communication system such as a WDM transmission system. Are suitable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Abstract

An optical fiber having a sufficiently large effective cross sectional area while suppressing an increase of the dispersion slope in the 1.55 νm wavelength band. The optical fiber comprises an inner core where a core region extends along a predetermined axis and an outer core provided on the periphery of the inner core and having a refractive index lower than that of the inner core. Specifically, the relative index difference Δn1 of the inner core to the reference region in the clad region provided on the periphery of the core region, the relative index difference Δn2 of the outer core to the reference region, the ratio a/b of the outside diameter (2b) of the outer core to the outside diameter (2a) of the inner core, outside, and the outside diameter (2b) of the outer core are all adequately determined according to the structure of the clad region.

Description

曰月糸田 光ファ  Satsuki Itoda
技術分野 Technical field
この発明は、 光通信システム等における光伝送路に適用可能な光ファイバに関 するものである。 背景技術  The present invention relates to an optical fiber applicable to an optical transmission line in an optical communication system or the like. Background art
光通信システムにおける光伝送路には、 通常、 シリカガラスをベースとした光 ファイバが適用される。 シリカガラスは、 1. 55〃m波長帯において伝送損失 が小さいことから、 この波長帯域の光が信号光として利用されている。 また、 最 近の光通信では、 大容量の光通信を可能にするため、 1. 55 m波長帯におけ る複数波長の信号光を多重化する波長分割多重 (WDM : Wavelength Division Multiplexing) が行われる。 そして、 WDM伝送に適用される光ファイバは、 累 積分散を低減するために、 1. 55〃m波長帯における分散及び分散スロープが 小さいことが望まれ、 かつ、 非線形光学現象の発生を抑制するために該波長帯に おいて実効断面積が大きいことが望まれている。  Generally, an optical fiber based on silica glass is applied to an optical transmission line in an optical communication system. Silica glass has low transmission loss in the 1.55 m wavelength band, so light in this wavelength band is used as signal light. In recent optical communications, wavelength division multiplexing (WDM), which multiplexes signal light of multiple wavelengths in the 1.55 m wavelength band, is being performed to enable large-capacity optical communications. Will be In order to reduce the cumulative dispersion, it is desirable that the optical fiber applied to WDM transmission has a small dispersion and a small dispersion slope in the 1.55〃m wavelength band, and suppresses the occurrence of nonlinear optical phenomena. Therefore, it is desired that the effective area is large in the wavelength band.
例えば、 米国特許第 5, 327, 516号に開示された光フ ' (第 1従来 例) は、 1. 55 m波長帯における分散スロープは 0. O Q SpsZnm2/ km以 である。 また、 Yanming Liu, et al" "Single-mode dispersion-shifted fibers with effective area larger than 80 m2 and good bending performance", ECOC'95, Tu丄.2.4 (1995) なる文献に記載された光ファイバ (第 2従来例) は、 実効断面積が 80 /m2以上である。 発明の開示 For example, the optical fiber disclosed in U.S. Pat. No. 5,327,516 (first conventional example) has a dispersion slope in the 1.55 m wavelength band of not more than 0.4 OQ SpsZnm 2 / km. Further, Yanming Liu, et al "" Single-mode dispersion-shifted fibers with effective area larger than 80 m 2 and good bending performance ", ECOC'95, Tu丄.2.4 (1995) comprising an optical fiber described in the literature ( The second conventional example) has an effective area of 80 / m 2 or more.
発明者らは、 上述された従来の光ファイバについて検討した結果、 以下のよう な課題を発見した。 すなわち、 第 1従来例に係る光ファイバは、 分散スロープは 小さいものの、 実効断面積も 5 3〃m2と小さいことから、 非線形光学現象の発 生を十分に抑制することができない。一方、上記第 2従来例に係る光ファイバは、 実効断面積は大きいものの、 分散スロープも 0 . 1 1 p s / n m S /k mと大き いことから、 累積分散を十分に低減するができない。 The inventors have studied the conventional optical fiber described above, and as a result, Problem was discovered. That is, although the optical fiber according to the first conventional example has a small dispersion slope, it also has a small effective cross-sectional area of 53 、 m 2 , so that the occurrence of the nonlinear optical phenomenon cannot be sufficiently suppressed. On the other hand, although the optical fiber according to the second conventional example has a large effective area, the dispersion slope is also as large as 0.11 ps / nmS / km, so that the accumulated dispersion cannot be sufficiently reduced.
この発明は、 上述のような課題を解決するためになされたもので、 よく利用さ れる信号光波長帯である 1 . 5 5〃m波長帯において分散スロープを小さく抑制 した状態で実効断面積を十分に拡大させる構造を備えた光ファイバを提供するこ とを目的としている。  The present invention has been made to solve the above-described problems, and the effective cross-sectional area is reduced in a state in which the dispersion slope is suppressed to a small value in the 1.55 μm wavelength band, which is a frequently used signal light wavelength band. The purpose is to provide an optical fiber with a structure that can be sufficiently expanded.
この発明に係る光ファイバは、 所定の軸に沿って伸びたコア領域と、 該コア領 域の外周に設けられたクラッド領域とを備える。 上記コア領域は、 さらに内側コ ァと、 該内側コアの外周に設けられかつ該内側コアよりも小さい屈折率を有する 外側コアとを備える。 なお、 第 1実施例に係る光ファイバにおいて、 クラッド領 域は、 外側コアの外周に設けられかつ該外側コアよりも低い屈折率を有する内側 クラッドと、 該内側クラッドの外周に設けられかつ該内側クラッドよりも高い屈 折率を有する外側クラッドとにより構成されており、 このように屈折率の低い内 側クラッドと屈折率の高い外側クラッドとでクラッド領域が構成された光ファィ バの屈折率プロファイルは、 ディプレストクラッド型屈折率プロファイルと呼ば れる。 また、 第 2実施例に係る光ファイバにおいて、 クラッド領域は単一層で構 成されており、 このように単一層でクラッド領域が構成された光ファイバの屈折 率プロファイルは、 マッチドクラッド型屈折率プロファイルと呼ばれる。  An optical fiber according to the present invention includes a core region extending along a predetermined axis, and a cladding region provided on an outer periphery of the core region. The core region further includes an inner core and an outer core provided on an outer periphery of the inner core and having a smaller refractive index than the inner core. In the optical fiber according to the first embodiment, the cladding region is provided on the outer periphery of the outer core and has a lower refractive index than the outer core. It is composed of an outer cladding having a higher refractive index than the cladding, and the refractive index profile of the optical fiber in which the cladding region is composed of the inner cladding having a lower refractive index and the outer cladding having a higher refractive index. Is called a depressed cladding type refractive index profile. Further, in the optical fiber according to the second embodiment, the cladding region is composed of a single layer, and the refractive index profile of the optical fiber in which the cladding region is composed of a single layer is a matched cladding type refractive index profile. Called.
特に、 第 1実施例に係る光ファイバは、 コア領域を取り囲むクラッド領域が内 側クラッドと外側クラッドから構成されたディプレストクラッド型の屈折率プロ フアイルを備え、 外側クラッド (コア領域を取り囲むクラッド領域のうち基準領 域となる領域) に対する内側コアの比屈折率差を Δ Γ^ ( % ) とし、 外側クラッ ドに対する外側コアの比屈折率差を Δ η 2 ( % ) とし、 内側コアの外径を 2 a ( ju m) とし、 外側コア領域の外径を 2 b (j m) とするとき、 In particular, the optical fiber according to the first embodiment includes a depressed cladding type refractive index profile in which the cladding region surrounding the core region is composed of an inner cladding and an outer cladding, and the outer cladding (the cladding region surrounding the core region). the relative refractive index difference of the inner core with respect to a region) and the reference area and delta gamma ^ and (%) of the relative refractive index difference of the outer core and delta eta 2 (%) with respect to the outer clad, outside of the inner core Diameter 2 a (ju m) and the outer diameter of the outer core region is 2 b (jm),
0. 55≤Δπ!≤ 0. 75、  0.55≤Δπ! ≤ 0.75,
0. 02≤Δη2≤ 0. 1 2、 0.02≤Δη 2 ≤ 0.12,
0. 1 8≤a/b≤0. 24、  0.18≤a / b≤0.24,
25≤2 b≤33  25≤2 b≤33
なる条件を満たすことを特徴としている。 さらに、 この第 1実施例に係る光ファ ィバは、 上記外側クラッドに対する内側クラッドの比屈折率差を Δη3 ( ) と するとき、 It is characterized by satisfying the following conditions. Furthermore, when the relative refractive index difference between the outer cladding and the inner cladding is Δη 3 (), the optical fiber according to the first embodiment
- 0. 1 5≤Δη3≤- 0. 03 - 0. 1 5≤Δη 3 ≤- 0. 03
なる条件を満たすのが好ましい。 It is preferable to satisfy the following conditions.
また、 第 2実施例に係る光ファイバは、 コア領域を取り囲むクラッド領域が単 一層で構成されたマッチドクラッド型の屈折率プロファイルを備え、 クラッド領 域に対する内側コアの比屈折率差を Δ Γ^ ( ) とし、 クラッド領域に対する外 側コアの比屈折率差を Δη2 (%) とし、 内側コアの外径を 2 a (jum) とし、 外側コアの外径を 2 b (〃m) とするとき、 Further, the optical fiber according to the second embodiment has a matched clad type refractive index profile in which the clad region surrounding the core region is constituted by a single layer, and the relative refractive index difference of the inner core with respect to the clad region is ΔΓ ^. (), The relative refractive index difference of the outer core to the cladding region is Δη 2 (%), the outer diameter of the inner core is 2 a (jum), and the outer diameter of the outer core is 2 b (〃m). When
0. 60≤Δη!≤ 0. 80、  0.60≤Δη! ≤ 0.80,
0. 05≤Δη2≤ 0. 1 5、 0.05≤Δη 2 ≤ 0.15,
0. 2 1≤a/b≤0. 27、  0.2 1≤a / b≤0.27,
20≤ 2 b≤27  20≤ 2 b≤27
なる条件を満たすことを特徴としている。 It is characterized by satisfying the following conditions.
上述の構造を備えた第 1及び第 2実施例に係る光ファイバは、 いずれも 1. 5 5〃m波長帯において十分小さな分散スロープと十分大きな実効断面積を有する。 しかも、 係る波長帯域において他の光学特性も良好である。  Each of the optical fibers according to the first and second embodiments having the above-described structure has a sufficiently small dispersion slope and a sufficiently large effective area in the 1.55 μm wavelength band. In addition, other optical characteristics are good in such a wavelength band.
なお、上記実効断面積 Aeifは、特開平 8— 2482 5 1号公報(EP0724171 A2) に示されたように、 以下の式で与えられる。
Figure imgf000006_0001
The effective area A eif is given by the following equation, as shown in JP-A- 8-248251 (EP0724171 A2).
Figure imgf000006_0001
ここで、 Eは伝搬光に伴う電界、 rはコア中心からの径方向の距離である。 ま た、 分散スロープとは、 分散の波長依存性を示すグラフの傾きで与えられる。 図面の簡単な説明  Here, E is the electric field associated with the propagating light, and r is the radial distance from the core center. The dispersion slope is given by the slope of a graph showing the wavelength dependence of dispersion. BRIEF DESCRIPTION OF THE FIGURES
図 1 Aは、この発明に係る光ファイバの第 1実施例の構造を示す断面図であり、 図 1 Bは、 図 1に示された光ファイバの屈折率プロファイルである。  FIG. 1A is a sectional view showing the structure of a first embodiment of the optical fiber according to the present invention, and FIG. 1B is a refractive index profile of the optical fiber shown in FIG.
図 2は、 第 1実施例に係る光ファイバの光学特性を示すグラフであって、 外側 クラッドに対する外側コアの比屈折率差 Δη2 (%) と外層コアの外径 2 b (JUL m) とをパラメータとする 2次元平面上において、 カットオフ波長え。 (〃m)、 実効断面積 Aeff (〃m)、 分散 (ps/nm/km 分散スロープ (psZn mVkm), 及び曲げロス (dB/m) それぞれの等高線を示すグラフである。 図 3は、 第 1実施例に係る光ファイバについて、 実効断面積 Aefi (urn) と 直径 20mmでの曲げロス (dB/m) との関係を示すグラフである。 FIG. 2 is a graph showing the optical characteristics of the optical fiber according to the first embodiment, where the relative refractive index difference Δη 2 (%) of the outer core with respect to the outer cladding and the outer diameter 2 b (JUL m) of the outer layer core are shown. The cut-off wavelength on a two-dimensional plane with (〃M), effective area A eff (〃m), dispersion (ps / nm / km, dispersion slope (psZn mVkm), and bending loss (dB / m). 5 is a graph showing a relationship between an effective area A efi (urn) and a bending loss (dB / m) at a diameter of 20 mm for the optical fiber according to the first example.
図 4は、この発明に係る光ファイバの第 2実施例の屈折率プロファイルである。 図 5は、 第 2実施例に係る光ファイバの光学特性を示すグラフであって、 クラ ッド領域に対する外側コアの比屈折率差 Δη2 (%) と該外側コアの外径 2 b (u m) とをパラメ一夕とする 2次元平面上において、 カットオフ波長 λ。 ( m)、 実効断面積 A e f f ' 分散値 (p sZnm/km)ヽ 分散スロープ (p s/nm km) 及び曲げロス (dB/m) それそれの等高線を示すグラフである。 発明を実施するための最良の形態 FIG. 4 is a refractive index profile of a second embodiment of the optical fiber according to the present invention. FIG. 5 is a graph showing the optical characteristics of the optical fiber according to the second embodiment, wherein the relative refractive index difference Δη 2 (%) of the outer core with respect to the cladding region and the outer diameter 2 b (um ) On the two-dimensional plane, with the cutoff wavelength λ. (M), effective area A eff 'dispersion value (psZnm / km) 分散 dispersion slope (ps / nmkm) and bending loss (dB / m). BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明に係る光ファイバの各実施例を、 図 1A、 図 1 B、 及び図 2〜 図 5を用いて説明する。 なお、 図面の説明において同一の要素には同一の符号を 付し、 重複する説明を省略する。 Hereinafter, embodiments of the optical fiber according to the present invention will be described with reference to FIGS. 1A, 1B, and FIGS. In the description of the drawings, the same elements are denoted by the same reference numerals. And duplicate explanations are omitted.
(第 1実施例)  (First embodiment)
図 1 Aは、この発明に係る光ファイバの第 1実施例の構造を示す断面図であり、 図 1 Bは、この第 1実施例に係る光ファイバ 100の屈折率プロファイルである。 図 1 Bに示されたように、 この第 1実施例に係る光ファイバ 100は、 2重コ ァ ·ディプレストクラッド型の屈折率プロファイル 150を有する。  FIG. 1A is a sectional view showing the structure of an optical fiber according to a first embodiment of the present invention, and FIG. 1B is a refractive index profile of the optical fiber 100 according to the first embodiment. As shown in FIG. 1B, the optical fiber 100 according to the first embodiment has a refractive index profile 150 of a double core / depressed clad type.
第 1実施例に係る光ファイバ 100は、 図 1 Aに示されたように、 コア領域 1 10と、 該コア領域を取り囲むクラッド領域 120とを備える。 コア領域 1 10 は、 光軸中心を含み屈折率 を有する外径 2 aの内側コア 1 1 1と、 この内側 コア 1 1 1を取り囲み屈折率 n2 (<n!) を有する外径 2 bの外側コア 1 1 2 とを備える。 クラッ ド領域 1 20は、 外側コア 1 12を取り囲み屈折率 n3 (< n2) を有する外径 2 cの内側クラッド 1 2 1と、 この内側クラッド 1 2 1を取 り囲み屈折率 n4 (>n3、 <n2) を有する外側クラッド 122とを備える。 こ のような構造を備えた光ファイバは、 例えば、 シリカガラスをベースとして、 内 側コア 1 1 1及び外側コア 1 1 2それぞれに適量の Ge〇2を添加し、 内側クラ ッド 12 1に F元素を添加することにより得られる。 The optical fiber 100 according to the first embodiment includes, as shown in FIG. 1A, a core region 110 and a cladding region 120 surrounding the core region. The core region 1 10 includes an inner core 1 1 1 having an outer diameter 2 a having a refractive index including the center of the optical axis and an outer diameter 2 b surrounding the inner core 1 1 1 and having a refractive index n 2 (<n!). And an outer core 1 1 2. The cladding region 1 20 surrounds the outer core 1 12 and has an outer cladding 1 2 1 having an outer diameter 2 c having a refractive index n 3 (<n 2 ), and an inner cladding 1 2 1 surrounding the inner cladding 1 2 1 and having a refractive index n 4 (> n 3 , <n 2 ). An optical fiber having a structure like this, for example, silica glass as a base, respectively inner side core 1 1 1 and the outer core 1 1 2 was added an appropriate amount of Ge_〇 2, the inner cluster head 12 1 It is obtained by adding element F.
なお、 図 1 Bに示された屈折率プロファイル 150は、 図 1 A中の線 L上にお ける各部位の屈折率で表され、 領域 15 1は、 線 L上の内側コア 1 1 1における 各部位の屈折率、 領域 152は、 線 L上の外側コア 1 12における各部位の屈折 率、 領域 153は、 線 L上の内側クラッド 12 1における各部位の屈折率、 領域 154は、線 L上の外側クラッド 122における各部位の屈折率に相当している。 また、 この明細書において、 上記外側クラッド 122を基準領域としたときの、 上記内側コア 1 1 1の比屈折率差 Δη^ 上記外側コア 1 12の比屈折率差 Δη 2、 上記内側クラッ ド 1 2 1の比屈折率差 Δη3は、 それそれ以下のように与え られる。 Note that the refractive index profile 150 shown in FIG. 1B is represented by the refractive index of each portion on the line L in FIG. 1A, and the region 151 is the inner core 111 on the line L. The refractive index of each part, the area 152 is the refractive index of each part in the outer core 112 on the line L, the area 153 is the refractive index of each part in the inner cladding 121 on the line L, and the area 154 is the line L This corresponds to the refractive index of each portion in the upper outer cladding 122. Further, in this specification, when the outer clad 122 is used as a reference region, the relative refractive index difference Δη ^ of the inner core 111 and the relative refractive index difference Δη 2 of the outer core 112 and the inner clad 1 The relative refractive index difference Δη 3 of 21 is given as follows.
Δ n! = (n! - η4) /η4 Δ n2= (n2 - n4) /n4 Δ n! = (N -! Η 4) / η 4 Δ n 2 = (n 2 -n 4 ) / n 4
Δ n3= (n3- n4) /n4 Δ n 3 = (n 3 -n 4 ) / n 4
ただし、 は内側コア 1 1 1の屈折率、 n2は外側コア 1 1 2の屈折率、 n3 は内側クラッド 1 2 1の屈折率、 n4は外側クラッド 1 2 2の屈折率である。 ま た、 この明細書では、 これら比屈折率差は百分率で表されており、 上記式におい て各領域の屈折率は順不同である (以下、 同様)。 したがって、 基準領域に対し て比屈折率差が負の値を取る領域は、 該基準領域よりも低い屈折率を有すること 思味する。 However, the refractive index of the inner core 1 1 1, n 2 is the refractive index of the outer core 1 1 2, n 3 is the inner cladding 1 2 1 having a refractive index, n 4 is the refractive index of the outer cladding 1 2 2. Also, in this specification, these relative refractive index differences are expressed as percentages, and the refractive indices of the respective regions in the above equation are not in any order (the same applies hereinafter). Therefore, it is considered that a region where the relative refractive index difference has a negative value with respect to the reference region has a lower refractive index than the reference region.
以上のような構造を備えた第 1実施例に係る光ファイバ 1 0 0において、 外側 クラッド 1 2 2に対する内側コア 1 1 1の比屈折率差 Δ Γ^ (%) 及び外側コア 1 1 2の比屈折率差 Δη2 (%)、 外側コア 1 1 2の外径 2 b (jum) に対する 内側コア 1 1 1の外径 2 a (jum) の比 (2/b)、 及び外側コア 1 1 2の外径 2 b (〃m) は、 それそれ以下の条件を満たしている。 In the optical fiber 100 according to the first embodiment having the above-described structure, the relative refractive index difference ΔΓ ^ (%) of the inner core 1 1 1 with respect to the outer clad 1 2 2 and the outer core 1 1 2 Relative index difference Δη 2 (%), ratio of outer diameter 2 a (jum) of inner core 1 1 1 to outer diameter 2 b (jum) of outer core 1 1 2 (2 / b), and outer core 1 1 The outer diameter 2 b (〃m) of 2 satisfies the following conditions.
0. 5 5≤Δη!≤ 0. 7 5 -(1)  0.5 5≤Δη! ≤ 0.7 5-(1)
0. 0 2≤ Δ η ¾≤ 0. 1 2 -(2) 0.0 2 ≤ Δ η ¾ ≤ 0.1 2-(2)
0. 1 8≤a/b≤ 0. 2 4 '••(3)  0.18≤a / b≤ 0.24 '' • (3)
2 5≤ 2 b≤ 3 3 •••(4)  2 5≤ 2 b≤ 3 3
特に、 この第 1実施例に係る光ファ 1 0 0にいて、 外側クラッド 1 2 2に 対する内側クラッド 1 2 1の比屈折率差 Διι3 (%) は、 以下の条件を満たすの が好ましい。 In particular, in the optical fiber 100 according to the first embodiment, the relative refractive index difference Διι 3 (%) of the inner cladding 122 with respect to the outer cladding 122 preferably satisfies the following condition.
- 0. 1 5≤Δη3≤- 0. 0 3 -(5) -0.15≤Δη 3 ≤- 0.03-(5)
次に、 図 2は、 この第 1実施例に係る光ファイバ 1 0 0の光学特性を示すグラ フであって、 外側クラッ ド 1 2 2に対する外側コア 1 1 2の比屈折率差 Δ η2 (%) と該外側コア 1 1 2の外径 2 b (urn) とをパラメ一夕とする 2次元平面 上において、 カットオフ波長え c ( 1. 1〃πι、 1. 6 j m) 実効断面積 Ae f f ( 5 6〃m2、 6 6〃m2)、 分散 (+ 1 . 0 p s/nm/km、 + 6. O p s /nm/km)ヽ 分散スロープ ( 0. 0 6 p s/nm 2/kms 0. 0 8 p s/ nm2/km)、 及び直径 2 0 mmでの曲げロス (S dBZm) それぞれの等高 線を示すグラフである。 なお、 これらのグラフで示された諸特性は、 図 1 Aに示 された断面構造を備えるとともに、 図 1 Bに示されたような屈折率プロファイル を備えるサンプルについて計算されたものである。 具体的に、 想定されたサンプ ルは、 外側クラッドに対する内側コアの比屈折率差 Δ Γ^が 0. 6 5 %、 外側ク ラッドに対する内側クラッ ドの比屈折率差 Δη3が— 0. 05%に設定されてい る。 また、 外側コアの外径 2 bに対する内側コアの外径 2 aの比 (a/b) は 0. 2 1、 外側コアの外径 2 bに対する内側クラッドの外径 2 cの比( c /b ) は 2. 0に、 それそれ設定されている。 以上の条件下において 1. 5 5〃πι 波長帯に おける種々の光学特性が計算された。 なお、 カットオフ波長え c (urn) は、 長 さ 2 mの光ファイバを半径 1 40 mmにゆるく 1回だけマンドレル (mandrel) に巻き付けた状態で測定される L P uモードのカツトオフ波長をいう (以下も同 様)。 Next, FIG. 2 is a graph showing optical characteristics of the optical fiber 1 0 0 according to the first embodiment, the outer clad 1 2 relative refractive index of the outer core 1 1 2 difference with respect to 2 delta eta 2 (%) And the outer diameter 2 b (urn) of the outer core 1 1 2 on a two-dimensional plane with the parameters being parallel, the cutoff wavelength c (1.1 1.πι, 1.6 jm) Area A ef f (56〃m 2 , 66〃m 2 ), dispersion (+1.0 ps / nm / km, +6 O ps / nm / km) ヽ Dispersion slope (0.06 ps / nm 2 / km s 0.08 ps / nm 2 / km) and bending loss at 20 mm diameter (S dBZm) FIG. The characteristics shown in these graphs were calculated for a sample having the cross-sectional structure shown in FIG. 1A and having a refractive index profile as shown in FIG. 1B. Specifically, supposed sample is the specific refractive index difference Δ Γ ^ 0. 6 5% of the inner core with respect to the outer cladding, the inner clad relative refractive index difference .DELTA..eta 3 with respect to the outer clad - 0.05 % Is set. The ratio (a / b) of the outer diameter 2a of the inner core to the outer diameter 2b of the outer core (a / b) is 0.21, and the ratio (c / c) of the outer diameter 2c of the inner clad to the outer diameter 2b of the outer core. b) is set to 2.0. Under the above conditions, various optical properties in the 1.55 1.πι wavelength band were calculated. The cutoff wavelength c (urn) refers to the LPu mode cutoff wavelength measured when a 2 m long optical fiber is wrapped around a mandrel only once loosely to a radius of 140 mm ( The same applies to the following).
この図 2において、 ハッチングされた範囲が好ましい範囲である。 このハッチ ングされた範囲から、 上述の条件下では、 外側クラッドに対する外側コアの比屈 折率差 Δη2が 0. 03%〜0. 09%であって、 外側コアの外径 2 bが 2 5. 7〃m〜29. 8〃mであるとき、 カットオフ波長入 c (〃m)、 実効断面積 A ef f (〃m2)、 分散 (p s/nm/km)、 分散スロープ(p s/nm2/km)s 及び直径 20 mmでの曲げロス (dB/m) それそれが好ましい値となることが 分かる。 In FIG. 2, a hatched area is a preferable area. This hatch ring range, under the conditions described above, the specific refraction index difference .DELTA..eta 2 is 0.03% of the outer core to 0 with respect to the outer cladding. A 09%, the outer diameter 2 b of the outer core 2 5. 7〃M~29. when a 8〃M, cutoff wavelength input c (〃M), the effective area a ef f (〃M 2), dispersion (ps / nm / miles), dispersion slope (ps / nm 2 / km) s and bending loss (dB / m) at a diameter of 20 mm.
さらに、 条件を変えた種々の計算の結果によれば、 上記式 ( 1) 〜 (4) が満 たされる範囲において、 カットオフ波長え c (〃m)、 実効断面積 Aeff (j m2), 分散 (p s/nm/km)ヽ 分散スロープ (p s/nm2/km)、 及び直径 2 0 mmでの曲げロス (dB/m) それぞれが好ましい値になることが確認された。 すなわち、 この第 1実施例に係る光ファイバは、 波長 1. 55〃mにおける諸特 性として、 5 6〜6 6〃m2の実効断面積 Aef f、 + 1〜 + 6 p s /n m/k m の分散、 0. 06〜0. 08 p s/nm2/kmの分散スロープ、 及び 0. 1 5 p s · km— 1/2以下の偏波モード分散、 直径 20 mmで 5 d B/m以下の曲げ ロスを備える。 また、 カットオフ波長え cは 1. 1〜 1. である。 なお、 従来から、 ケーブル化に起因したロスの増加を抑制するためには、 20mmでの 曲げロスが 5 dB/km以下であることが 1つの目安とされている。 Furthermore, according to the results of various calculations with the conditions changed, the cutoff wavelength c (〃m) and the effective area A eff (jm 2 ) within the range where the above equations (1) to (4) are satisfied. ), Dispersion (ps / nm / km) ヽ Dispersion slope (ps / nm 2 / km) and bending loss (dB / m) at a diameter of 20 mm were confirmed to be favorable values. That is, the optical fiber according to the first embodiment has various characteristics at a wavelength of 1.55 μm. As sex, 5 6-6 6〃M 2 of effective area A ef f, + 1~ + 6 ps / nm / km in dispersion, 0. 06~0. 08 ps / nm 2 / km dispersion slope, and 0.1 5 ps · km—Polarization mode dispersion of less than 1/2 , 20 mm diameter with bending loss of less than 5 dB / m. The cutoff wavelength c is 1.1 to 1. Conventionally, in order to suppress the increase in loss due to the use of cables, one guideline is that the bending loss at 20 mm should be 5 dB / km or less.
次に、 図 3は、 第 1実施例に係る光ファイバにおいて、 実効断面積 Aeif (JLL m2) と直径 20mmでの曲げロス (dB/m) との関係を示すグラフである。 なお、 この図中のグラフ G 1 00は、 従来の光ファイバについての上記関係を示 し、 グラフ G 200は、 この第 1実施例に係る光ファイバについての上記関係を 示す。 これらのグラフ G 1 00、 G 200から分かるように、 両者とも、 実効断 面積 Aef f (〃m2) が大きいほど曲げ損失 (dB/m) が大きくなる。 従来の 光ファイバの場合、 実効断面積 Aef fが 5 6〃m2以上になると、 曲げロスが 5 dB/m以上となり、 ケーブル化に起因してロスが増加する可能性が大きい。 こ れに対して、 第 1実施例に係る光ファイバの場合、 実効断面積 Aefiが 56 zm 2以上であっても 6 6 m2以下であれば、 曲げロスが 5 dB/m以下となり、 ケーブル化に起因したロスの増加が効果的に抑制される。 Next, FIG. 3 is a graph showing the relationship between the effective area A eif (JLL m 2 ) and the bending loss (dB / m) at a diameter of 20 mm in the optical fiber according to the first embodiment. Note that a graph G100 in this figure shows the above relationship for the conventional optical fiber, and a graph G200 shows the above relationship for the optical fiber according to the first embodiment. These graphs G 1 00, as can be seen from the G 200, both the bending as effective area A ef f (〃M 2) is greater loss (dB / m) is increased. For conventional optical fiber, the effective area A ef f becomes 5 6〃M 2 or more, the bending loss becomes 5 dB / m or more, it is likely that loss due to cable manufacturing is increased. On the other hand, in the case of the optical fiber according to the first embodiment, the bending loss is 5 dB / m or less if the effective area A efi is 56 zm 2 or more and 66 m 2 or less. The increase in loss due to the cable is effectively suppressed.
次に、 この第 1実施例に係る光ファイバとして製造されたサンプルの諸特性に ついて説明する。 製造されたサンプルは、 内側コアの外径 2 aが 5. 4〃m、 外 側コアの外径 2 bが 27. 2〃m、 内側クラッドの外径 2 cが 47. 0〃m、 外 側コアの外径 2 aに対する内側コァの外径 2 aの比 (a/b) は 0. 20であつ た。 また、 このサンプルは、 外側クラッドに対する内側コアの比屈折率差 Δ Γ^ が 0. 62%、 外側クラッドに対する外側コアの比屈折率差 Δη2が 0. 05 %、 外側クラッドに対する内側クラッドの比屈折率差 Δη3が一 0.08 %であった。 以上のような構造を備えたサンプルは、 波長 1. 5 5 mの諸特性として、 6 1 m2の実効断面積 Aef f、 + 4. 6 p s/nm/kmの分散、 ◦ . 0 69 p s /nm2/kmの分散スロ一プ、 0. 1 1 p s · km— 1/2の偏波モード分散、 直径 20 mmで 0. 4 d B/mの曲げロスを有する。 また、 カットオフ波長え c は 1. 34〃mであった。 Next, various characteristics of the sample manufactured as the optical fiber according to the first embodiment will be described. The manufactured sample has an inner core outer diameter 2a of 5.4 2m, an outer core outer diameter 2b of 27.2〃m, an inner cladding outer diameter 2c of 47.0〃m, and an outer diameter of 27.0〃m. The ratio (a / b) of the outer diameter 2a of the inner core to the outer diameter 2a of the side core was 0.20. The ratio of this sample, the relative refractive index difference delta gamma ^ is 0.62% of the inner core with respect to the outer cladding, the relative refractive index difference of the outer core with respect to the outer cladding .DELTA..eta 2 is 0.05%, the inner cladding with the outer cladding The refractive index difference Δη 3 was one 0.08%. The sample with the above structure has various characteristics at a wavelength of 1.55 m, an effective area A ef f of 61 m 2 , a dispersion of +4.6 ps / nm / km, and ps It has a dispersion slope of / nm 2 / km, a polarization mode dispersion of 0.1 1 ps · km—1 / 2 , and a bending loss of 0.4 dB / m at a diameter of 20 mm. The cutoff wavelength c was 1.34 m.
以上のように、 この第 1実施例に係る光ファイバは、 いわゆる 2重コア 'ディ プレストクラッド型の屈折率プロファイルを有するとともに、上記式( 1 )〜( 4) を満たすことにより、 1. 55 /m波長帯において分散スロープを低く抑えた状 態でより大きな実効断面積 Aeffが得られる。 As described above, the optical fiber according to the first embodiment has a refractive index profile of a so-called “double core” depressed clad type and satisfies the above expressions (1) to (4). In the / m wavelength band, a larger effective area A eff can be obtained with the dispersion slope kept low.
(第 2実施例)  (Second embodiment)
図 4は、この発明に係る光ファイバの第 2実施例の屈折率プロファイルである。 この第 2実施例に係る光ファイバは、 クラッド領域が単一層で構成されたマッチ ドクラッド型の屈折率プロファイルを有する。 なお、 この第 2実施例においても コァ領域の構造は、図 1 Aに示された第 1実施例と同様に 2重コア構造を備える。 第 2実施例に係る光ファイバは、 光軸中心を含み屈折率 を有する外径 2 a の内側コアと、 この内側コアを取り囲み屈折率 η2 (<η!) を有する外径 2 b の外側コアと、 この外側コアを取り囲み屈折率 n3 (<n2) を有するクラッド領 域とを備える。 FIG. 4 is a refractive index profile of a second embodiment of the optical fiber according to the present invention. The optical fiber according to the second embodiment has a matched clad type refractive index profile in which the clad region is composed of a single layer. Note that, also in the second embodiment, the structure of the core region has a double core structure as in the first embodiment shown in FIG. 1A. The optical fiber according to the second embodiment includes an inner core having an outer diameter 2 a having a refractive index including the center of the optical axis, and an outer core having an outer diameter 2 b surrounding the inner core and having a refractive index η 2 (<η!). A core and a cladding region surrounding the outer core and having a refractive index n 3 (<n 2 ).
なお、 図 4に示された当該第 2実施例に係る光ファィバの屈折率プロファイル 250は、 図 1 Aに示された第 1実施例と同様に、 線 Lに沿った各部位の屈折率 を表す。 この屈折率プロファイル 250において、 領域 25 1は、 上記内側コア の線 L上における各部位の屈折率、 領域 252は、 上記外側コアの線 L上に置け る各部位の屈折率、 領域 253は、 上記クラッド領域の線 L上における各部位の 屈折率に相当している。 また、 クラッド領域を基準領域とした内側コアの比屈折 率差 Δι^ (%), 及び外側コアの比屈折率差 Δη2 (%) は、 それそれ以下のよ うに与えられる。
Figure imgf000011_0001
ただし、 は内側コアの屈折率、 η2は外側コアの屈折率、 η3はクラッ ド領 域の屈折率である。 このような構造を備えた光ファイバは、 例えば、 シリカガラ スをベースとして、 内側コア及び外側コアそれぞれに適量の G e 02が添加され ることにより得られる。
Note that the refractive index profile 250 of the optical fiber according to the second embodiment shown in FIG. 4 is the same as that of the first embodiment shown in FIG. Represent. In the refractive index profile 250, the region 251 is a refractive index of each portion on the line L of the inner core, the region 252 is a refractive index of each portion on the line L of the outer core, and the region 253 is This corresponds to the refractive index of each part on the line L of the cladding region. The relative refractive index difference Δι ^ (%) of the inner core and the relative refractive index difference Δη 2 (%) of the outer core with the cladding region as a reference region are given as follows.
Figure imgf000011_0001
Here, is the refractive index of the inner core, η 2 is the refractive index of the outer core, and η 3 is the refractive index of the cladding region. An optical fiber having such a structure, for example, as a base a Shirikagara scan, an appropriate amount of G e 0 2 is added to each inner and outer cores obtained by Rukoto.
以上のような構造を備えた光ファイバについて、 クラッド領域に対する内側コ ァの比屈折率差 Δη2 (%)、 クラッド領域に対する外側コアの比屈折率差を△ η2 ( ) とし、 内層コア領域の外径を 2 a (〃m) とし、 外層コア領域の外径 を 2 b (ju ) としたときに、 以下の条件を満たすのが好ましい。 The optical fiber having the structure described above, the relative refractive index difference of the inner co § respect to the cladding region .DELTA..eta 2 (%), the relative refractive index difference of the outer core with respect to the cladding region △ eta and 2 (), the inner core region It is preferable that the following conditions are satisfied when the outer diameter of the outer layer is 2 a (〃m) and the outer diameter of the outer layer core region is 2 b (ju).
0. 6 0≤Δη!≤ 0. 8 0 ·'·(6)  0.6 0≤Δη! ≤ 0.80
0. 0 5≤Δη2≤ 0. 1 5 -(7) 0.0 5≤Δη 2 ≤ 0.15-(7)
0. 2 1≤a/b≤ 0. 2 7 … )  0.2 1≤a / b≤ 0.27…)
2 0≤ 2 b≤ 2 7 ·'·(9)  2 0≤ 2 b≤ 2 7 '(9)
次に、 図 5は、第 2実施例に係る光ファイバの光学特性を示すグラフであって、 クラッド領域に対する外側コアの比屈折率差 Δη2 (%) と該外側コアの外径 2 b (〃m)とをパラメ一夕とする 2次元平面上において、 力ヅトオフ波長え c ( 1. 1 urn , 1. 6〃m)、 実効断面積 A e f f ( 5 6 /m2、 6 6〃m2)、 分散 (+ 1. 0 p s/nm/km, + 6. O p s/nm/km)N 分散スロープ ( 0. 0 6 p s/nm2Zkm、 0. 0 8 p s /nm2/k m)、 及び直径 2 0 mmでの曲げ口 ス (5 dB/m) それぞれの等高線が示されたグラフである。 これらのグラフで 示された諸特性は、 クラッド領域に対する内側コアの比屈折率差 Δι^が 0. 7 0%、 外側コアの外径 2 bに対する内側コアの外径 2 aの比 (a/b) が 0. 2 4に設定されたサンプルについて、 波長 1. 5 5〃mにおいて計算されたもので ある。 図 5において、 ハッチングが施された範囲が好適な範囲である。 このハツ チングされた範囲から、 この条件下では、 クラッド領域に対する外側コアの比屈 折率差厶 n2が 0. 0 5 %〜0. 1 3 %であって、 外側コアの外径 2 bが 2 1. l〃m〜2 5. 3〃mであるときに、 カッ トオフ波長え c (〃m)、 実効断面積 Aef f (〃m2)、 分散 (p s/nm/km)、 分散スロープ (p s/nm2/km)、 及び曲げロス (dB/m) それぞれが好ましい値になることが分かる。 Next, FIG. 5 is a graph showing the optical characteristics of the optical fiber according to the second embodiment. The relative refractive index difference Δη 2 (%) of the outer core with respect to the cladding region and the outer diameter 2 b ( the 〃M) and on two-dimensional plane and parameter Isseki force Dzutoofu wavelength e c (1. 1 urn, 1. 6〃M), the effective area a eff (5 6 / m 2 , 6 6〃M 2) dispersion (+ 1. 0 ps / nm / km, + 6. O ps / nm / km) N dispersion slope (0. 0 6 ps / nm 2 Zkm, 0. 0 8 ps / nm 2 / km) , And a graph showing the respective contour lines of the bending hole at a diameter of 20 mm (5 dB / m). The characteristics shown in these graphs are that the relative refractive index difference Δι ^ of the inner core to the cladding region is 0.70%, and the ratio of the outer diameter 2a of the inner core to the outer diameter 2b of the outer core (a / b) Calculated at a wavelength of 1.55〃m for a sample set to 0.24. In FIG. 5, the hatched area is a suitable area. From this hatched range, under this condition, the relative refractive index difference n 2 of the outer core to the cladding region is 0.05% to 0.13%, and the outer diameter of the outer core 2 b Is 2 1.l〃m to 25.3〃m, the cutoff wavelength c (〃m), the effective area A ef f (〃M 2), dispersion (ps / nm / km), the dispersion slope (ps / nm 2 / km) , and the bending loss (dB / m), respectively can be seen to be preferred value.
さらに、 種々の条件下で計算したところ、 上記式 (6) 〜 (9) が満たされる 範囲において、 カッ トオフ波長え c ( /m)、 実効断面積 Aeif (〃m2)、 分散 (p s/nm/km)N 分散スロープ (p s/nm2/km)ヽ 及び曲げロス (dFurthermore, calculation under various conditions shows that within the range where the above equations (6) to (9) are satisfied, the cutoff wavelength c (/ m), the effective area A eif (〃m 2 ), and the dispersion (ps / nm / km) N dispersion slope (ps / nm 2 / km) ヽ and bending loss (d
B/m) それぞれが好ましい値とが確認された。 すなわち、 この第 2実施例に係 る光ファイバは、 波長 1. 55〃mにおける諸特性として、 56〜66〃m2の 実効断面積 Aef f、 + 1〜十 6 p s/nm/kmの分散、 0. 06〜0· 08 p s/nm2/kmの分散スロープ、 0. 15 p s · km— 1/2以下の偏波モード分 散、 直径 20 mmで 5 dB/m以下の曲げロスを有する。 また、 カットオフ波長 え cは 1. 1〜; L . 6 zmとなる。 B / m) It was confirmed that each was a preferable value. That is, engagement Ru optical fiber to the second embodiment has, as characteristics at a wavelength of 1. 55〃M, the 56~66〃M 2 effective area A ef f, +. 1 to ten 6 ps / nm / km in Dispersion, 0.06 to 08 ps / nm 2 / km Dispersion slope, 0.15 pskm-Polarization mode dispersion of 1/2 or less, Bending loss of 5 dB / m or less for 20 mm diameter Have. The cut-off wavelength c is 1.1 to L. 6 zm.
次に、 この第 2実施例に係る光ファイバとして製造されたサンプルの諸特性に ついて説明する。 製造されたサンプルは、 内側コアの外径 2 aが 6. 0 /mであ り、 外側コァの外径 2 bが 24. 0 mであり、 外側コァの外径 2 bに対する内 側コアの外径 2 aの比 (a/b) が 0. 25であった。 また、 このサンプルは、 クラッド領域に対する内側コアの比屈折率差 ΔΓ^が 0. 7 2 %であり、 クラッ ド領域に対する外側コアの比屈折率差 Δη2が 0. 08%であった。 当該サンプ ルの評価結果によると、 波長 1. 55 mにおいて、 実効断面積 Aeffが 60 / m2s 分散が +2. 8 p s/nm/km、 分散スロープが 0. 072 p s/nm2 /km, 偏波モード分散が 0. 09 p s ' km— 1/2、 直径 20 mmでの曲げ口 スが 0. 5 dB/mであった。 また、 カットオフ波長え cは 1. 38 mであつ た。 Next, various characteristics of the sample manufactured as the optical fiber according to the second embodiment will be described. The manufactured sample had an inner core outer diameter 2a of 6.0 / m, an outer core outer diameter 2b of 24.0 m, and an inner core outer diameter 2b of the outer core outer diameter 2b. The ratio (a / b) of the outer diameter 2a was 0.25. In this sample, the relative refractive index difference ΔΓ ^ of the inner core with respect to the cladding region was 0.72%, and the relative refractive index difference Δη 2 of the outer core with respect to the cladding region was 0.08%. According to the evaluation results of this sample, at a wavelength of 1.55 m, the effective area A eff is 60 / m 2 s, the dispersion is +2.8 ps / nm / km, and the dispersion slope is 0.072 ps / nm 2 / km, the polarization mode dispersion was 0.09 ps' km— 1 / 2 , and the bend diameter at a diameter of 20 mm was 0.5 dB / m. The cutoff wavelength c was 1.38 m.
以上のように、 いわゆる 2重コア ·マッチドクラッド型の屈折率プロファイル を有する第 2実施例に係る光ファイバによれば、 上記式 (6) 〜 (9) を満たす よう設計されることにより、 1. 55 m波長帯において分散スロープの増加を 効果的に抑制した状態で実効断面積を十分大きくすることが可能になる。 また、 他の光学特性も良好である。 産業上の利用可能性 As described above, according to the optical fiber according to the second embodiment having the so-called double-core / matched-clad refractive index profile, by designing to satisfy the above equations (6) to (9), 1 In the 55 m wavelength band, the effective area can be made sufficiently large while effectively suppressing the increase of the dispersion slope. Also, Other optical properties are also good. Industrial applicability
以上のようにこの発明によれば、 2重コア ·デイブレス トクラヅド型の屈折率 プロファイルを有する光ファイバでは、 上記式 ( 1 ) 〜 (4 ) を満たすように設 計されることにより、 また、 2重コア ·マッチドクラッド型の屈折率プロフアイ ルを有する光ファイバでは、 上記式 (6 ) 〜 (9 ) を満たすよう設計されること により、 1 . 5 5 m波長帯において分散スロープの増加を抑制した状態で実効 断面積を十分い大きくすることができる。 これにより、 この発明に係る光フアイ バは、 非線形光学現象の発生を効果的に抑制するとともに、 累積分散の低減を可 能にするため、 WD M伝送システムなどの光通信システムにおける光伝送路に適 している。  As described above, according to the present invention, an optical fiber having a dual-core Daveless-Trade-type refractive index profile is designed so as to satisfy the above equations (1) to (4). An optical fiber having a heavy-core / matched-clad refractive index profile was designed to satisfy the above equations (6) to (9), thereby suppressing the increase in dispersion slope in the 1.55-m wavelength band. In this state, the effective area can be increased sufficiently. As a result, the optical fiber according to the present invention can effectively suppress the occurrence of nonlinear optical phenomena and reduce the accumulated dispersion, so that it can be used in an optical transmission line in an optical communication system such as a WDM transmission system. Are suitable.

Claims

言青求の範固 Speculation of Word
1. 所定軸に沿つて伸びかつ所定の屈折率を有する内側コアと、 1. an inner core extending along a predetermined axis and having a predetermined refractive index;
前記内側コアの外周に設けられかつ該内側コアよりも低い屈折率を有する外側 コアと、  An outer core provided on the outer periphery of the inner core and having a lower refractive index than the inner core;
前記外側コアの外周に設けられかつ該外側コアよりも低い屈折率を有する内側 クラッドと、  An inner cladding provided around the outer core and having a lower refractive index than the outer core;
前記内側クラッドの外周に設けられかつ該内側クラッドよりも高い屈折率を有 する外側クラッドとを備え、  An outer cladding provided on the outer periphery of the inner cladding and having a higher refractive index than the inner cladding;
前記外側クラッドに対する前記内側コアの比屈折率差を Δ Γ^ (%) とし、 前 記外側クラッドに対する前記外側コアの比屈折率差を Δη2 (%) とし、 前記内 側コアの外径を 2 a (j m) とし、 前記外側コアの外径を 2 b (^m) とすると ぎ、 The relative refractive index difference of the inner core with respect to the outer cladding is ΔΓ ^ (%), the relative refractive index difference of the outer core with respect to the outer cladding is Δη 2 (%), and the outer diameter of the inner core is 2 a (jm) and the outer diameter of the outer core is 2 b (^ m),
0. 5 5≤Anj≤ 0. 7 5、  0.5 5 ≤ Anj ≤ 0.75,
0. 0 2≤Δη2≤ 0. 1 2, 0.0 2 ≤ Δη 2 ≤ 0.1 2
0. 1 8≤a/b≤ 0. 2 4、  0.18≤a / b≤0.24,
2 5≤ 2 b≤ 3 3  2 5≤ 2 b≤ 3 3
なる条件を満たす光ファイバ。 An optical fiber that meets certain conditions.
2. 前記外側クラッドに対する前記内側クラッドの比屈折率差を Δη3 (%) とするとき、 2. When the relative refractive index difference between the inner cladding and the outer cladding is Δη 3 (%),
- 0. 1 5≤Δη3≤- 0. 0 3 - 0. 1 5≤Δη 3 ≤- 0. 0 3
なる条件を満たすことを特徴とする請求項 1記載の光ファイバ。 2. The optical fiber according to claim 1, wherein the optical fiber satisfies the following conditions.
3. 所定軸に沿って伸びかつ所定の屈折率を有する内側コアと、  3. an inner core extending along a predetermined axis and having a predetermined refractive index;
前記内側コアの外周に設けられかつ該内側コアよりも低い屈折率を有する外側 コアと、  An outer core provided on the outer periphery of the inner core and having a lower refractive index than the inner core;
前記外側コアの外周に設けられかつ該外側コアよりも低い屈折率を有するクラ ッド領域とを備え、 A cladding provided around the outer core and having a lower refractive index than the outer core; And a storage area.
前記クラッド領域に対する前記内側コアの比屈折率差を Δι^ (%) とし、 前 記クラッド領域に対する前記外側コアの比屈折率差を Δη2 (%) とし、 前記内 側コアの外径を 2 a (jum) とし、 前記外側コアの外径を 2 b (〃m) とすると さ、 The relative refractive index difference of the inner core with respect to the cladding region is Δι ^ (%), the relative refractive index difference of the outer core with respect to the cladding region is Δη 2 (%), and the outer diameter of the inner core is 2 a (jum), and the outer diameter of the outer core is 2 b (〃m).
0. 6 0≤ΔΠ!≤ 0. 8 0、  0.6 0≤ΔΠ! ≤ 0.80,
0. 0 5≤Δη2≤ 0. 1 5、 0.0 5 ≤ Δη 2 ≤ 0.15,
0. 2 1 ≤a/b≤ 0. 2 7、  0.2 1 ≤a / b≤ 0.27,
2 0≤ 2 b≤ 2 7  2 0≤ 2 b≤ 2 7
なる条件を満たす光ファイバ。 An optical fiber that meets certain conditions.
PCT/JP2000/001237 1999-03-03 2000-03-02 Optical fiber WO2000052507A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU28258/00A AU2825800A (en) 1999-03-03 2000-03-02 Optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5541499 1999-03-03
JP11/55414 1999-03-03

Publications (1)

Publication Number Publication Date
WO2000052507A1 true WO2000052507A1 (en) 2000-09-08

Family

ID=12997920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001237 WO2000052507A1 (en) 1999-03-03 2000-03-02 Optical fiber

Country Status (3)

Country Link
AU (1) AU2825800A (en)
TW (1) TW419603B (en)
WO (1) WO2000052507A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001007943A1 (en) * 1999-07-27 2001-02-01 Fujikura Ltd. Dispersion shift optical fiber
US6546177B1 (en) 1999-09-09 2003-04-08 Fujikura Ltd. Dispersion shifted optical fiber
EP1353202A2 (en) * 2002-04-03 2003-10-15 Samsung Electronics Co., Ltd. Optical fibre with optimised dispersion
US6785453B1 (en) 1999-07-12 2004-08-31 Fujikura Ltd. Dispersion shifted optical fiber
WO2005111683A1 (en) * 2004-04-29 2005-11-24 Corning Incorporated Low attenuation large effective area optical fiber
US7336877B2 (en) 2004-08-31 2008-02-26 Corning Incorporated Broadband optical fiber
CN100374888C (en) * 2003-04-11 2008-03-12 株式会社藤仓 Optical fiber
WO2008106033A2 (en) * 2007-02-28 2008-09-04 Corning Incorporated Optical fiber with large effective area

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187305A (en) * 1986-02-14 1987-08-15 Nippon Telegr & Teleph Corp <Ntt> Dual core single mode optical fiber with refractive index groove
EP0260795A2 (en) * 1986-08-08 1988-03-23 AT&T Corp. Optical fiber
JPH05155639A (en) * 1991-12-09 1993-06-22 Sumitomo Electric Ind Ltd Dispersion-shift fiber and its production
EP0689068A1 (en) * 1994-06-24 1995-12-27 Sumitomo Electric Industries, Ltd. Single mode optical fiber
EP0785448A1 (en) * 1996-01-16 1997-07-23 Sumitomo Electric Industries, Ltd. Dispersion-shifted fiber
EP0789257A1 (en) * 1996-02-08 1997-08-13 Sumitomo Electric Industries, Ltd. Dispersion-shifted fiber
JPH09288220A (en) * 1996-02-20 1997-11-04 Kokusai Denshin Denwa Co Ltd <Kdd> Optical fiber
EP0851247A2 (en) * 1996-12-27 1998-07-01 Sumitomo Electric Industries, Ltd Dispersion-shifted optical fibre and method of manufacturing the same
EP0851245A2 (en) * 1996-12-27 1998-07-01 Sumitomo Electric Industries, Ltd. Dispersion-shifted fiber
US5822488A (en) * 1995-10-04 1998-10-13 Sumitomo Electric Industries, Inc. Single-mode optical fiber with plural core portions
EP0909964A1 (en) * 1997-10-14 1999-04-21 Fujikura Ltd. Dispersion shifted optical fiber

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187305A (en) * 1986-02-14 1987-08-15 Nippon Telegr & Teleph Corp <Ntt> Dual core single mode optical fiber with refractive index groove
EP0260795A2 (en) * 1986-08-08 1988-03-23 AT&T Corp. Optical fiber
JPH05155639A (en) * 1991-12-09 1993-06-22 Sumitomo Electric Ind Ltd Dispersion-shift fiber and its production
EP0689068A1 (en) * 1994-06-24 1995-12-27 Sumitomo Electric Industries, Ltd. Single mode optical fiber
US5822488A (en) * 1995-10-04 1998-10-13 Sumitomo Electric Industries, Inc. Single-mode optical fiber with plural core portions
EP0785448A1 (en) * 1996-01-16 1997-07-23 Sumitomo Electric Industries, Ltd. Dispersion-shifted fiber
EP0789257A1 (en) * 1996-02-08 1997-08-13 Sumitomo Electric Industries, Ltd. Dispersion-shifted fiber
JPH09288220A (en) * 1996-02-20 1997-11-04 Kokusai Denshin Denwa Co Ltd <Kdd> Optical fiber
EP0851247A2 (en) * 1996-12-27 1998-07-01 Sumitomo Electric Industries, Ltd Dispersion-shifted optical fibre and method of manufacturing the same
EP0851245A2 (en) * 1996-12-27 1998-07-01 Sumitomo Electric Industries, Ltd. Dispersion-shifted fiber
EP0909964A1 (en) * 1997-10-14 1999-04-21 Fujikura Ltd. Dispersion shifted optical fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KATO T. ET. AL.: "Low nonlinearity dispersion-shifted fibers employing dual-shaped core profile with depressed cladding", OFC'97 TECHNICAL DIGEST, CONFERENCE ON OPTICAL FIBER COMMUNICATIONS, DALLAS TEXAS, 16 February 1997 (1997-02-16) - 21 February 1997 (1997-02-21), pages 66, XP002928845 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6785453B1 (en) 1999-07-12 2004-08-31 Fujikura Ltd. Dispersion shifted optical fiber
US6694079B1 (en) 1999-07-27 2004-02-17 Fujikura Ltd. Disperson-shifted optical fiber employing dual shape core profile
WO2001007943A1 (en) * 1999-07-27 2001-02-01 Fujikura Ltd. Dispersion shift optical fiber
US6546177B1 (en) 1999-09-09 2003-04-08 Fujikura Ltd. Dispersion shifted optical fiber
EP1353202A2 (en) * 2002-04-03 2003-10-15 Samsung Electronics Co., Ltd. Optical fibre with optimised dispersion
EP1353202A3 (en) * 2002-04-03 2004-08-18 Samsung Electronics Co., Ltd. Optical fibre with optimised dispersion
US6999667B2 (en) 2002-04-03 2006-02-14 Samsung Electronics Co., Ltd. Dispersion-controlled optical fiber
CN100374888C (en) * 2003-04-11 2008-03-12 株式会社藤仓 Optical fiber
WO2005111683A1 (en) * 2004-04-29 2005-11-24 Corning Incorporated Low attenuation large effective area optical fiber
US7254305B2 (en) 2004-04-29 2007-08-07 Corning Incorporated Low attenuation large effective area optical fiber
US7187833B2 (en) 2004-04-29 2007-03-06 Corning Incorporated Low attenuation large effective area optical fiber
US7336877B2 (en) 2004-08-31 2008-02-26 Corning Incorporated Broadband optical fiber
WO2008106033A2 (en) * 2007-02-28 2008-09-04 Corning Incorporated Optical fiber with large effective area
WO2008106033A3 (en) * 2007-02-28 2008-10-16 Corning Inc Optical fiber with large effective area
US7603015B2 (en) 2007-02-28 2009-10-13 Corning Incorporated Optical fiber with large effective area

Also Published As

Publication number Publication date
AU2825800A (en) 2000-09-21
TW419603B (en) 2001-01-21

Similar Documents

Publication Publication Date Title
JP3854627B2 (en) Single-mode optical fiber with holes
JP4612583B2 (en) Optical fiber filter for suppression of amplified spontaneous emission
JP4358073B2 (en) Low bending loss trench type multimode fiber
KR100401032B1 (en) Optical fiber having negative dispersion and low slope in the erbium amplifier region
JP3471271B2 (en) Optical fiber and optical transmission system
JP3830636B2 (en) Dispersion-shifted optical fiber
JP5396468B2 (en) Single mode optical fiber with holes and optical transmission system using the same
JP3659460B2 (en) System with dispersion compensating optical fiber
WO2009104724A1 (en) Optical fiber cable and optical cable
JP4192425B2 (en) Optical fiber
WO2022034662A1 (en) Multicore optical fiber and design method
JP2002522812A (en) Dispersion shifted single mode optical fiber with outer ring
WO2011115146A1 (en) Holey fiber
WO2017013929A1 (en) Optical fiber
WO1999030194A1 (en) Dispersion-shifted optical fiber
US7164832B2 (en) Optical fiber and optical communication system employing the optical fiber
WO2012128250A1 (en) Optical fiber, optical fiber cord, and optical fiber cable
WO2000052507A1 (en) Optical fiber
JP3725523B2 (en) Optical fiber and optical transmission system
WO2003098296A1 (en) Dispersion shift optical fiber
CN114660703A (en) Optical fiber and optical fiber filter
JP4152813B2 (en) Mode converter fiber, mode converter, optical transmission line
JP3340364B2 (en) Dispersion shifted optical fiber
JPH10293225A (en) Dispersion shift optical fiber
JPH09509765A (en) Single mode optical fiber

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN ID IN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application