JPS58222157A - Purification of carbon black - Google Patents

Purification of carbon black

Info

Publication number
JPS58222157A
JPS58222157A JP10424082A JP10424082A JPS58222157A JP S58222157 A JPS58222157 A JP S58222157A JP 10424082 A JP10424082 A JP 10424082A JP 10424082 A JP10424082 A JP 10424082A JP S58222157 A JPS58222157 A JP S58222157A
Authority
JP
Japan
Prior art keywords
carbon black
heat treatment
hydrogen gas
water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10424082A
Other languages
Japanese (ja)
Inventor
Yoshio Enoki
榎 芳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10424082A priority Critical patent/JPS58222157A/en
Publication of JPS58222157A publication Critical patent/JPS58222157A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To purify carbon black by removing impurities such as metallic compds. or sulfides from it, by heat-treating at a specific temp. range in an atmosphere contg. hydrogen gas. CONSTITUTION:Carbon black is heat-treated at 500-1,500 deg.C in an atmosphere contg. hydrogen gas. By such an easy treatment, sulfides or metallic compds. in carbon black, which have been comparatively difficult to remove, are substantially reduced.

Description

【発明の詳細な説明】 本発明はカーボンブラックの精製処理方法に関し、カー
ボンブラック中に含まれる金属化合物や硫黄含有化合物
等の不純物の除去を目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for purifying carbon black, and its purpose is to remove impurities such as metal compounds and sulfur-containing compounds contained in carbon black.

カーボンブラックはゴム用や着色用以外にも、電気材料
として種々の使い方がなされており、そのような用途で
は高純度のカーボンブラックが要求されることがある。
In addition to being used for rubber and coloring, carbon black is used in various ways as an electrical material, and such uses often require highly pure carbon black.

カーボンブラック中に含まれる異物質としては金属塩、
金属酸化物、硫黄分などがある。このうち硫黄分は最も
含有量が大きく、主として原料油に由来するものである
が、その形態は複雑であシ、遊離硫黄に対し溶解性の大
きい二硫化炭素やトルエンなどの有機溶媒によってもあ
まり抽出されず、無機酸や水によっても溶出せず、また
不活性ガスや真空中で、1000°C3ベー。
Foreign substances contained in carbon black include metal salts,
Contains metal oxides, sulfur, etc. Of these, sulfur has the largest content and is primarily derived from feedstock oil, but its form is complex and it is not easily soluble in organic solvents such as carbon disulfide and toluene, which are highly soluble in free sulfur. Will not be extracted, will not be eluted by inorganic acids or water, and will not survive at 1000°C in an inert gas or vacuum.

程度の高温熱処理を施してもあ1り除去されず、精製は
簡単ではなかった。
Even after some high-temperature heat treatment, it was not removed at all, and purification was not easy.

本発明はカーボンブラック中の金属化合物のみならず、
硫黄分の除去に極めて有効な方法を提供するものであり
、要旨は水素ガスを含有する雰囲気中にて600〜16
00’Cの温度で熱処理することにある。この処理の過
程でカーボンブラック中の硫黄分は水素ガスと化学反応
を起し硫化水素の形になって効果的に除去される。この
場合、500″C未満の温度では反応速度が遅いため不
適当である0捷たs o o ’cを超える温度では反
応速度よりむしろ水素ガスの供給速度に律速されるよう
Kなるので、熱処理温度をそI′12以上に高めても特
別の利益はない。なお、IE500’Cを超えるとカー
ボンブラックの生成温度を越えることになり、ブラック
自体の性@が変化する可能性があるので、ここを上限と
考えると最適温度kl: 800°C〜16oO°Cと
なる。
The present invention applies not only to metal compounds in carbon black, but also to
It provides an extremely effective method for removing sulfur content, and the gist is that 600 to 16
The purpose is to perform heat treatment at a temperature of 00'C. During this treatment, the sulfur content in the carbon black undergoes a chemical reaction with hydrogen gas to form hydrogen sulfide, which is effectively removed. In this case, temperatures below 500"C are inappropriate because the reaction rate is slow. At temperatures above 0"C, the rate is determined by the hydrogen gas supply rate rather than the reaction rate, so heat treatment is There is no special benefit even if the temperature is raised above IE500'C, which exceeds the carbon black formation temperature and the properties of the black itself may change. Considering this as the upper limit, the optimum temperature kl: 800°C to 16oO°C.

次に、カーボンブラック中に含1れる金属塩などを除去
する一方法として、それらの融点以上の温度rtcお・
いて、高真空に保ち金属塩などを蒸発せしめる方法があ
る。
Next, as a method of removing metal salts and the like contained in carbon black, the temperature above their melting point is
There is a method of keeping it in a high vacuum to evaporate metal salts.

この方法の特徴は乾式精製法であるため、カーボンブラ
ンクの性状を大きく変えるおそれがなく、また前記の水
素ガス中の熱処理に引き続いて行なえば極めて能率的な
精製処理が可能となる。この方法においては、比較的融
点が低く蒸気圧の高い塩化物や一部の硫酸塩や酸化物な
ど第1表に例を示すような化合物が対象となる。この場
合、熱処57:−、; 第1表の化合物については、800〜1500°Cの温
度で精製の目的を達成することができる。
The feature of this method is that it is a dry refining method, so there is no risk of significantly changing the properties of the carbon blank, and if it is performed subsequent to the heat treatment in hydrogen gas described above, extremely efficient refining treatment is possible. This method targets compounds such as those shown in Table 1, such as chlorides, some sulfates, and oxides that have a relatively low melting point and high vapor pressure. In this case, heat treatment 57:-; For the compounds of Table 1, the purification objective can be achieved at a temperature of 800-1500°C.

力〜ボンブラック中に含1れる金属塩などを除去する他
の方法として、カーボンブラックを水−または無機酸で
洗浄し溶出する方法がある。カーボンブラックには通常
0.3〜3%程度の灰分が含寸れている。これらは原料
油2反応炉、添加物、冷却水、造粒剤などさまざまな原
因によるが、冷却水によるものの比率が高い。灰分のう
ち塩類は水。
Another method for removing metal salts and the like contained in carbon black is to wash and elute carbon black with water or an inorganic acid. Carbon black usually contains about 0.3 to 3% ash. These are caused by various causes such as the raw oil 2 reactor, additives, cooling water, and granulating agents, but a high proportion is caused by cooling water. Salt in ash is water.

特に熱水に溶解するものが多く、カーボンブラックによ
っては灰分の80%以上が除去されるものがある。1だ
無機酸の水溶液を用いると水に溶解しにくい酸化物の一
部も溶解するので、更に灰分は減少しカーボンブラック
によっては灰分の96係以上が除去されるものもある。
In particular, many carbon blacks dissolve in hot water, and some carbon blacks can remove 80% or more of their ash content. When an aqueous solution of an inorganic acid is used, some of the oxides that are difficult to dissolve in water are dissolved, so the ash content is further reduced, and some carbon blacks have an ash content of 96 or more removed.

使用する無機酸としては塩酸、硫酸、硝酸、燐酸、弗酸
などがあるが、効果と価格とからみて前二者が推奨され
る。
Inorganic acids that can be used include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and hydrofluoric acid, but the first two are recommended in terms of effectiveness and cost.

無機酸による洗浄後は水による洗浄を十分に行なわない
と酸が残留することがある。また水や無機酸による洗浄
後、カーボンブラックはioo″C以6ベー8シ 上に加熱され乾燥されるが、この過程でカーボンブラッ
クの表面に酸素が結合し、pH値が著しく酸性を示すよ
うになることがある。しかし本発明においては、湿式洗
浄と乾燥に引き続き水素ガス含有雰囲気中にて熱処理を
行なうので、そのような問題は解消される。
After cleaning with an inorganic acid, acid may remain if the cleaning is not done thoroughly with water. After washing with water or inorganic acid, the carbon black is heated to a temperature above 60°C and dried, but during this process, oxygen bonds to the surface of the carbon black, causing the pH value to become extremely acidic. However, in the present invention, such a problem is solved because the wet cleaning and drying are followed by heat treatment in a hydrogen gas-containing atmosphere.

即ち、水素ガス含有雰囲気中での熱処理はブラック中の
硫黄分の除去効果のほか、残留塩素イオンや表面酸素化
合物を除去する効果をも有するのである。
That is, heat treatment in an atmosphere containing hydrogen gas not only has the effect of removing the sulfur content in the black, but also has the effect of removing residual chlorine ions and surface oxygen compounds.

次に実施例によりさらに詳細に説明する。Next, a more detailed explanation will be given with reference to examples.

(実施例1) 日本イーンー(株)製フ了−ネスブラック(商品名Ke
tjen E C) 4 Fを磁器製ボートに入れ、H
21o%、 N290 %の混合ガスを60睦分流した
管状炉により熱処理温度をかえ2時間熱処理した。熱処
理温度と螢光X線分析によりブラック中に含まれる主要
な異種元素を分析した結果を第2表に示す。
(Example 1) Free Ness Black (product name: Ke
tjen E C) 4 Put F into a porcelain boat and H
Heat treatment was carried out for 2 hours at different heat treatment temperatures using a tubular furnace in which a mixed gas of 210% and 90% N2 was flowed for 60 mm. Table 2 shows the results of analysis of the main foreign elements contained in the black using heat treatment temperature and fluorescent X-ray analysis.

7ベ 。7 be.

(実施例2) キャボット社製ファーネスブラック(商品名C3X−1
60A2)′f:用い、実施例1と同様の熱処理と分析
を行々つた。結果を第3表に示す0 (以 下 余 白) ( 第2表および第3表より、カーボンブラック中の硫黄は
水素ガス゛含有雰囲気中で60o′C以上の温度で減少
が顕著になり、800′C以上で飽和傾向を示すことが
わかる0塩素および亜鉛も800°C以」二で減少が顕
著になる。なおり−ボンブラックの粉体としての特性は
熱処理によりほとんど変化し々かった。  ” (実施例3) 実施例2において、熱処理条件を1000°C9、− 4時間としたカーボンブラックを作製し、熱処理時間に
よる影響を実施例2と比較した。
(Example 2) Furnace black manufactured by Cabot (product name C3X-1)
60A2)'f: was used, and the same heat treatment and analysis as in Example 1 were performed. The results are shown in Table 3. (See the margin below.) (Tables 2 and 3 show that the sulfur in carbon black decreases markedly at temperatures above 60o'C in an atmosphere containing hydrogen gas. Chlorine and zinc, which are known to show a tendency to saturation at temperatures above 800°C, decrease significantly at temperatures above 800°C.The properties of Naori-bon black as a powder hardly changed due to heat treatment. (Example 3) In Example 2, carbon black was produced under heat treatment conditions of 1000° C.9 for -4 hours, and the influence of heat treatment time was compared with Example 2.

(実施例4) 実施例2において、1ooO′C2時間の熱処理終了後
、直ちにロータリーポンプにより10wtb Hf の
真空度に排気し、更に10002時間熱処理を継続した
カーボンブラックを作製した。
(Example 4) In Example 2, after the heat treatment for 2 hours at 1ooO'C was completed, the vacuum was immediately evacuated to 10 wtb Hf using a rotary pump, and the heat treatment was continued for an additional 10,002 hours to produce carbon black.

(比較例1) 実施例2のカーボンブラックを用い、水素ガス含有雰囲
気中で熱処理を行なわずに、10MH7の真空中で10
00″02時間熱処理したもの、および同じく4時間熱
処理したものを作製した。
(Comparative Example 1) Using the carbon black of Example 2, 10
One was heat-treated for 2 hours, and the other was heat-treated for 4 hours.

実施例3および4.ならびに比較例1のカーボンブラッ
クにつき実施例1と同様の分析を行ない、変化の大きい
元素についてのみ第4表にまとめて示した0 (以 下 余 白) 10・ζ−:: 第   4   表       、単位:ppm)第
4表より、真空中での熱処理は硫黄除去効果は少ないが
、ナトリウムやカリウム除去の効果が顕著であることが
わかる。なお熱処理時間は長いほうが有効であるが、そ
の相違はそれほど大きなものではない。またカーボンブ
ラックの粉体としての特性は真空中熱処理によりほとん
ど変化しないことがわかった。
Examples 3 and 4. In addition, the carbon black of Comparative Example 1 was analyzed in the same manner as in Example 1, and only elements with large changes are summarized in Table 4. :ppm) Table 4 shows that heat treatment in vacuum has a small effect on removing sulfur, but has a significant effect on removing sodium and potassium. Note that a longer heat treatment time is more effective, but the difference is not so large. It was also found that the properties of carbon black as a powder hardly change due to heat treatment in vacuum.

(実施例5) 11ページ 実施例2で用いたカーボンブラック8o!を7o″Cの
純水1.66に分散し、3o分間攪拌したのち吸引P禍
した。得られたケーキに純水11を加え再分散させたの
ち吸引濾過し、さらにもう2回この操作をくり返してカ
ーボンブラック中の水溶性の塩類を除去した。ケーキ状
のカーボンブラックを空気中120°Cで10時間乾燥
したところ、pH値に変化が観察された。
(Example 5) Page 11 Carbon black 8o used in Example 2! was dispersed in pure water 1.66 at 7o''C, stirred for 3o minutes, and subjected to suction P. To the obtained cake was added pure water 11 to re-disperse, filtered with suction, and this operation was repeated two more times. Water-soluble salts in the carbon black were removed repeatedly. When the cake-like carbon black was dried in air at 120° C. for 10 hours, a change in pH value was observed.

この洗浄、乾燥したカーボンブラックを用い、実施例1
と同様の方法により水素ガス含有雰囲気中で1000’
02時間の熱処理を行なったのち、カーボンブラック中
に含着れる異種元素の分析とJIS(日本工業規格)に
よるpH値の測定を行なった。
Using this washed and dried carbon black, Example 1
1000' in an atmosphere containing hydrogen gas by the same method as
After heat treatment for 02 hours, the different elements contained in the carbon black were analyzed and the pH value was measured according to JIS (Japanese Industrial Standards).

(比較例2) 実施例6において、洗浄と乾燥だけを行なったカーボン
ブラックに←で同様の分析と測定を行なった。
(Comparative Example 2) In Example 6, the same analysis and measurements were performed on the carbon black that was only washed and dried.

(実施例6) 実施例2で用いたカーボンブラック8oyを70°Cの
希塩酸(o、2規定)1.577に分散し、3o分間攪
拌したのち吸引濾過し、ついで3gの純水で洗浄した。
(Example 6) 8 oy of carbon black used in Example 2 was dispersed in 1.577 g of dilute hydrochloric acid (O, 2N) at 70°C, stirred for 30 minutes, filtered with suction, and then washed with 3 g of pure water. .

得られたケーキに純水11を加え再分散したのち吸引濾
過する操作をさらに2回くり返した。
The operation of adding pure water 11 to the obtained cake, redispersing it, and filtering it by suction was repeated two more times.

このケーキ状カーボンブラックを実施例5と同様の方法
で乾燥し、ついで水素ガス含有雰囲気中で熱処Fl! 
したのち、分析と測定を行なった。
This cake-like carbon black was dried in the same manner as in Example 5, and then heat-treated in an atmosphere containing hydrogen gas (Fl!).
After that, analysis and measurements were carried out.

(比較例3) 実施例6において、洗浄と乾燥だけを行なったカーボン
ブラックについ−ご同様の分析と測定を行なった。
(Comparative Example 3) The same analysis and measurements as in Example 6 were performed on carbon black that was only washed and dried.

実施例6,6.比較例2,3の結果をあわせ(実施例7
) 実施例1で用いたカーボンブラックを用い、実施例6と
同一の方法で希塩酸洗浄と水素ガス含有雰囲気中で熱処
理したのち分析と測定を行なった。
Example 6, 6. Combining the results of Comparative Examples 2 and 3 (Example 7
) The carbon black used in Example 1 was washed with dilute hydrochloric acid and heat treated in an atmosphere containing hydrogen gas in the same manner as in Example 6, and then analyzed and measured.

(比較例4) 実施例7において、洗浄と乾燥だけを行なったカーボン
ブラックについて同様の分析と測定を行々っだ。
(Comparative Example 4) Similar analyzes and measurements were performed on carbon black that was only washed and dried in Example 7.

実施例7および比較例4の結果をあわせて第) 、2 .0 .0 第6表および第6表より明らかなように、水またけ希塩
酸で洗浄したのち、水素ガスを含有する雰囲気中で熱処
理したカーボンブラックは、未処理のカーボンブラック
にくらべ含有する異種元素の計が大幅に減少しており、
精製されていることがわかる。また水による洗浄よりも
希塩酸のほうが有効であったが、希塩酸のかわりに希硫
酸を用いてもほとんど同程度の効果が得られることがわ
かっている。またカーボンブラックのpH値は洗浄、乾
燥終了時点では大幅に減少して酸性を示すことが多いが
、熱処理を行なうことにより初期の値に近いところ迄回
復することがわかっている。
The results of Example 7 and Comparative Example 4 are shown in Table 1), 2. 0. 0 As is clear from Tables 6 and 6, carbon black that has been washed with dilute hydrochloric acid over water and then heat-treated in an atmosphere containing hydrogen gas has a lower total amount of foreign elements than untreated carbon black. has decreased significantly,
It can be seen that it is refined. Furthermore, although dilute hydrochloric acid was more effective than washing with water, it has been found that using dilute sulfuric acid instead of dilute hydrochloric acid can provide almost the same effect. Furthermore, the pH value of carbon black often decreases significantly and becomes acidic at the end of washing and drying, but it is known that by heat treatment it can be restored to a value close to the initial value.

以−]二の説明から明らかなように、本発明は簡単な処
理により、従来除去することが比較的離しかったカーボ
ンブラック中の硫黄をはじめとする多くの異物質を大幅
に減少させうる精製処理方法を提供するものであり、工
業的価値の大なるものである。
As is clear from the explanation in [2] above, the present invention is a purification method that can significantly reduce many foreign substances such as sulfur in carbon black, which were relatively difficult to remove in the past, through simple processing. It provides a processing method and is of great industrial value.

Claims (5)

【特許請求の範囲】[Claims] (1)  カーボンブラックを水素ガスを含有する雰囲
気中にて600〜1500″Cの温度で熱処理すること
を特徴とするカーボンブラックの精製処理方法0
(1) Carbon black purification method 0 characterized by heat treating carbon black at a temperature of 600 to 1500"C in an atmosphere containing hydrogen gas
(2)熱処理温度が800〜1500’Cであることを
特徴とする特許請求の範囲第(1)項記載のカーボンブ
ラックの精製処理方法。
(2) The method for purifying carbon black according to claim (1), wherein the heat treatment temperature is 800 to 1500'C.
(3)  カーボンブラックを水素ガスを含有する雰囲
気中にて、800〜1600’Cの温度に保ったのち、
雰囲気を真空としてさらに熱処理することを特徴とする
特許請求の範囲第(1)項記載のカーボンブラックの精
製処理方法。
(3) After keeping carbon black at a temperature of 800 to 1600'C in an atmosphere containing hydrogen gas,
The method for purifying carbon black according to claim (1), characterized in that the heat treatment is further carried out in a vacuum atmosphere.
(4)  カーボンブラックが予め水による洗浄を施さ
れたものであることを特徴とする特許請求の範囲第(1
)項または第(3)項記載のカーボンブラックの精製処
理方法。 2ページ
(4) Claim No. 1, characterized in that the carbon black has been previously washed with water.
) or (3), the method for purifying carbon black. 2 pages
(5)  カーボンブラックが予め無機酸と水による洗
浄を施されたものであることを特徴とする特許請求の範
囲第(1)項または第(3)項記載のカーボンブラック
の精製処理方法。
(5) The method for purifying carbon black according to claim (1) or (3), wherein the carbon black has been previously washed with an inorganic acid and water.
JP10424082A 1982-06-16 1982-06-16 Purification of carbon black Pending JPS58222157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10424082A JPS58222157A (en) 1982-06-16 1982-06-16 Purification of carbon black

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10424082A JPS58222157A (en) 1982-06-16 1982-06-16 Purification of carbon black

Publications (1)

Publication Number Publication Date
JPS58222157A true JPS58222157A (en) 1983-12-23

Family

ID=14375428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10424082A Pending JPS58222157A (en) 1982-06-16 1982-06-16 Purification of carbon black

Country Status (1)

Country Link
JP (1) JPS58222157A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993996A (en) * 1997-09-16 1999-11-30 Inorganic Specialists, Inc. Carbon supercapacitor electrode materials
WO2002048041A1 (en) * 2000-12-15 2002-06-20 Federal Recycling Technologies, Inc. Apparatus and method for recovering carbon black from pyrolysis byproducts
WO2010035871A1 (en) 2008-09-29 2010-04-01 ライオン株式会社 Method for producing high-purity carbon black
JP2011195596A (en) * 2010-03-17 2011-10-06 Hitachi Maxell Ltd Energy ray-curable ink composition
JP2011195597A (en) * 2010-03-17 2011-10-06 Hitachi Maxell Ltd Oil-based pigment ink composition
WO2015020130A1 (en) 2013-08-08 2015-02-12 ライオン株式会社 Carbon black and production method therefor, and electricity storage device and conductive resin composition
FR3030123A1 (en) * 2014-12-16 2016-06-17 Commissariat Energie Atomique LITHIUM ACCUMULATOR AND PROCESS FOR PREPARING THE SAME
US20170194648A1 (en) * 2015-12-30 2017-07-06 Toyota Motor Engineering & Manufacturing North America, Inc. Functionalization of carbon for embedding in chalcogen particles to enhance electronic conductivity

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993996A (en) * 1997-09-16 1999-11-30 Inorganic Specialists, Inc. Carbon supercapacitor electrode materials
WO2002048041A1 (en) * 2000-12-15 2002-06-20 Federal Recycling Technologies, Inc. Apparatus and method for recovering carbon black from pyrolysis byproducts
AU2002230795B2 (en) * 2000-12-15 2007-06-14 Gilbert W. Denison Apparatus and method for recovering carbon black from pyrolysis byproducts
US7347982B2 (en) * 2000-12-15 2008-03-25 Federal Recycling Technologies, Inc. Apparatus and method for recovering carbon black from pyrolysis byproducts
WO2010035871A1 (en) 2008-09-29 2010-04-01 ライオン株式会社 Method for producing high-purity carbon black
JP2011195596A (en) * 2010-03-17 2011-10-06 Hitachi Maxell Ltd Energy ray-curable ink composition
JP2011195597A (en) * 2010-03-17 2011-10-06 Hitachi Maxell Ltd Oil-based pigment ink composition
WO2015020130A1 (en) 2013-08-08 2015-02-12 ライオン株式会社 Carbon black and production method therefor, and electricity storage device and conductive resin composition
FR3030123A1 (en) * 2014-12-16 2016-06-17 Commissariat Energie Atomique LITHIUM ACCUMULATOR AND PROCESS FOR PREPARING THE SAME
WO2016097516A1 (en) * 2014-12-16 2016-06-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Lithium accumulator and its preparing process
US20170194648A1 (en) * 2015-12-30 2017-07-06 Toyota Motor Engineering & Manufacturing North America, Inc. Functionalization of carbon for embedding in chalcogen particles to enhance electronic conductivity
US11316166B2 (en) * 2015-12-30 2022-04-26 Toyota Motor Engineering & Manufacturing North America, Inc. Functionalization of carbon for embedding in chalcogen particles to enhance electronic conductivity

Similar Documents

Publication Publication Date Title
JPH05156375A (en) Method for leaching valuable metal from waste catalyst
JPH0668025B2 (en) Purification method of polyphenylene sulfide
JPS58222157A (en) Purification of carbon black
JP2019518704A (en) How to get graphene oxide
JP2004515431A (en) Method for removing mercury from gas
JPH01176227A (en) High-purity chromium chloride water solution and production therefof
RU2289638C1 (en) Method for waste acidic solution regeneration after etching titanium alloys
JP5429081B2 (en) Manganese ore processed material
KR102366743B1 (en) Recovery Method of Valuable Metal from Wasted Desulfurization Catalyst
JPS6369705A (en) Production of expanded graphite
US2718455A (en) Process for producing basic iron sulfate
JPH0123532B2 (en)
JP4448286B2 (en) Manufacturing method of iron oxide for ferrite raw material
JPS605533B2 (en) Process for producing substantially vanadium-free chromate
JP4441802B2 (en) Method for producing 2,3-pyridinedicarboxylic acid
JPS5950031A (en) Method for purifying iron oxide powder
JPH0397612A (en) Method for treating new or old graphite powder for improving effectiveness as carrier of metallic catalyst
JPS604135B2 (en) Manufacturing method of high purity iron oxide
US2980496A (en) Process for purifying fluoride-contaminated columbium and tantalum compounds
AT149661B (en) Process for cleaning finely divided carbon produced on iron-containing contacts.
US4137050A (en) Coal desulfurization
JP4051071B2 (en) Processing method of dust collector ash
US2030887A (en) Method of making sodium and zinc sulphides
US824699A (en) Process of treating refractory ores containing iron sulfids.
BE836832A (en) PROCESS FOR REGENERATION OF AN ABSORBENT SOLUTION USED FOR PURIFICATION OF EXHAUST GASES