JPS58220403A - Method of producing voltage nonlinear resistor - Google Patents

Method of producing voltage nonlinear resistor

Info

Publication number
JPS58220403A
JPS58220403A JP57104209A JP10420982A JPS58220403A JP S58220403 A JPS58220403 A JP S58220403A JP 57104209 A JP57104209 A JP 57104209A JP 10420982 A JP10420982 A JP 10420982A JP S58220403 A JPS58220403 A JP S58220403A
Authority
JP
Japan
Prior art keywords
zinc oxide
heat treatment
voltage
sintered body
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57104209A
Other languages
Japanese (ja)
Inventor
義和 小林
小西 茂生
黒川 英輔
豊見 孝義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57104209A priority Critical patent/JPS58220403A/en
Publication of JPS58220403A publication Critical patent/JPS58220403A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は電圧非直線抵抗器、特に酸化ニッケル(Nip
)を添加成分のひとつとして含む酸化亜鉛焼結型電圧非
直線抵抗器の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to voltage non-linear resistors, particularly nickel oxide (Nip
) as one of the additive components.

酸化亜鉛粉体に、少量のBi2O3,Co2O3゜た酸
化亜鉛焼結型電圧非直線抵抗器が得られる。
A zinc oxide sintered voltage nonlinear resistor containing small amounts of Bi2O3 and Co2O3° in zinc oxide powder is obtained.

これらの電圧非直線抵抗器の特性が近似的に、の式で表
わされていることはよく知られている。
It is well known that the characteristics of these voltage nonlinear resistors are approximately expressed by the following equation.

ただし、aは非直線指数、Cは非直線抵抗値で通常厚み
1+o+の素子にある一定の直流電流を流したときの電
圧でもって示す。そして、例えば1mAの電流を流した
ときの素子の両軍極間の電圧をv、nlmAと表わし、
40Aの電流を流したときの両電極間の電圧をv4oA
と表わす。
However, a is a nonlinear index, and C is a nonlinear resistance value, which is usually expressed as a voltage when a certain DC current is passed through an element having a thickness of 1+o+. For example, when a current of 1 mA is applied, the voltage between the two poles of the element is expressed as v, nlmA,
The voltage between both electrodes when a current of 40A flows is v4oA
It is expressed as

このような特性を示す電圧非直線抵抗器は電圧の安定化
などの用途のほかに電源回路などに入ってくる高電圧サ
ージを吸収して、他の電子部品をそれから保護するなど
のサージ吸収用としての用途がある。そして、後者のサ
ージ吸収用のために使用する場合、特に高電流域での非
直線特性が重要になる。
Voltage nonlinear resistors that exhibit these characteristics are used not only for voltage stabilization, but also for surge absorption, such as absorbing high voltage surges that enter power supply circuits and protecting other electronic components from them. There is a use as. When used for the latter purpose of absorbing surges, nonlinear characteristics especially in the high current range become important.

酸化亜鉛焼結型非直線抵抗器の非直線特性は、焼結体内
のZn帷子間に形成される薄い高抵抗層に起因すると考
えられている。すなわち、素子に電圧が印加されると、
良電気伝導性物質、であるZnOにはほとんど電界が印
加されず、Zn0fi子間の薄い高抵抗層に電界が集中
して加わり、その高電界のために電圧−電流特性に顕著
な非直線特性が現われる。
The nonlinear characteristics of the zinc oxide sintered nonlinear resistor are believed to be due to the thin high-resistance layer formed between the Zn sheets within the sintered body. That is, when a voltage is applied to the element,
Almost no electric field is applied to ZnO, which is a material with good electrical conductivity, and the electric field is concentrated on the thin high-resistance layer between ZnO fi elements, and due to the high electric field, the voltage-current characteristic has a remarkable non-linear characteristic. appears.

しかるに、サージ電流などのような特に大きい電流が素
子の中を流れようとすると、低電流域ではほとんど問題
にならなかったZnO粒子内の抵抗が素子内の全抵抗と
してきわめて無視できないもの、となり、電界は粒界層
のみにとどまらず、ZnO粒子にも加わるようになる。
However, when a particularly large current, such as a surge current, attempts to flow through the element, the resistance within the ZnO particles, which was hardly a problem in the low current range, becomes extremely non-negligible as the total resistance within the element. The electric field is applied not only to the grain boundary layer but also to the ZnO particles.

そして、ZnOの抵抗値が大きいと、高電流域における
非直線抵抗特性が損なわれる。ZnO粒子の眠気伝導度
は、ZnO結晶内のZn原子と0原子の数のアンバラン
スが生じた結果、現出していると考えられている。そし
てこの場合、余分のZn原子がZn原子とO原子とから
なる格子点の間にインタースティシャルに入り、Zn原
子の提供する一子が結晶内を巡廻し、それによってZn
O結晶はn型半導体になっているといわれている。そこ
で、このZnO結晶の眠気伝導度は、インタースティシ
ャルなZn原子の数の多少に依存しており、その数が多
いと眠気伝導度が大きい。
If the resistance value of ZnO is large, non-linear resistance characteristics in a high current range will be impaired. It is believed that the drowsy conductivity of ZnO particles appears as a result of an imbalance between the numbers of Zn atoms and zero atoms in the ZnO crystal. In this case, extra Zn atoms interstitialize between the lattice points consisting of Zn atoms and O atoms, and one child provided by the Zn atoms circulates within the crystal, thereby
It is said that O crystal is an n-type semiconductor. Therefore, the drowsiness conductivity of this ZnO crystal depends on the number of interstitial Zn atoms, and the higher the number, the higher the drowsiness conductivity.

いま、酸化亜鉛焼結型電圧非直線抵抗器の中のZnO結
晶を考えた場合、高電流域での電圧非直線特性が優れて
いるためには、0原子の数がZn原子の数に比してやや
少ないことが望ましいということができる。CO原子、
Mn原子などが固溶した実用的な焼結体内のZnO結晶
相についても、同様の考え方が適用できると考えられる
。したがって、上記のような0原子のやや不足している
ZnO結晶相をもった焼結体を得る方法が重要な課題と
なる。
Now, when considering the ZnO crystal in a zinc oxide sintered voltage nonlinear resistor, in order to have excellent voltage nonlinear characteristics in a high current range, the number of 0 atoms must be proportional to the number of Zn atoms. It can be said that it is desirable to have a slightly smaller amount. CO atom,
It is thought that the same concept can be applied to the ZnO crystal phase in a practical sintered body in which Mn atoms and the like are dissolved. Therefore, an important issue is how to obtain a sintered body having a ZnO crystal phase that is slightly deficient in zero atoms as described above.

本発明は、上記要求に応え、高電流域において電圧非直
線抵抗特性の優れた焼結体を得るための、酸化亜鉛焼結
型電圧非直線抵抗器の製造方法を提供するものである。
The present invention meets the above requirements and provides a method for manufacturing a zinc oxide sintered voltage non-linear resistor for obtaining a sintered body with excellent voltage non-linear resistance characteristics in a high current range.

すなわち、本発明は、抵抗値の小さい酸化亜鐸結、晶相
をもった酸化亜鉛焼結体を得る方法を提供しようとする
ものである。ここで、酸化亜鉛焼結体内のZnO結晶相
の抵抗を低下させるためには種々の方法があるけれY−
も、本発明はN i Oが添加物の一つとして添加され
た酸化亜鉛焼結体に関して、焼結体内のZnO結晶相の
抵抗を低下させるものである。そして、これは添加物の
N i O粉体に前処理を施すことによって達成された
0 以下、本発明の製造方法について実施例を挙げて比較例
とともに説明する。
That is, the present invention aims to provide a method for obtaining a zinc oxide sintered body having a substituent oxide crystalline phase and a low resistance value. Here, there are various methods to lower the resistance of the ZnO crystal phase in the zinc oxide sintered body.
Also, the present invention relates to a zinc oxide sintered body to which N i O is added as one of the additives, and is intended to reduce the resistance of the ZnO crystal phase within the sintered body. This was achieved by pre-treating the additive N i O powder.Hereinafter, the manufacturing method of the present invention will be described by way of examples and comparative examples.

〈実施例1〉 市販の酸化ニッケル(Nip)試薬を予めN2に10容
量チのN2を含ませた弱還元性の混合ガス上で30′O
℃、5001:、600℃、7oO℃。
<Example 1> A commercially available nickel oxide (Nip) reagent was heated at 30'O
°C, 5001:, 600 °C, 7oO °C.

800℃の各温度で2時間熱処理したO冷却後、粉砕し
て6種のNi□□□体を用意した。
After heat treatment at each temperature of 800° C. for 2 hours and cooling with O, pulverization was performed to prepare six types of Ni bodies.

次に、市販試薬の酸化亜鉛(ZnO)粉体97モルチ、
酸化ビスマス(Bt203)o、sモルチ、酸□)砧 0.5モルチに、上記30C)Cで熱処理を施した酸化
ニッケル(NiO)0.5モルチを加え゛てよく混合し
、厚さ1 、2 ttan 、直径23間に加圧成型し
て、空気中1360℃で1時間、焼結した。昇温速度お
よび降温速度はそれぞれ±100℃/時と、した。この
ようにして得た焼結体に、面積2.3C−の銀電極をそ
の表裏両面にそれぞれ焼き付けた。
Next, 97 mol of zinc oxide (ZnO) powder, a commercially available reagent,
Add 0.5 molt of nickel oxide (NiO) heat-treated at 30C) to 0.5 molt of bismuth oxide (Bt203) o, s molt, acid □), mix well, and form a mixture with a thickness of 1. 2 ttan and a diameter of 23 mm, and sintered in air at 1360° C. for 1 hour. The temperature increase rate and temperature decrease rate were each ±100°C/hour. Silver electrodes having an area of 2.3 C were baked onto both the front and back surfaces of the sintered body thus obtained.

以上のようにして得た試料について、直流定電流電源を
用いてv、rnAの値を測定し、次にノ(ルス電源を用
いてv4゜Aの値を測定してから、v4oA/v1tn
Aの値を求めた。同じ手順で400℃。
For the sample obtained as above, measure the values of v and rnA using a DC constant current power supply, then measure the value of v4°A using a nozzle power supply, and then calculate v4oA/v1tn.
The value of A was determined. Same procedure at 400℃.

500℃、600℃、7oO℃、8oO℃の各温度で熱
処理を施したN i O粉体を用いて焼結体を作り、v
4oA/v1mAの値を求めた。
A sintered body was made using N i O powder heat-treated at temperatures of 500°C, 600°C, 7oO°C, and 8oO°C, and v
The value of 4oA/v1mA was determined.

第1図にN i Oに施した熱処理温度と制限電圧比■
4゜A/ vlmAとの関係を示す。この図から明らか
なように、v4゜A/ vlmAの値はNiOに対する
熱処理温度が400℃以上で小さくなり、6o。
Figure 1 shows the heat treatment temperature and limiting voltage ratio for NiO.
4°A/vlmA is shown. As is clear from this figure, the value of v4°A/vlmA decreases when the heat treatment temperature for NiO is 400°C or higher, and is 6o.

℃で最小になる。さらにNiOの熱処理温度が高くなる
と、その値は増加する。なお、熱処理を施さないNiO
を使用したときの、v4゜A/v4mAの値は2.30
であった。
Minimum at °C. Further, as the heat treatment temperature of NiO becomes higher, the value increases. Note that NiO without heat treatment
When using , the value of v4゜A/v4mA is 2.30
Met.

〈実施例2〉 7ページ 市販の酸化ニッケル(Nip)試薬を予め、N2ガス中
で300℃、400℃、500℃、600Tl:、  
700111:および800℃の各温度で2時間の熱処
理を施して冷却し、それを粉砕して6種のNi(至)体
を用意した二このNiO粉体を用いて上記実施例1と同
じ手順で焼結体を作り、その制限電圧比■4oA/v、
n1mAを求めた。第2図にNiOに施した熱処理温度
と制限電圧比との関係を示す。図から明らかなように、
実施例1の場合と同様に400℃からv4゜A/v4m
Aの値は減少して600℃で最小になり、さらに温度か
高くなるとその値は増加している。そして、その傾向は
実施例1におけるものと類似している。
<Example 2> Page 7 A commercially available nickel oxide (Nip) reagent was prepared in advance at 300°C, 400°C, 500°C, and 600 Tl in N2 gas.
700111: Heat treated at each temperature of 800°C for 2 hours, cooled, and crushed to prepare 6 types of Ni bodies. Using these two NiO powders, the same procedure as in Example 1 was carried out. Make a sintered body, and its limiting voltage ratio ■4oA/v,
n1mA was determined. FIG. 2 shows the relationship between the heat treatment temperature applied to NiO and the limiting voltage ratio. As is clear from the figure,
As in Example 1, from 400°C to v4°A/v4m
The value of A decreases and reaches a minimum at 600°C, and increases as the temperature rises further. The tendency is similar to that in Example 1.

〈比較例〉 市販の酸化ニッケル(Nip)試薬を予め空気中で30
0’C,400℃、500℃、6oO℃。
<Comparative example> A commercially available nickel oxide (Nip) reagent was pre-incubated in air for 30 min.
0'C, 400℃, 500℃, 6oO℃.

700℃および800℃の各i度で2時間熱処理してか
ら冷却し、粉砕して6種類の酸化ニッケル(Nip)粉
体を得た。これらの酸化ニッケル(Nip)粉体を用い
て、実施例1と同じ手順で同特開昭58−220403
(3) じ組成比率の酸化亜鉛焼結体を作り、その制限電圧比v
4゜A/v1mAを求めた。第3図に熱処理温度とv4
゜A/V1mAの値との関係を示す。図から明らかなよ
うに、v4oA/■1mAの値は600℃で最小とはな
るものの、その効果は、上記実施例によるものより小さ
い。
After heat treatment at 700° C. and 800° C. for 2 hours, the mixture was cooled and pulverized to obtain six types of nickel oxide (Nip) powders. Using these nickel oxide (Nip) powders, the same procedure as in Example 1 was carried out in the same manner as in JP-A-58-220403.
(3) Create zinc oxide sintered bodies with the same composition ratio, and set the limiting voltage ratio v
4°A/v1mA was determined. Figure 3 shows heat treatment temperature and v4
The relationship with the value of °A/V1mA is shown. As is clear from the figure, although the value of v4oA/■1mA reaches its minimum at 600°C, its effect is smaller than that of the above embodiment.

以上の実施例および比較例にもとづいて、予め酸化ニッ
ケルに加えた熱処理が酸化亜鉛焼結体の制限電圧比にい
かに影響するかその効果を説明してきたが、さらにN2
と02との混合ガスの組成比をかえた雰囲気中でのN 
i OO熱処理効果についても検討した結果、弱い酸化
性の雰囲気中でN i Oに熱処理を施しておいても、
上述したものと同じような効果があることが明らかにな
った。
Based on the above examples and comparative examples, we have explained how the heat treatment applied to nickel oxide in advance affects the limiting voltage ratio of the zinc oxide sintered body.
N in atmospheres with different composition ratios of mixed gases of and 02
As a result of examining the effect of iOO heat treatment, we found that even if Nio is heat treated in a weakly oxidizing atmosphere,
It was found that the same effect as mentioned above was obtained.

なお、実施例および比較例においては、互いにデータを
比較するために、同種の配合比に従って酸化亜鉛焼結体
を作ったが、もちろんNiOに対する熱処理効果は、こ
の配合比の場合のみに限って現われるのではなく、他の
配合比で酸化亜鉛焼結体を製造する場合においても得ら
れることはいう壕でもないことである。
In addition, in the Examples and Comparative Examples, zinc oxide sintered bodies were made according to the same compounding ratio in order to compare data with each other, but of course, the heat treatment effect on NiO appears only in the case of this compounding ratio. However, it is not impossible to obtain zinc oxide sintered bodies even when producing zinc oxide sintered bodies with other blending ratios.

N i Oに附子る熱処理温度を400℃から600℃
捷で上げていくと、■4oA/■4mAの値は小さくな
る傾向を示す。これは温度上昇によってNi。
Heat treatment temperature attached to N i O from 400℃ to 600℃
As the power is increased, the value of ■4oA/■4mA tends to decrease. This is due to the increase in temperature.

の吸着酸素または構造酸素が徐々に取れていった結果、
酸化亜鉛焼結体中の酸化亜鉛の抵抗値が低くなったため
と考えられる。しかし、600℃より高温側での熱処理
で■4oA/v1mAの値が大きくなる原因は、現在の
ところ明らかでない。
As a result of the gradual removal of adsorbed oxygen or structural oxygen,
This is thought to be because the resistance value of zinc oxide in the zinc oxide sintered body became low. However, the reason why the value of 4oA/v1mA becomes large due to heat treatment at a temperature higher than 600° C. is currently not clear.

以上説明してきたように、本発明にかかる方法は、予め
原料の酸化ニッケル粉体に、中性または弱還元性もしく
は弱酸化性の雰囲気中で400℃〜700’Cの熱処理
を施すことを特徴とする。この方法によれば、酸化亜鉛
焼結体中の酸化亜鉛結晶相の電気抵抗を低下させる上で
効果があり、素子の大電流域における非直線抵抗特性を
改善してサージ電流の吸収などに対して優れた特性をも
つ素子を得ることができる。
As explained above, the method according to the present invention is characterized in that nickel oxide powder as a raw material is previously subjected to heat treatment at 400°C to 700'C in a neutral, weakly reducing, or weakly oxidizing atmosphere. shall be. This method is effective in lowering the electrical resistance of the zinc oxide crystal phase in the zinc oxide sintered body, improving the nonlinear resistance characteristics of the device in the large current range, and preventing surge current absorption. Therefore, it is possible to obtain a device with excellent characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ本発明にかかる電圧非直線抵
抗器の製造方法の実施例の効果を説明するためのNiO
に施した熱処理温度と制限電圧比との関係を示す図、第
3図はその比較例の効果を説明するためのNiOに施し
た熱処理温度と制限電圧比との関係番示す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図・ 一処理シIFX攬(・と1 第2図 一処握渣Xcc> 第3図 一%屓シ1喪(9C) 、11゜
1 and 2 are NiO
FIG. 3 is a diagram showing the relationship between the heat treatment temperature applied to NiO and the limiting voltage ratio to explain the effect of the comparative example. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Fig. 1 processing IFX (・to 1 Fig. 2 1 place grip

Claims (1)

【特許請求の範囲】[Claims] 酸化ニッケル(Nip)を含む酸化亜鉛主成分の焼結型
非直線抵抗器を製造するに際し、原料酸化−−7ケルに
、予め弱還元性または中性もしくは弱酸化性の雰囲気中
で400℃〜700℃の範囲内の温度で熱処理を施すこ
とを特徴とする電圧非直線抵抗器の製造方法。
When manufacturing a sintered non-linear resistor mainly composed of zinc oxide containing nickel oxide (NIP), the raw material oxidation-7 Kel is preheated at 400°C to 400°C in a weakly reducing, neutral or weakly oxidizing atmosphere. A method for manufacturing a voltage nonlinear resistor, the method comprising performing heat treatment at a temperature within a range of 700°C.
JP57104209A 1982-06-16 1982-06-16 Method of producing voltage nonlinear resistor Pending JPS58220403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57104209A JPS58220403A (en) 1982-06-16 1982-06-16 Method of producing voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57104209A JPS58220403A (en) 1982-06-16 1982-06-16 Method of producing voltage nonlinear resistor

Publications (1)

Publication Number Publication Date
JPS58220403A true JPS58220403A (en) 1983-12-22

Family

ID=14374573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57104209A Pending JPS58220403A (en) 1982-06-16 1982-06-16 Method of producing voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JPS58220403A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133903A (en) * 1988-11-15 1990-05-23 Ngk Insulators Ltd Manufacture of voltage nonlinear resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133903A (en) * 1988-11-15 1990-05-23 Ngk Insulators Ltd Manufacture of voltage nonlinear resistor

Similar Documents

Publication Publication Date Title
US2258646A (en) Resistance material
DE2944029C2 (en)
US2626445A (en) Heavy-metal oxide resistors and process of making same
JPS58220403A (en) Method of producing voltage nonlinear resistor
JPS5811084B2 (en) Voltage nonlinear resistor
JPS58220405A (en) Method of producing voltage nonlinear resistor
JPS58220404A (en) Method of producing voltage nonlinear resistor
JPS58220407A (en) Method of producing voltage nonlinear resistor
GB540844A (en) Resistance materials and methods of making the same
KR920005155B1 (en) Zno-varistor making method
JPS58220406A (en) Method of producing voltage nonlinear resistor
JPH0552642B2 (en)
JP2816258B2 (en) Method of manufacturing voltage non-linear resistor and lightning arrester
JPH02121303A (en) Manufacture of ntc thermistor element
JPH01289206A (en) Voltage-dependent nonlinear resistance element and manufacture thereof
JPS62232904A (en) Manufacture of varistor
JPH0128481B2 (en)
JPS63315559A (en) Thermistor porcelain composition
JPS58159302A (en) Voltage nonlinear resistor
JPS63315549A (en) Thermistor porcelain composition
JPS62296401A (en) Barium titanate system semiconductor and manufacture of the same
JPS63315561A (en) Thermistor porcelain composition
JPH0344003A (en) Varistor
JPS648442B2 (en)
JPH02262301A (en) Varistor