JPS58219438A - Spectrochemical analysis device using laser light - Google Patents

Spectrochemical analysis device using laser light

Info

Publication number
JPS58219438A
JPS58219438A JP10286882A JP10286882A JPS58219438A JP S58219438 A JPS58219438 A JP S58219438A JP 10286882 A JP10286882 A JP 10286882A JP 10286882 A JP10286882 A JP 10286882A JP S58219438 A JPS58219438 A JP S58219438A
Authority
JP
Japan
Prior art keywords
sample
light
spectrometer
laser
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10286882A
Other languages
Japanese (ja)
Inventor
Kozo Sumiyama
角山 浩三
Zenji Ohashi
大橋 善治
Yasuko Koshiyu
泰子 古主
Motoyuki Konishi
小西 元幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10286882A priority Critical patent/JPS58219438A/en
Publication of JPS58219438A publication Critical patent/JPS58219438A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To make it possible to set the distance between the surface of a sample and a spectroscope arbitrarily, by providing a condenser lens, which makes light from a sample ring shaped parallel light, and a spectroscope optical system, and making laser light and the light from the sample in parallel between the lens and the system on the same axis. CONSTITUTION:A condenser lens 32 converges laser light 13 on a sample 16 and makes light 33 emitted from the sample ring shaped parallel light, which is propagated in the reverse direction with respect to the laser light 13 on the same axis. A ring shaped concave mirror 34 and a spectroscope optical system including expandable mirror tubes 40 and 40a, which guide the light 33 from the sample that is made to be the ring shaped parallel light to a spectroscope 22, are provided. The light 33 from the sample can be efficiently guided to the spectroscope by the adjustment of the mirror tubes 40 and 40a, regardless of the length of the distance between the sample 16 and the spectroscope 22. Thus the highly accurate, general purpose device can be obtained.

Description

【発明の詳細な説明】 本発明は、レーザ発光分光分析装置に係り、特に、浴銑
、溶鋼、溶融スラグの直接分析に用いるのに好適な、レ
ーザ発光部からレーザ光を照射し念ときに試料表面から
放出される光を、分光器により分光分析するようにした
レーザ発光分光分析装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laser emission spectrometer, which is particularly suitable for direct analysis of bath iron, molten steel, and molten slag. The present invention relates to an improvement in a laser emission spectrometer that spectrally analyzes light emitted from the surface of a sample using a spectrometer.

試料表面に強力なパルス状のレーザ光を照射すると、局
所的にエネルギが注入された状態となり、溶解、蒸発が
起り、更に蒸気が励起されてプラズマ化し、光を放出す
るようになる。この光を分光器で分散し、目的元素のス
ペクトル線強度を、写真フィルム、光電子増倍管、フォ
トダイオード等により測定することによって、目的元素
の含有量を求めるようにしたレーザ発光分光分析装置が
知られている。
When a strong pulsed laser beam is irradiated onto the surface of a sample, energy is locally injected, causing melting and evaporation, and further exciting the vapor, turning it into plasma and emitting light. A laser emission spectrometer that disperses this light with a spectrometer and measures the spectral line intensity of the target element using photographic film, a photomultiplier tube, a photodiode, etc., determines the content of the target element. Are known.

このようなレーザ光を励起源とするレーザ発光分光分析
装置に用いる光学系としては、第1図に示す如く、レー
ザ発光部12、及び、該レーザ発光部12から照射され
たレーザ光を試料16の表面に収束させるための集光レ
ンズ14からなるレーザ照射系lOと、試料16の表面
から放出される光を分光器22に導くための分光器光学
系20゜及び、分光器22からなる分光器系1Bとを別
々の軸上に配設し、その交差する点に試料16を設置す
るものと、第2図に示す如く、レーザ発光部12、該レ
ーザ発光部12から照射されるレーザ光の方向を変換す
るための直角プリズム24、該直角プリズム24により
方向変換されたレーザ光を溶鋼等からなる試料16の表
面に収束させるためのレーザ光用の集光レンズ14から
なるレーザ照射系10と、試料160表面から放出され
る光をレーザ光と同軸逆方向に伝播する光とするための
試料放出光用の集光レンズ26.試料放出光を分光器(
図示省略)に導くための、中央部にレーザ光透過部が形
成されたビームス1リツク28、及び、分光器からなる
分光器系18とを有し、レーザ照射系10と分光器系1
8を途中から同軸とするものが開発されている。前者に
よれば、平滑な表面を持つ試料16には有効であるが、
試料16の置く位置を厳密に制御する必要がある。父、
後者によれば、試料16の位置が若干変動しても、試料
16から放出された光を分光器22に導くことができる
ものである。しかしながら、いずれの光学系においても
、試料16と分光器22間の距離が変化すると、試料1
6から放出された光を効率よく分光器22に導くことが
できず、試料16と分光器22間の距離を任意に設定す
ることができないという欠点を有していた。
As shown in FIG. 1, an optical system used in a laser emission spectrometer using laser light as an excitation source includes a laser emitting section 12 and a laser beam irradiated from the laser emitting section 12 on a sample 16. A laser irradiation system 10 consisting of a condensing lens 14 for converging the light on the surface of the sample 16, a spectrometer optical system 20° for guiding the light emitted from the surface of the sample 16 to the spectroscope 22, and a spectroscope consisting of the spectroscope 22. As shown in FIG. A laser irradiation system 10 consisting of a right-angle prism 24 for changing the direction of the laser beam, and a condensing lens 14 for laser light for converging the laser beam whose direction has been changed by the right-angle prism 24 onto the surface of a sample 16 made of molten steel or the like. and a condensing lens 26 for the sample emitted light to convert the light emitted from the surface of the sample 160 into light that propagates coaxially and in the opposite direction to the laser beam. The sample emitted light is collected using a spectrometer (
The laser beam irradiation system 10 and the spectrometer system 18 have a beam slit 28 with a laser beam transmitting part formed in the center and a spectrometer system 18 for guiding the laser beam to a laser beam (not shown).
A device in which 8 is made coaxial from the middle has been developed. According to the former, it is effective for sample 16 with a smooth surface, but
It is necessary to strictly control the position where the sample 16 is placed. father,
According to the latter, even if the position of the sample 16 changes slightly, the light emitted from the sample 16 can be guided to the spectrometer 22. However, in any optical system, if the distance between the sample 16 and the spectrometer 22 changes, the sample 1
The light emitted from the sample 16 cannot be efficiently guided to the spectrometer 22, and the distance between the sample 16 and the spectrometer 22 cannot be arbitrarily set.

本発明は、前記従来の欠点を解消するべく1cされたも
ので、試料表面と分光器間の距離を任意に設定すること
ができ、従って、工場内等の分光器の設置に対し種々の
制約のある場所にも適用することができる、汎用性の高
いレーザ発光分光分析装置を提供することを目的とする
The present invention was developed in order to solve the above-mentioned conventional drawbacks, and the distance between the sample surface and the spectrometer can be arbitrarily set, thus eliminating various restrictions on the installation of the spectrometer in a factory, etc. An object of the present invention is to provide a highly versatile laser emission spectrometer that can be applied to any location.

本発明は、レーザ発光部からレーザ光を照射したときに
試料表面から放出される光を、分光器により分光分析す
るようにしたレーザ発光分光分析装置において、レーザ
光を試料表面に収束させると共に、試料表面から放出さ
れる光を、レーザ光と同軸逆方向に伝播する円環状平行
光線とするための集光レンズと、少なくとも一部が前記
レーザ光の外側に配置された1円環状子行光線化された
試料放出光を分光器に導(ための分光器光学系とを設け
、集光レンズと分光器光学系間におけるレーザ光及び試
料放出光が、互いに同軸、平行となるようにして、前記
目的を達成したものである。
The present invention provides a laser emission spectrometer that uses a spectrometer to perform spectroscopic analysis of light emitted from a sample surface when a laser beam is irradiated from a laser emitting section, which includes converging the laser beam onto the sample surface, and a condenser lens for converting the light emitted from the sample surface into an annular parallel ray that propagates coaxially and in the opposite direction to the laser beam; and a one-annular consonant ray, at least a part of which is disposed outside the laser beam. A spectrometer optical system is provided to guide the sample emitted light into a spectroscope, and the laser beam and the sample emitted light between the condenser lens and the spectrometer optical system are coaxial and parallel to each other, The above objective has been achieved.

本発明は、真空紫外光を通す光学結晶CaF2が。The present invention uses an optical crystal CaF2 that transmits vacuum ultraviolet light.

高純度であれば、レーザ光を集光することができること
に着目しなされたものである。
This was done based on the fact that if the material is highly pure, it is possible to focus the laser light.

以下図面を参照して1本発明の実施例を詳細に説明する
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

本実施例しj、第3図に示す如(、レーザ照射系lOの
レーザ発光部12からレーザ光を照射したときに、試料
16の表面から放出される光を、分光器系18の分光器
22により分光分析するようにしたレーザ発光分光分析
装置において、前記レーザ発光ff1l12から照射さ
れたレーザ光13の照射方向を変えるための直角プリズ
ム24と、該直角プリズム24出側のレーザ光13を試
料16の表面に収束させると共に、試料表面から放出さ
れる光を、レーザ光13と同軸逆方向に伝播する円環状
平行光線33とするための集光レンズ32と、#記し−
ザ光13の外側に配置された1円環状子行光線化された
試料放出光33を1分光器22の入口スリット36に結
像するための、円環状凹面鏡34からなる分光器光学系
20と、分光器22と。
In this embodiment, as shown in FIG. 22, the laser emission spectrometer is equipped with a right-angle prism 24 for changing the irradiation direction of the laser beam 13 emitted from the laser beam ff1l12, and a laser beam 13 on the output side of the right-angle prism 24 as a sample. A condensing lens 32 for converging the light emitted from the sample surface onto the surface of the sample 16 into an annular parallel light ray 33 that propagates coaxially and in the opposite direction to the laser beam 13;
a spectrometer optical system 20 consisting of a toric concave mirror 34 for imaging the sample emitted light 33, which has been converted into one circular consonant beam and is placed outside the laser beam 13, onto the entrance slit 36 of one spectrometer 22; , and a spectrometer 22.

該分光器22の後方に配置された、分光器22により分
光されたスペクトル線の強度を検出するための光検出器
38と、前記集光レンズ32と分光器光学系20間の距
離を可変とするための、中間部にすり合せ部40aが形
成された鏡筒4oと、を設けたものである。
A photodetector 38 for detecting the intensity of the spectral lines separated by the spectrometer 22 is arranged behind the spectrometer 22, and the distance between the condenser lens 32 and the spectrometer optical system 20 is variable. A lens barrel 4o having a mating portion 40a formed in the intermediate portion is provided for this purpose.

前記レーザ発光部12は、所定出力、パルス幅のパルス
状レーザ光を放出するもので1例えば、波長0.69μ
mのルビーレーザ、波長1.05乃至1.06μmの赤
外線レーザが用いられている。このレーザ発光部12に
モードロック機構を組込んで、レーザ光13のモードを
、ガウス分布型のT E R’fo。
The laser emitting unit 12 emits a pulsed laser beam having a predetermined output and pulse width, for example, a wavelength of 0.69μ.
A ruby laser with a wavelength of 1.05 to 1.06 μm and an infrared laser with a wavelength of 1.05 to 1.06 μm are used. A mode locking mechanism is incorporated into this laser emitting unit 12, and the mode of the laser beam 13 is set to a Gaussian distribution type TER'fo.

モードに固定することが望“ましい。It is desirable to fix the mode.

前記直角プリズム24は、レーザ照射系lOと分光器系
18の光軸を一致させるためのもので。
The right angle prism 24 is for aligning the optical axes of the laser irradiation system 10 and the spectrometer system 18.

レーザ発光部12を試料16の表面に対して垂直方向に
設置した場合には、省略することができる。
This can be omitted if the laser emitting section 12 is installed perpendicularly to the surface of the sample 16.

前記集光レンズ32は、レーザ光13を、その焦点にお
いた試料16の表面に収束すると共に、試料表面に形成
されたプラズマが放出する光を、レーザ光と同軸逆方向
に伝播させるものである。
The condensing lens 32 converges the laser beam 13 onto the surface of the sample 16 at its focal point, and propagates the light emitted by the plasma formed on the sample surface in a coaxial direction opposite to that of the laser beam. .

この集光レンズ32としては1通常の光学ガラスからな
る凸レンズを用いるが、特に、真空紫外領域のスペクト
ルを検出する場合には、高純度のCaF2 、 MgF
z、 LiF、 BaF*、StO,等の光学結晶を用
いる。
As this condensing lens 32, a convex lens made of ordinary optical glass is used. In particular, when detecting a spectrum in the vacuum ultraviolet region, highly purified CaF2, MgF is used.
Optical crystals such as z, LiF, BaF*, StO, etc. are used.

前記分光器光学系200円環状凹面鏡34は、レーザ光
13の同軸外側に配設され、レーザ光13によって背後
から照射されないように設置されている。この円環状凹
面鏡34は、試料16から放出され、集光レンズ32で
平行光線された光33を、分光器22の入口スリット3
6に結像する曲率を有している。なお第3図に示す実施
例においては、円環状凹面鏡34を1枚使用していたが
、例えば第4図に示す第1変形例の如く、円環状凹面鏡
34と平面鏡42を組み合わせて1円環状凹面鏡34の
みをレーザ光13の光軸近傍に設置した9%又、測定す
るスペクトルの波長によっては、第5図に示す第2変形
例の如く、ビームスプリッタ44と凸レンズ46を組合
せたりすることも可能である。
The annular concave mirror 34 of the spectrometer optical system 200 is disposed on the outer side of the same axis of the laser beam 13 so as not to be irradiated with the laser beam 13 from behind. This annular concave mirror 34 converts the light 33 emitted from the sample 16 and parallelized by the condensing lens 32 to the entrance slit 3 of the spectrometer 22.
It has a curvature of 6. In the embodiment shown in FIG. 3, one annular concave mirror 34 is used, but for example, as in the first modification shown in FIG. In addition, depending on the wavelength of the spectrum to be measured, a beam splitter 44 and a convex lens 46 may be combined as in the second modification shown in FIG. 5. It is possible.

前記光検出器38としては、例えば、光電子増倍管、フ
ォトダイオード、写真フィルム等が用いられている。
As the photodetector 38, for example, a photomultiplier tube, a photodiode, a photographic film, etc. are used.

前記鏡筒40には、真空紫外領域のスペクトルを検出す
る場合に備えて、試料16〜集光レンズ32間をアルゴ
ン雰囲気とし、集光レンズ32〜分光器22間を真空と
するか、或いは、試料16〜分光器22間をすべてアル
ゴン雰囲気とするための、アルゴンガス導入部40b、
レーザ光導入部をシールする光学ガラス48、分光器2
2の入ロスリット36後段をシールする、CaF、等か
らなる真空シールガラス50が設けられている。
In preparation for detecting a spectrum in the vacuum ultraviolet region, the lens barrel 40 has an argon atmosphere between the sample 16 and the condenser lens 32, and a vacuum between the condenser lens 32 and the spectrometer 22, or an argon gas introduction part 40b for creating an argon atmosphere between the sample 16 and the spectrometer 22;
Optical glass 48 that seals the laser beam introduction part, spectrometer 2
A vacuum sealing glass 50 made of CaF or the like is provided to seal the rear stage of the second entry loss slit 36.

以下作用を説明する。The action will be explained below.

まず、集光レンズ32及び分光器光学系2oを含む鏡筒
40のすり合せ部40a’i調整し、試料16の表面が
、集光レンズ32の焦点に来るように位曾を設定する。
First, the fitting portion 40a'i of the lens barrel 40 including the condenser lens 32 and the spectrometer optical system 2o is adjusted, and the position is set so that the surface of the sample 16 comes to the focal point of the condenser lens 32.

この時、既存の測長針を利用してもよい。次いで、レー
ザ発光部12を作動させ、所定強度、パルス幅のレーザ
光13を放出させる。レーザ光13は、直角プリズム2
4を介して集光レンズ32内に導かれ、試料16の表面
に収束される。試料16のレーザ照射部は、瞬時にプラ
ズマ化され、光を放出する。この光は前記集光レンズ3
2で円環状平行光線33となり5分光器光学系20の円
環状凹面鏡34により1分光器220入ロスリツト36
に導かれる。分光器22の内部では、回折格子、プリズ
ム等により光が分散され、測定目的元累のスペクトル線
強度が、光検出器3Bで読み取られ1通常の方法でデー
タ処理が行われ1分析が行われる。
At this time, an existing length measuring needle may be used. Next, the laser emitting unit 12 is activated to emit laser light 13 with a predetermined intensity and pulse width. The laser beam 13 is transmitted through a right angle prism 2
4 into the condenser lens 32 and focused on the surface of the sample 16. The laser irradiated portion of the sample 16 is instantaneously turned into plasma and emits light. This light is transmitted through the condensing lens 3
2, it becomes an annular parallel ray 33, and the annular concave mirror 34 of the 5-spectroscope optical system 20 creates a losslist 36 that enters 1 spectrometer 220.
guided by. Inside the spectrometer 22, light is dispersed by a diffraction grating, prism, etc., and the spectral line intensity of the measurement target is read by a photodetector 3B, and the data is processed in a normal manner and analyzed. .

前記実施例に示されるような装置により、口径5Qmi
、焦点距離1501mの高純度CaF211ij集光レ
ンズ32を用い、試料16〜真空シ一ルガラス50間を
アルゴン雰囲気として、Fe−82元合金からなる試料
16に、波長1.06μm、出力2J、パルス幅15 
n5ea のレーザ光を照射した時に得られる、271
.4nmのFeスペクトル線強度、及び、180.7 
nmのSスペクトル線強度を、試料16と分光器光学系
20間の距離を変えて測定したところ、第6図に示すよ
うな結果が得られた。
With the device as shown in the previous example, a diameter of 5Qmi
Using a high-purity CaF211ij condenser lens 32 with a focal length of 1501 m and an argon atmosphere between the sample 16 and the vacuum sealing glass 50, the sample 16 made of an Fe-82 element alloy was exposed to a wavelength of 1.06 μm, an output of 2 J, and a pulse width. 15
271 obtained when irradiated with n5ea laser light
.. 4 nm Fe spectral line intensity and 180.7
When the S spectral line intensity in nm was measured while changing the distance between the sample 16 and the spectrometer optical system 20, the results shown in FIG. 6 were obtained.

図から明らかな如く、レーザ出力に約10%の変動があ
ることを考慮すると、スペクトル線の強度が2試料16
と分光器光学系20間の距離に依存しないことが明らか
である。
As is clear from the figure, considering that the laser output varies by about 10%, the intensity of the spectral lines in the two samples 16
It is clear that it does not depend on the distance between and the spectrometer optics 20.

以上説明した通り、不発明によれば、試料と分光器の距
離に拘らず、n度の高い測定を行うことができる。従っ
て、工場内等の分光器の設置に対し種々の制約のある場
所にも適用することができ、汎用性を烏めることかでき
るという優れた効果を有する。
As explained above, according to the invention, measurements with a high degree of n can be performed regardless of the distance between the sample and the spectrometer. Therefore, it can be applied to places where there are various restrictions on the installation of spectrometers, such as in factories, and has the excellent effect of reducing versatility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のレーザ発光分光分析装置の1例におけ
るレーザ照射系と分光器系の配置を示す正面図、第2図
は、同じく他の例のレーザ照射系と分光器系の配置を示
す正面図、第3図は、本発明に係るレーザ発光分光分析
装部の実施例の構成を示す断面図−第4図は第1変形例
における分光器光学系の配置を示す正面図、第5図は、
同じ(第2変形例に分ける分光器光学系の配置を示す正
面図、第6図は、前記実施例により測定された、Fe、
Sのスペクトル線強度と試料と分光器光学系間の距離の
関係の1例を示す線図である。 ]0・・・レーザ照射系、12・・・レーザ発光部。 13・・・レーザ光、16・・・試料、18・・・分光
器系、20・・・分光器光学系、22・・・分光器、3
2・・・集光レンズ、33・・・円環状試料放出光、3
4・・・円環状凹面鏡、36・・・入ロスリッチ、38
・・・光検出器。 42・・・平面鏡、44・・・ビームスプリッタ、46
・・・凸レンズ。 代理人  高 矢   論 (ほか1名) (11) 第1図 第2図 一:二::二−二−−−16 第3図 ] 204− 第4図 第5図
Fig. 1 is a front view showing the arrangement of the laser irradiation system and spectrometer system in one example of a conventional laser emission spectrometer, and Fig. 2 shows the arrangement of the laser irradiation system and spectrometer system in another example. 3 is a sectional view showing the configuration of an embodiment of the laser emission spectrometer according to the present invention. FIG. 4 is a front view showing the arrangement of the spectrometer optical system in the first modification, and FIG. Figure 5 is
The same (a front view showing the arrangement of the spectrometer optical system divided into the second modification example, FIG. 6 shows the Fe,
FIG. 2 is a diagram showing an example of the relationship between the spectral line intensity of S and the distance between the sample and the spectrometer optical system. ]0... Laser irradiation system, 12... Laser emitting unit. 13... Laser light, 16... Sample, 18... Spectrometer system, 20... Spectrometer optical system, 22... Spectrometer, 3
2... Condensing lens, 33... Annular sample emission light, 3
4... Annular concave mirror, 36... Rothrich, 38
...Photodetector. 42...Plane mirror, 44...Beam splitter, 46
···convex lens. Agent Takaya Ron (and 1 other person) (11) Fig. 1 Fig. 2 Fig. 1:2::2-2---16 Fig. 3] 204- Fig. 4 Fig. 5

Claims (1)

【特許請求の範囲】[Claims] (リ レーザ発光部からレーザ光を照射したときに試料
表面から放出される光を、分光器により分光分析するよ
うにしたレーザ発光分光分析装置において、レーザ光を
試料表面に収束させると共に、試料表面から放出される
光を、レーザ光と同軸逆方向に伝播する円環状平行光線
とするための集光レンズと、少な(とも一部が前記レー
ザ光の外側に配置された、円環状平行光線化された試料
放出光を分光器に導(ための分光器光学系とを設は一集
光レンズと分光器光学系間におけるレーザ光及び試料放
出光が、互いに同軸、平行となるようにしたことを特徴
とするレーザ発光分光分析装置。
(In a laser emission spectrometer that uses a spectrometer to spectrally analyze the light emitted from the sample surface when a laser beam is irradiated from the laser emitting part, the laser beam is focused on the sample surface and a condensing lens for converting the light emitted from the laser beam into an annular parallel beam that propagates coaxially and in the opposite direction to the laser beam; A spectrometer optical system is installed to guide the sample emitted light to the spectrometer so that the laser beam and sample emitted light between the converging lens and the spectrometer optical system are coaxial and parallel to each other. A laser emission spectrometer featuring:
JP10286882A 1982-06-15 1982-06-15 Spectrochemical analysis device using laser light Pending JPS58219438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10286882A JPS58219438A (en) 1982-06-15 1982-06-15 Spectrochemical analysis device using laser light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10286882A JPS58219438A (en) 1982-06-15 1982-06-15 Spectrochemical analysis device using laser light

Publications (1)

Publication Number Publication Date
JPS58219438A true JPS58219438A (en) 1983-12-20

Family

ID=14338878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10286882A Pending JPS58219438A (en) 1982-06-15 1982-06-15 Spectrochemical analysis device using laser light

Country Status (1)

Country Link
JP (1) JPS58219438A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176625A2 (en) * 1984-10-05 1986-04-09 Kawasaki Steel Corporation Method of laser emission spectroscopical analysis of steel and apparatus therefor
JPS62135945U (en) * 1986-02-20 1987-08-27
JPS6318249A (en) * 1986-07-10 1988-01-26 Kawasaki Steel Corp Laser emission spectral analysis method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176625A2 (en) * 1984-10-05 1986-04-09 Kawasaki Steel Corporation Method of laser emission spectroscopical analysis of steel and apparatus therefor
JPS62135945U (en) * 1986-02-20 1987-08-27
JPS6318249A (en) * 1986-07-10 1988-01-26 Kawasaki Steel Corp Laser emission spectral analysis method and apparatus

Similar Documents

Publication Publication Date Title
EP0176625B1 (en) Method of laser emission spectroscopical analysis of steel and apparatus therefor
US3556659A (en) Laser-excited raman spectrometer
JP2891722B2 (en) Apparatus and method for analyzing elements of molten metal in a melting vessel
US11079333B2 (en) Analyzer sample detection method and system
JPS58174833A (en) Fluorescent luminous intensity meter
EP3748339B1 (en) Device for gas analysis using raman spectroscopy
US10760968B2 (en) Spectrometric measuring device
GB2158231A (en) Laser spectral fluorometer
JPS58219438A (en) Spectrochemical analysis device using laser light
US5055692A (en) System for measuring ambient pressure and temperature
US3669547A (en) Optical spectrometer with transparent refracting chopper
JP7486178B2 (en) Spectroscopic equipment
JPS58219439A (en) Spectrochemical analysis device using laser light
JPS58219436A (en) Spectrochemical analysis device using laser light
JPS58219437A (en) Spectrochemical analysis device using laser light
Berenblut et al. The modification of a Cary model 81 Raman spectrophotometer for use with a laser
JPS61129555A (en) Monitor with space resolution
WO2017181223A1 (en) Atomic emission spectrometer
US3493303A (en) Spectrograph alignment system
JPH10267846A (en) Laser emission/fetching optical apparatus
JPH0875651A (en) Method for emission spectrochemical analysis by laser
JPH11211613A (en) Method and apparatus for measuring inner loss coefficient
JP2006300671A (en) Spectroscopic detector
Kamogawa et al. A multi-reflection Raman cell for studying dilute aqueous solutions
JPS58219440A (en) Method for spectrochemical analysis using laser light