JPS61129555A - Monitor with space resolution - Google Patents

Monitor with space resolution

Info

Publication number
JPS61129555A
JPS61129555A JP25045484A JP25045484A JPS61129555A JP S61129555 A JPS61129555 A JP S61129555A JP 25045484 A JP25045484 A JP 25045484A JP 25045484 A JP25045484 A JP 25045484A JP S61129555 A JPS61129555 A JP S61129555A
Authority
JP
Japan
Prior art keywords
light
optical axis
mask
lens system
monitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25045484A
Other languages
Japanese (ja)
Inventor
Hideo Takei
日出夫 竹井
Koichi Terunuma
幸一 照沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP25045484A priority Critical patent/JPS61129555A/en
Publication of JPS61129555A publication Critical patent/JPS61129555A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/443Emission spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0411Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using focussing or collimating elements, i.e. lenses or mirrors; Aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0437Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using masks, aperture plates, spatial light modulators, spatial filters, e.g. reflective filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0448Adjustable, e.g. focussing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0229Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using masks, aperture plates, spatial light modulators or spatial filters, e.g. reflective filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0237Adjustable, e.g. focussing

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To attain precisely spectral analysis to irradiation in the discharge space of a plasma device by providing a mask which cuts off optical-axis light on the prolongation of an optical axis penetrating the discharge space of the plasma device on measurement points, and providing a movable condenser lens system behind it. CONSTITUTION:The plasma device is provided with a vacuum chamber, a counter electrode, and a vapor-deposited substrate and discharges dope gas, etc., by electric discharge. Measurement points X1-X5 are set on the prolongation of the optical axis of a plasma chamber and the condenser lens system B is provided on the optical axis. The condenser lens system B is provided with the mask 23, condenser lenses 3, and 4, a movable lens barrel 18, and a photodetection surface 21. Further, light from the measurement point X1 passes through the periphery of the mask 23 and forms an image on the photodetection surface 21. Further, light from the measurement point X2 forms an image by moving and adjusting the lens barrel 18. Thus, light beams from the measurement points X3-X5 form images by moving and adjusting the lens barrel 18 to adjust the arrival on the photodetection surface 21. Thus, the mask is provided on the optical axis, so light emission at various points in the discharge space is analyzed and plasma is controlled efficiently.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はプラズマ等の発光を伴うエラチングミ成膜その
他の反応装置の分光測定を行うモニターに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a monitor that performs spectroscopic measurements of a reaction device for forming an elastomy film or other reaction device that emits light from plasma or the like.

〔従来技術〕[Prior art]

プラズマ化学蒸着(CVD)など放電現象を利用したエ
ツチングや成膜方法は広く用いられており、また現在さ
かんに研究されている。放電空間の性質は例えば成膜に
おいては膜厚分布、組成、組成分布、成膜速度、その他
の特性に大きく影響するにも拘らず、放電空間の精密な
観察ないしモニタ一方法は未だ提案されていない。従来
のモニターとしてはプラズマCVD装置等に透光窓をつ
け、そこから放出されて来る光を分光することが行われ
ている程度に過ぎず、放電空間の平均的な挙動を知るこ
とができるに過ぎない。
Etching and film forming methods that utilize discharge phenomena, such as plasma chemical vapor deposition (CVD), are widely used and are currently being actively researched. Although the properties of the discharge space greatly affect the film thickness distribution, composition, composition distribution, film formation rate, and other characteristics during film formation, a method for precisely observing or monitoring the discharge space has not yet been proposed. do not have. Conventional monitors have only been used to attach light-transmitting windows to plasma CVD equipment, etc., and to separate the light emitted from the windows, making it difficult to see the average behavior of the discharge space. Not too much.

〔発明の目的〕[Purpose of the invention]

本発明は、プラズマCVD等のt2I展、エツチングそ
の他の反応装置における放電空間の精密な分光測定を行
うことができるモニターを提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a monitor capable of performing precise spectroscopic measurements of discharge spaces in t2I expansion, etching, and other reaction apparatuses such as plasma CVD.

〔発明の概要〕[Summary of the invention]

本発明のモニターは、放電現象を利用する装置の放電空
間の測定すべき点を貫く光軸の延長線上に整列し且つ焦
点位置が可変の集光レンズ系であって前、記光軸に沿っ
て入射する光を遮断するマスクを備えた集光レンズ系と
、そこからの光の分光手段と、分光光の電気信号化用変
換手段と、必要ならば表示手段とから成る。
The monitor of the present invention is a condensing lens system that is aligned on an extension of an optical axis passing through a point to be measured in a discharge space of a device that utilizes a discharge phenomenon, and whose focal position is variable. It consists of a condensing lens system equipped with a mask that blocks incident light, a means for separating light from the condensing lens system, a means for converting the separated light into an electrical signal, and, if necessary, a display means.

1   本発明のモニターは、放電空間の平均像ではな
くて、放電空間の所望の点の情報を得ることができる空
間分解能を持つものであるから、この種反応の研究及び
工程制御を精密かつ容易に行うことができる。
1. Since the monitor of the present invention has a spatial resolution that allows information on a desired point in the discharge space, rather than an average image of the discharge space, it allows for precise and easy research and process control of this type of reaction. can be done.

集光レンズ系の対物側には光学軸に沿って入射する光学
細光を完全に遮断する必要がある。これにより光学軸に
関しては現に焦点が合っている点の放電のみの情報ない
しデータを分光測定することができる。
It is necessary to completely block the narrow optical beam incident along the optical axis on the objective side of the condensing lens system. This makes it possible to spectroscopically measure information or data only about the discharge at the point that is currently in focus with respect to the optical axis.

〔実施例〕〔Example〕

第1図は本発明の第1実施例による放電空間用モニター
Aの全体図を示し、第2図は第1図の集光レンズ系Bの
詳細を示す。第2図は本発明の装置の別の応用例を示す
図である。
FIG. 1 shows an overall view of a discharge space monitor A according to a first embodiment of the present invention, and FIG. 2 shows details of the condenser lens system B of FIG. 1. FIG. 2 is a diagram showing another example of application of the device of the present invention.

第1図に示す例は、プラズマCVD成膜装Tにおけるプ
ラズマ空間(放電空間)を分光測定するモニターを示す
もので、成膜装置は真空チャンバー11、その内部に配
置された対向を極12.15、電極15の面に肯かれた
蒸着基板14を有し、RF放電などによりチャンバー内
にソースガス、ドープガスなどのプラズマ15を生じる
。例えばシリコン膜の成膜にはSiH4ガス、H,ガス
、或いはドープ用BAH@などをチャンバー内に導入し
て放電させる。放電空間の状態は例えばSiHの発光ス
ペクトル線416 nm % Hの発光スペクトル線6
56 nmなどの強度や空間分布、或いは各点の分光ス
ペクトルなどを測定すれば決定できる。
The example shown in FIG. 1 shows a monitor for spectroscopically measuring the plasma space (discharge space) in a plasma CVD film forming apparatus T. The film forming apparatus includes a vacuum chamber 11 and an opposing pole 12. 15. A vapor deposition substrate 14 is provided on the surface of the electrode 15, and a plasma 15 of source gas, dope gas, etc. is generated in the chamber by RF discharge or the like. For example, to form a silicon film, SiH4 gas, H gas, BAH@ for doping, or the like is introduced into the chamber and discharged. The state of the discharge space is, for example, SiH emission spectrum line 416 nm % H emission spectrum line 6
It can be determined by measuring the intensity and spatial distribution of 56 nm, etc., or the spectra of each point.

プラズマチャンバー11には透光窓16が形成されてお
り、その出射光は本発明のモニター人へ入射する。モニ
ターは窓16に接近して一一フミラー1.2を有し、光
を2つにスプリットして集光レンズ系Bへ導く。バー7
ミ2−は測定目的により1つのミラーでもよい。集光レ
ンズ系Bの光学軸は実効的にプラズマ空間の測定点を貫
く光軸にほぼ整列することになる。集光レンズ系Bは入
射側の光軸光を遮断するマスク(第2図・・・・・後述
)と、一対のレンズ3.4を主構成要素としている。光
は次に光ファイバー5によりモ/りνメータ6及び光学
フィルター7に導かれて分光された上、フォト!ルチプ
ライヤ−8により増幅され、フオ上ディテクター9によ
り電気信号に変換され、レコーダ1Gに記録され、或い
はプラズマ反応の第2図は集光レンズ系Bの詳細図で、
鏡筒17とその中に嵌合した可動鏡筒1Bとから成り、
可動鏡筒1Bはそのビン19及びつまみ20により鏡筒
17のス四ットを案内される。可動鏡筒17の内部には
一対のレンズ3.4が保持され、入射側には光学軸上に
マスク23が、出射側には光学軸上にオプティカルファ
イバー束5の受光端21が配置されている。
A light-transmitting window 16 is formed in the plasma chamber 11, and the emitted light is incident on the monitor of the present invention. The monitor has a mirror 1.2 close to the window 16, which splits the light into two parts and directs it to the condenser lens system B. bar 7
Mi2- may be a single mirror depending on the measurement purpose. The optical axis of the condenser lens system B will effectively be substantially aligned with the optical axis passing through the measurement point in the plasma space. The condensing lens system B mainly includes a mask (see FIG. 2, described later) that blocks the optical axis light on the incident side, and a pair of lenses 3.4. The light is then guided by an optical fiber 5 to a mo/meter 6 and an optical filter 7, where it is separated into spectra, and a photo! The plasma reaction is amplified by the multiplier 8, converted into an electrical signal by the photodetector 9, and recorded on the recorder 1G. Figure 2 is a detailed diagram of the condensing lens system B.
Consists of a lens barrel 17 and a movable lens barrel 1B fitted therein,
The movable lens barrel 1B is guided through the slot of the lens barrel 17 by its pin 19 and knob 20. A pair of lenses 3.4 are held inside the movable lens barrel 17, a mask 23 is arranged on the optical axis on the input side, and a light receiving end 21 of the optical fiber bundle 5 is arranged on the optical axis on the output side. There is.

使用にオイて、可動鏡筒18を調整してプラズマ空間中
の点Xlの像を受光端21に結像したとする。このとき
若しもマスク23がなければ同じ光軸上の点X2 、X
3 、X4 、Xs等の他の測定 点からの光もすべて
受光端21へ入射する。マスク23があるため、光軸上
の光はすべて遮断される。一方光軸外れの光は点Xlか
ら出たものは受光端に結像するが、点Xs−,Xs S
Xa 、Xsから出た光は受光端21へ到達しない。他
の光軸上から出た光も同様である。またその他の点から
出た光は受光!21へ到達するものがあるが、結像1、
介し1へ魚群しベルで鬼スー、ψ^11丁6専而へl射
した光は主として点x1の情報を与えることになる。
Assume that during use, the movable lens barrel 18 is adjusted to form an image of a point Xl in the plasma space on the light receiving end 21. At this time, if there is no mask 23, the points X2 and X on the same optical axis
All the light from other measurement points such as 3, X4, and Xs also enters the light receiving end 21. Because of the mask 23, all light on the optical axis is blocked. On the other hand, light off the optical axis that comes out from point Xl is imaged at the light receiving end, but points Xs-, Xs S
The light emitted from Xa and Xs does not reach the light receiving end 21. The same applies to light emitted from other optical axes. Also, light emitted from other points is received! There is something that reaches 21, but image formation 1,
A school of fish is sent to the fish 1, and the light that shines on the demon Sue at the bell and the ψ^11-cho 6 will mainly give information on the point x1.

点X1からの光は次いでモノクロメータ6及び(又は)
光学フィルタ7により分光され、次いで、フォトディテ
クター9で電気信号に変えられた上、レコーダーや成膜
条件の自動制御に用いられる。
The light from point X1 is then passed through monochromator 6 and/or
The light is separated by an optical filter 7, and then converted into an electrical signal by a photodetector 9, which is then used for a recorder and automatic control of film forming conditions.

なお分光手段は6.7の代りに任意のものを用いてよい
Note that any spectroscopic means may be used instead of 6.7.

他の点X2 ・・・・を測定するには可動鏡簡を調製す
る。
To measure other points X2..., prepare a movable mirror.

第3図は円筒電極を用いるプラズマCVD成膜装箇へ適
用された例を示し、円筒電極25と中心電極26との間
にプラズマ空間15が環状に形成されるようになってお
り、窓16からプラズマ空間内の点X 11X 2 、
X 3の点を任意に測定できる0 なお、プラズマ空間内の異った光軸に沿った諸点を測定
できるように、モニター人を移動自在に支持しても良い
。また、上の例で用いた八−7ミラーを省略して集光レ
ンズ系を直接窓16に整列させでも良い。
FIG. 3 shows an example applied to a plasma CVD film forming equipment using a cylindrical electrode, in which a plasma space 15 is formed in an annular shape between a cylindrical electrode 25 and a center electrode 26, and a window 16 is formed. From point X 11X 2 in plasma space,
X 3 points can be arbitrarily measured 0 Note that the monitor person may be supported in a movable manner so that various points along different optical axes in the plasma space can be measured. Furthermore, the 8-7 mirror used in the above example may be omitted and the condenser lens system may be directly aligned with the window 16.

次に、第4図及び第5図を参照して本発明の第4図は第
2図と同様な図で集光レンズ系Bの位置を変えて放電空
間中の点X1 s X2 s X3の像を検出器の受光
面21に結像させるようにしたことを示す。
Next, referring to FIGS. 4 and 5, FIG. 4 of the present invention is a diagram similar to FIG. This shows that the image is formed on the light receiving surface 21 of the detector.

一般にプラズマ表面単位面積から一方向(例えばX軸方
向)に放射されるエネルギーは、単位立体角当り、単位
時間(1)式で表現できる。
Generally, the energy radiated in one direction (for example, the X-axis direction) from a unit area of the plasma surface per unit solid angle per unit time can be expressed by equation (1).

A、発光分子あるいは原子のm準位からn準位n に遷移する確率 v   sm準位からn準位に遷移する際の光の周波数
n N   In準位の分子あるいは原子の密度xl 、x
2 、xlの各位置にレンズの焦点が合ったときに集光
される発光粒子の分布をそれぞれf”  、f”  、
f  とする。
A. Probability of transition from m level to n level n of a light-emitting molecule or atom v Frequency of light when transitioning from sm level to n level n N Density of molecule or atom at In level xl , x
2. The distribution of luminescent particles that are focused when the lens is focused at each position of xl is expressed as f'', f'', and
Let it be f.

(1)式中微小空間に対する遷移確率A 1及び−n 定波長についてだけ着目すれば Arnnhν、=α(定数)           (
2)を定数に仮定できる0 従ってXi % T−2、xlに対応する発光強度は各
1. 、I、 、13となる。
(1) In equation (1), transition probability A for the small space is 1 and -n. If we focus only on the constant wavelength, Arnnhν, = α (constant) (
2) can be assumed to be a constant. Therefore, the emission intensities corresponding to Xi % T-2 and xl are each 1. ,I, ,13.

ここで、 0口 Δ11=α(zfLnΔVn−、i f2njVn) 
  (4)を考える。
Here, 0 mouth Δ11=α(zfLnΔVn-, if2njVn)
Consider (4).

次に(4)−(5)を考えると、点x2に於ける光のエ
ネルギーに近似的に対応する。
Next, considering (4)-(5), it approximately corresponds to the energy of light at point x2.

部ち(6)式、実際には検出器の受光面に入射された強
度の演算(7) Δl2=I工+13 212        (7)を
施せば、位W X 2に於ける発光粒子の密度分布が求
められる。
By applying equation (6), which is actually a calculation of the intensity of light incident on the light receiving surface of the detector (7) Δl2=I + 13 212 (7), the density distribution of luminescent particles at position W x 2 can be obtained. is required.

〔作用効果〕[Effect]

以上のように、本発明によると放電空間内の所定の光軸
上の諸点、例えば成膜装置における基板面上の空間を発
光分析することが可能となった。
As described above, according to the present invention, it has become possible to perform luminescence analysis of various points on a predetermined optical axis in a discharge space, for example, a space on a substrate surface in a film forming apparatus.

これにより、プラズマの性質と密接に関連するプラズマ
ポテンシャルと発光の情報の相関関係が明らかになり、
プラズマの発生条件のパラメータが把握でき、或いは該
パラメータの自動制御を行うことができる。
This clarified the correlation between information on plasma potential and light emission, which is closely related to the properties of plasma.
The parameters of plasma generation conditions can be grasped, or the parameters can be automatically controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の分光測定モニターの構成図、第2図は
第1図の集光レンズ系の拡大詳細図、第5図は本発明の
他の適用例を示す図、及び第4図は本発明の原理説明図
である0図中主な部分は次の通りである。 A:モニター B:集光レンズ系 1.2:ハーフミラ− 3,4:集光レンズ 5:光ファイバー 6:モノクロメータ− 7:光学フィルター 8:フ才トマルチプライヤ− 9;7牙トデイテクター 10ニレコーダー iy:@簡 18:可動鏡簡 21:受光面 25:マスク XI 、X2 、X3 、X4 、X@ :測定点第1
図 第3図 L         J
FIG. 1 is a block diagram of the spectroscopic measurement monitor of the present invention, FIG. 2 is an enlarged detailed view of the condensing lens system of FIG. 1, FIG. 5 is a diagram showing another application example of the present invention, and FIG. The main parts in Figure 0, which is a diagram explaining the principle of the present invention, are as follows. A: Monitor B: Condensing lens system 1.2: Half mirror 3, 4: Condensing lens 5: Optical fiber 6: Monochromator 7: Optical filter 8: Fold multiplier 9; 7-tooth detector 10 recorder iy: @Simplified 18: Movable mirror 21: Light receiving surface 25: Mask XI, X2, X3, X4, X@: Measurement point 1
Figure 3 L J

Claims (1)

【特許請求の範囲】 1、プラズマ等の放電を伴う成膜、エッチング、その他
の反応装置の放電空間を分光測定するモニターにおいて
、前記放電空間の測定点を貫く光軸の延長線上に整列し
該延長線方向に可動の集光レンズ系であつて入射側の光
軸光を遮断するマスクを有し且つ出射側に受光端を有す
る集光レンズ系と、前記受光端からの光を分光する手段
と、前記分光する手段からの光を電気信号に変換する手
段とから成る、空間分解能を持つモニター。 2、集光レンズ系は異つた光軸の延長線上に整列しうる
ように移動可能な前記第1項記載のモニター。 3、集光レンズ系は固定鏡簡とこれに摺動する可動鏡簡
とから成り、可動鏡簡はマスクと集光レンズと受光端と
を有し、前記集光レンズから計つて一定の放電空間内の
点を前記受光点へ結像させるようになつている、前記第
1項または第2項記載のモニター。
[Scope of Claims] 1. In a monitor that spectroscopically measures a discharge space of a film forming, etching, or other reaction device that involves discharge of plasma, etc., a monitor that is aligned on an extension of an optical axis passing through a measurement point of the discharge space and that corresponds to A condensing lens system that is movable in the direction of the extension line and has a mask that blocks optical axis light on the incident side and has a light receiving end on the output side, and a means for separating the light from the light receiving end. and means for converting light from the spectroscopic means into electrical signals, the monitor having spatial resolution. 2. The monitor according to item 1 above, wherein the condenser lens system is movable so as to be aligned on extensions of different optical axes. 3. The condensing lens system consists of a fixed mirror and a movable mirror that slides on the fixed mirror. The movable mirror has a mask, a condensing lens, and a light receiving end, and a constant discharge is generated from the condensing lens. 3. The monitor according to claim 1 or 2, wherein a point in space is imaged onto the light receiving point.
JP25045484A 1984-11-29 1984-11-29 Monitor with space resolution Pending JPS61129555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25045484A JPS61129555A (en) 1984-11-29 1984-11-29 Monitor with space resolution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25045484A JPS61129555A (en) 1984-11-29 1984-11-29 Monitor with space resolution

Publications (1)

Publication Number Publication Date
JPS61129555A true JPS61129555A (en) 1986-06-17

Family

ID=17208114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25045484A Pending JPS61129555A (en) 1984-11-29 1984-11-29 Monitor with space resolution

Country Status (1)

Country Link
JP (1) JPS61129555A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138833A (en) * 1988-11-18 1990-05-28 Mitsubishi Motors Corp Fire position detector within engine combustion chamber
JPH0272961U (en) * 1988-11-22 1990-06-04
JPH04303745A (en) * 1990-12-26 1992-10-27 Internatl Business Mach Corp <Ibm> Method and apparatus for detecting interference- light radiation
WO2013035408A1 (en) * 2011-09-09 2013-03-14 シャープ株式会社 Particle detector
CN105824041A (en) * 2015-01-28 2016-08-03 延世大学校产学协力团 Apparatus for optical emission spectroscopy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138833A (en) * 1988-11-18 1990-05-28 Mitsubishi Motors Corp Fire position detector within engine combustion chamber
JPH0272961U (en) * 1988-11-22 1990-06-04
JPH04303745A (en) * 1990-12-26 1992-10-27 Internatl Business Mach Corp <Ibm> Method and apparatus for detecting interference- light radiation
WO2013035408A1 (en) * 2011-09-09 2013-03-14 シャープ株式会社 Particle detector
US8901512B2 (en) 2011-09-09 2014-12-02 Sharp Kabushiki Kaisha Particle detector
CN105824041A (en) * 2015-01-28 2016-08-03 延世大学校产学协力团 Apparatus for optical emission spectroscopy
US10408680B2 (en) 2015-01-28 2019-09-10 Industry-Academic Cooperation Foundation, Yonsei University Apparatus for optical emission spectroscopy

Similar Documents

Publication Publication Date Title
JP2859159B2 (en) Method and apparatus for in-situ real-time observation of the morphology and thickness of a localized area of a surface layer of a thin-layer structure
JP3193265B2 (en) Plasma etching equipment
JP7416900B2 (en) Apparatus and method for wavelength-resolved and angle-resolved cathodoluminescence
US5569916A (en) Electron spectroscopy apparatus
US4630925A (en) Compact temporal spectral photometer
US4182574A (en) Arrangement for carrying out laser spectral analysis
CN114486840B (en) Cathode fluorescence spectrum and high-contrast imaging device and imaging method thereof
JPS61129555A (en) Monitor with space resolution
JPH085471A (en) Method and device for measuring stress
US20220157591A1 (en) Laser coaxial ion excitation device
CN107014892B (en) A kind of micron order spatial discrimination mass spectrum imaging system based on VUV LASER
Freeman et al. Raman spectrometry with high sensitivity
JP3101707B2 (en) Raman scattered light enhancement device
Bowman et al. A single photon timing instrument that covers a broad temporal range in the reversed timing configuration
Olesik et al. An instrumental system for simultaneous measurement of spatially resolved electron number densities in plasmas
Orsitto et al. Thomson scattering system on FTU tokamak: Calibration, operation, resultsa
JPH01112122A (en) Extremely weak light spectroscopic device
KR20030050098A (en) Plasma measuring instrument with optical emission spectrometer
CN212625480U (en) Laser coaxial ion excitation device
JPH10104073A (en) Plasma measuring device
JPS6013460B2 (en) plasma monitor
Akent'ev et al. Spectral diagnostics for plasma research at the GOL-3 facility
Kantsyrev et al. New EUV and x-ray optical instrumentation for hot plasma imaging, polarimetry, and spectroscopy, using glass capillary converters and multilayer mirrors
JP2001004544A (en) Raman spectrometric apparatus
JPH11149000A (en) Energy measurement device of laser plasma soft x-ray