JPS58219439A - Spectrochemical analysis device using laser light - Google Patents

Spectrochemical analysis device using laser light

Info

Publication number
JPS58219439A
JPS58219439A JP10286982A JP10286982A JPS58219439A JP S58219439 A JPS58219439 A JP S58219439A JP 10286982 A JP10286982 A JP 10286982A JP 10286982 A JP10286982 A JP 10286982A JP S58219439 A JPS58219439 A JP S58219439A
Authority
JP
Japan
Prior art keywords
sample
light
spectrometer
laser
spectroscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10286982A
Other languages
Japanese (ja)
Inventor
Kozo Sumiyama
角山 浩三
Zenji Ohashi
大橋 善治
Yasuko Koshiyu
泰子 古主
Motoyuki Konishi
小西 元幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10286982A priority Critical patent/JPS58219439A/en
Publication of JPS58219439A publication Critical patent/JPS58219439A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To make it possible to set the distance between the surface of a sample and a spectroscope arbitrarily, by providing a condenser lens, ring shaped concave and convex mirrors, and a spectroscope optical system, and making laser light and light from a sample in parallel on the same axis between the concave and convex mirrors and the spectroscope optical system. CONSTITUTION:A condenser lens 32 converges laser light 13 on the surface of a sample. A ring shaped concave mirror 34 and a convex mirror 36 make light 37 emitted from the sample to be a ring shaped parallel light beam, which is propagated in the reverse direction on the same axis. A ring shaped concave mirror 40 guides the light 37 from the sample to a spectroscope 22. A spectroscope optical system 20 includes expandable mirror tubes 46 and 46a. The laser light 13 and the light 37 from the sample are made to be in parallel on the same axis between the ring shaped concave and convex mirrors 34 and 36 and the spectroscope optical system 20. In this constitution, the light 37 from the sample is efficiently guided to a spectroscope 22 by the adjustment of the mirror tubes 46 and 46a, regardless of the length of the distance between the sample 16 and the spectroscope 22. Thus the highly accurate, general purpose device can be obtained.

Description

【発明の詳細な説明】 本発明は、レーザ発光分光分析装置に係り、特に、溶銑
、溶鋼、溶融スラグの直接分析に用いるのに好適な、レ
ーザ発光部からレーザ光を照射したときに試料表面から
放出される光を1分光器により分光分析するようにした
レーザ発光分光分析装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laser emission spectrometer, which is suitable for direct analysis of hot metal, molten steel, and molten slag. The present invention relates to an improvement of a laser emission spectrometer that spectrally analyzes light emitted from a laser beam using a single spectroscope.

試料表面に強力なパルス状のレーザ光を照射すると1局
所的にエネルギが注入された状態となり、溶解、蒸発が
起り、更に蒸気が励起されてプラズマ化し、光、を放出
するようになる。この光を分光器で分散し、目的元素の
スペクトル線強度を、写真フィルム、光電子増倍管、フ
ォトダイオード等によp測定することによって、目的元
素の含有量を求めるようにしたレーザ発光分光分析装置
が知られている。
When a strong pulsed laser beam is irradiated onto the surface of a sample, energy is locally injected, causing melting and evaporation, and the vapor is further excited to become plasma and emit light. Laser emission spectrometry that determines the content of the target element by dispersing this light with a spectrometer and measuring the spectral line intensity of the target element using photographic film, photomultiplier tubes, photodiodes, etc. The device is known.

このようなレーザ光を励起源とするレーザ発光分光分析
装置に用いる光学系としては、第1図に示す如く、レー
ザ発光部12.及び、該レーザ発光部12から照射され
たレーザ光を試料16の表面に収束されるための集光レ
ンズ14からなるレーザ照射系10と、試料16の表面
から放出される光を分光器22に導くための分光器光学
系20%及び5分光器22からなる分光器系18とを別
々の軸上に配設し、その交差する点に試料16f設置す
るものと、第2図に示す如く、レーザ発光部12、該レ
ーザ発光部12から照射されるレーザ光の方向を変換す
るだめの直角プリズム24、該直角プリズム24により
方向変換されたレーザ光を溶鋼等から々る試料16の表
面に収束させるためのレーザ光用の集光レンズ14から
々るレーザ照射系10と、試料16の表面から放出され
る光をレーザ光と同軸逆方向に伝播する光とするための
試料放出光用の集光レンズ26.試料放出光を分光器(
図示省略)に導くための、中央部にレーザ光透過部が形
成されたビームスブリック28゜及び、分光器からまる
分光器系18とを有1〜、レーザ照射系1()と分光器
系18を途中から同軸とするものが開発されている。前
者によれば、平滑な表面を持つ試料16には有効である
が、試料16の置く位置を厳密に制御する必要がある。
As shown in FIG. 1, an optical system used in a laser emission spectrometer using laser light as an excitation source includes a laser emission section 12. A laser irradiation system 10 includes a condenser lens 14 for converging the laser light emitted from the laser emitting unit 12 onto the surface of the sample 16, and a spectroscope 22 for transmitting the light emitted from the surface of the sample 16. As shown in FIG. 2, a spectrometer optical system 20% for guiding and a spectrometer system 18 consisting of five spectrometers 22 are arranged on separate axes, and the sample 16f is installed at the point where they intersect. A laser emitting section 12, a right-angle prism 24 for changing the direction of the laser beam emitted from the laser emitting section 12, and a rectangular prism 24 that converges the laser beam whose direction has been changed by the right-angle prism 24 onto the surface of a sample 16 made of molten steel or the like. A laser irradiation system 10 includes a condensing lens 14 for the laser beam, and a condenser for the sample emitted light to convert the light emitted from the surface of the sample 16 into light that propagates coaxially and in the opposite direction to the laser beam. Optical lens 26. The sample emitted light is collected using a spectrometer (
A beam block 28° having a laser beam transmitting part formed in the center thereof and a spectrometer system 18 consisting of a spectrometer are included to guide the laser beam to a laser beam (not shown). Somewhere along the way, coaxial devices have been developed. The former method is effective for the sample 16 having a smooth surface, but requires strict control of the position where the sample 16 is placed.

又、後者によれば、試料16の位置が若干変動しても。Moreover, according to the latter, even if the position of the sample 16 changes slightly.

試料16から放出された光を分光器22に導くことがで
きるものである。しかしガから、いずれの光学系におい
ても、試料16と分光器22間の距離が変化すると、試
料16から放出された光を効率よく分光器22に導くこ
とができず、試料16と分光器22間の距離全任意に設
定することができ彦いという欠点を有していた。
The light emitted from the sample 16 can be guided to the spectrometer 22. However, in any optical system, if the distance between the sample 16 and the spectrometer 22 changes, the light emitted from the sample 16 cannot be efficiently guided to the spectrometer 22, and the distance between the sample 16 and the spectrometer 22 changes. The disadvantage is that the distance between them cannot be set arbitrarily.

本発明は、前記従来の欠点を解消するべくなされたもの
で、試料表面と分光器間の距離を任意に設定することが
でき、従って、工場内等の分光器の設置に対し種々の制
約のある場所にも適用することができる。汎用性の高い
レーザ発光分光分析装置を提供することを目的とする。
The present invention was made to solve the above-mentioned conventional drawbacks, and the distance between the sample surface and the spectrometer can be set arbitrarily, and therefore, various restrictions on the installation of the spectrometer in a factory etc. can be set. It can be applied anywhere. The purpose is to provide a highly versatile laser emission spectrometer.

本発明は、レーザ発光部からレーザ光を照射したときに
試料表面から放出される光を、分光器により分光分析す
るようにしたレーザ発光分光分析装置において、レーザ
光を試料表面に収束させるための集光レンズと、該集光
レンズの外側に配設された。試料表面から放出される光
をレーザ光と同軸逆方向に伝播する円環状平行光線とす
るための1円環状凹面鏡及び円環状凸面鏡と、少なくと
の分光器光学系とを設け、集光レンズ、円環状凹面鏡及
び円環状凸面鏡と分光器光学系間におけるレーザ光及び
試料放出光が、互いに同軸、平行となるようにして、前
記目的を達成1〜だものである。
The present invention provides a laser emission spectrometer that uses a spectrometer to spectrally analyze light emitted from a sample surface when a laser beam is irradiated from a laser emitting part, and a method for converging the laser beam on the sample surface. A condenser lens and a condenser lens disposed outside the condenser lens. A concave annular mirror and a convex annular mirror for converting the light emitted from the sample surface into an annular parallel beam propagating coaxially and in the opposite direction to the laser beam, and at least a spectrometer optical system are provided, and a condenser lens, The above objects are achieved by making the laser beam and sample emitted light between the annular concave mirror and the annular convex mirror and the spectrometer optical system coaxial and parallel to each other.

以下図面を参照して2本発明の実施例を詳細に目兄明す
る。
Hereinafter, two embodiments of the present invention will be explained in detail with reference to the drawings.

本実施例は、第3図に示す如く、レーザ照射系10のレ
ーザ発光部12からレーザ光を照射したときに、試料1
6の表面から放出される光を、分光器系18の分光器2
2により分光分析するようにしたレーザが発光分光分析
装置において、前記レーザ発光部12から照射されたレ
ーザ光13の照射方向を変えるための直角プリズム24
と、該直角プリズム24出側のレーザ光13を試料16
の表面に収束させるための集光レンズ32と、該集光レ
ンズ32の外側に配設された、試料16の表面から放出
される光をレーザ光13と同軸逆方向に伝播する円環状
平行光線37とするための、円環状凹面鏡34及び円環
状凸面鏡36と、前記レーザ13の外側に配置された1
円環状子行光線化された試料放出光37?:分光器22
の入口スリット42に結像するための、円環状凹面鏡4
0からなる分光器光学系20と、分光器22と、該分光
器22の後方に配置された1分光器22により分光され
たスペクトル線の強度を検出するための光検出器44と
、前記集光レンズ321円環状凹面鏡34及び円環状凸
面鏡36と分光器光学系20間の距離を可変とするため
の、中間部にすり合せ部46aが形成された鏡筒46と
、を設けたものである。
In this embodiment, as shown in FIG.
The light emitted from the surface of 6 is transmitted to spectrometer 2 of spectrometer system 18.
2, a right-angle prism 24 for changing the irradiation direction of the laser beam 13 emitted from the laser emitting section 12 is used in an emission spectrometer using a laser for spectroscopic analysis.
Then, the laser beam 13 on the output side of the right angle prism 24 is directed to the sample 16.
a condenser lens 32 for converging the light onto the surface of the sample 16; and an annular parallel light beam disposed outside the condenser lens 32 that propagates the light emitted from the surface of the sample 16 coaxially with the laser beam 13 in the opposite direction. 37, an annular concave mirror 34 and an annular convex mirror 36, and 1 disposed outside the laser 13.
Sample emission light 37 converted into circular consonant rays? :Spectrometer 22
an annular concave mirror 4 for imaging into an entrance slit 42 of the
a spectrometer optical system 20 consisting of a spectrometer 20, a spectrometer 22, a photodetector 44 for detecting the intensity of the spectral lines separated by the spectrometer 22 disposed behind the spectrometer 22; The optical lens 321 is provided with a lens barrel 46 in which a mating portion 46a is formed in the intermediate portion to make the distance between the annular concave mirror 34 and the annular convex mirror 36 and the spectrometer optical system 20 variable. .

前記レーザ発光部12は、所定出力、パルス幅のパルス
状レーザ光を放出するもので1例えば。
The laser emitting unit 12 emits a pulsed laser beam having a predetermined output and pulse width, for example.

波長0.69μmのルビーレーザ、波長1.05乃至1
.06μmの赤外線レーザが用いられている。このレー
ザ発光部12にモードロック機構を組み込んで、レーザ
光13のモードを、ガウス分布型のT E M o o
モードに固定することが望ましい。
Ruby laser with wavelength 0.69 μm, wavelength 1.05 to 1
.. A 0.6 μm infrared laser is used. A mode locking mechanism is incorporated into this laser emitting unit 12, and the mode of the laser beam 13 is adjusted to a Gaussian distribution type T E M o o
It is desirable to fix the mode.

前記直角プリズム24は、レーザ照射系10と分光器系
18の光軸’Th一致させるためのもので。
The right angle prism 24 is for aligning the optical axes 'Th of the laser irradiation system 10 and the spectrometer system 18.

レーザ発光部12を試料16の表面に対して垂直方向に
設置〔7た場合には、省略することができる。
If the laser emitting section 12 is installed in a direction perpendicular to the surface of the sample 16, this step can be omitted.

前記集光レンズ32ば、レーザ光13を、その焦点にお
いた試料16の表面に収束するものである。
The condensing lens 32 converges the laser beam 13 onto the surface of the sample 16 at its focal point.

前記円環状凸面鏡36は1円環状凹面鏡34の内径より
内側、集光レンズ32の外側に同軸配置されている。こ
の円環状凹面@34と円環状凸面鏡36の曲率は、試料
16から放出された光が。
The annular convex mirror 36 is coaxially arranged inside the inner diameter of the one annular concave mirror 34 and outside the condenser lens 32 . The curvatures of the annular concave surface @ 34 and the annular convex mirror 36 are such that the light emitted from the sample 16 is the same.

レーザ光13と同軸逆方向に平行に伝えられるような組
合せとされている。
The combination is such that it can be transmitted coaxially with the laser beam 13 and in parallel in the opposite direction.

前記分光器光学系20の円環状凹面鏡40は。The annular concave mirror 40 of the spectrometer optical system 20 is.

レーザ光13の中心軸近傍に配設され、レーザ光13に
よって、背後から照射されないように設置されている。
It is arranged near the central axis of the laser beam 13 and is installed so as not to be irradiated with the laser beam 13 from behind.

この円環状凹面鏡40は、試料16から放出され、円環
状凹面鏡34及び円環状凸面鏡36で平行光線とされた
光37を、分光器22の入口スリット42に結像する曲
率を有している。
This annular concave mirror 40 has a curvature that images the light 37 emitted from the sample 16 and made into parallel rays by the annular concave mirror 34 and the annular convex mirror 36 onto the entrance slit 42 of the spectrometer 22.

尚、第3図に示す実施例においては5円環状凹面鏡40
を1枚使用していたが1例えば第4図に示す第1変形例
の如く1円環状凹面境40と平面鏡48を組合せて1円
環状凹面鏡40のみをレーザ光13の光軸近傍に設置す
るようにしたり、又。
In the embodiment shown in FIG. 3, a five-ring concave mirror 40 is used.
For example, as in the first modified example shown in FIG. 4, one annular concave mirror 40 and a plane mirror 48 are combined, and only one annular concave mirror 40 is installed near the optical axis of the laser beam 13. And so on.

測定するスペクトルの波長によっては、第5図に示す第
2変形例の如く、ビームスプリッタ50と凸レンズ52
”e組合せたりすることも可能である。
Depending on the wavelength of the spectrum to be measured, a beam splitter 50 and a convex lens 52 may be used, as in the second modification shown in FIG.
It is also possible to combine them.

前記集光レンズ32と1円環状凹面鏡34及び円環状凸
面鏡36の組合せからなる集光系は、必らずしも同一焦
点距離とする必要はなく、目的により、適当な値のレン
ズ、鏡の組合せ?用いれば良い。特に、レーザ照射によ
って放出されるプラズマが試料面より大きく上部に拡大
している場合には、この2つの光学系を別々の焦点距離
として。
The condensing system consisting of the condensing lens 32, one annular concave mirror 34, and one annular convex mirror 36 does not necessarily have to have the same focal length, and depending on the purpose, a lens or mirror of an appropriate value may be used. combination? Just use it. In particular, if the plasma emitted by laser irradiation expands above the sample surface, these two optical systems should be set at different focal lengths.

プラズマからの光をより正確に平行光線とすることがで
きる。
Light from plasma can be made into parallel light beams more accurately.

前記光検出器44としては5例えば、光電子増倍管、フ
ォトダイオード、写真フィルム等が用いられてい石。
As the photodetector 44, for example, a photomultiplier tube, a photodiode, a photographic film, etc. are used.

前記鏡筒46には、真空紫外領域のスペクトルを検出す
る場合に備えて、試料16〜集光レンズ32間をアルゴ
ン雪囲気とし、集光レンズ32、円環状凹面@34.円
環状凸面鏡36間を真空シールし、集光レンズ32〜分
光器22間を真空とするか或いは試料16〜分光器22
間全すべてアルゴン傅囲気とするための、アルゴンガス
導入部46b、レーザ光導入部をシールする光学力ゝ′
シラス4、分光器22の入ロスリット42後段をシール
する。 CaF、  等から成る真空シールガラス56
が設けられている。
In preparation for detecting a spectrum in the vacuum ultraviolet region, the lens barrel 46 has an argon atmosphere between the sample 16 and the condenser lens 32, and has an annular concave surface @34. A vacuum seal is applied between the annular convex mirror 36 and a vacuum is created between the condenser lens 32 and the spectrometer 22, or between the sample 16 and the spectrometer 22.
Optical force for sealing the argon gas introduction part 46b and the laser light introduction part so that the entire space is surrounded by argon.
The rear stage of the entrance loss slit 42 of the white glass 4 and the spectroscope 22 is sealed. Vacuum sealing glass 56 made of CaF, etc.
is provided.

以下作用を説明する。The action will be explained below.

まず、集光レンズ325分光器光学系20を含む鏡筒4
6の中間すり合せ部46a’Th調整し、試料16が集
光レンズ32の焦点にくるように設定する。このとき、
試料16は、同時に円環状凹面鏡34及び円環状凸面鏡
36からなる集光系の焦点に自動的に到達する。次に、
レーザ発光部12を作動させ、所定の強度、パルス幅の
レーザ光13を放出させる。すると、レーザ光13は、
直角プリズム24を介して集光レンズ32に導かれ、試
料16の表面に収束される。これにより、試料16のレ
ーザ照射領域は瞬時にプラズマ化し、光を放出する。こ
の試料放出光は、円環状凹面鏡34及び円環状凸面鏡3
6の組合せにより円環状平行光線37となり5分光器光
学系20の円環状凹面鏡40により分光器22の入口ス
リット42に導かれる。分光器22の内部では、回折格
子、プリズム等により光が分散され、測定目的元素のス
ペクトル線強度が光検出器44で読取られ、通常の方法
によりデータ処理され、分析値に換算される。
First, the lens barrel 4 including the condenser lens 325 and the spectrometer optical system 20
6 is adjusted so that the sample 16 is at the focal point of the condensing lens 32. At this time,
At the same time, the sample 16 automatically reaches the focal point of a condensing system consisting of an annular concave mirror 34 and an annular convex mirror 36. next,
The laser emitting unit 12 is activated to emit laser light 13 with a predetermined intensity and pulse width. Then, the laser beam 13 becomes
The light is guided through a right-angle prism 24 to a condensing lens 32 and focused on the surface of the sample 16. As a result, the laser irradiated area of the sample 16 instantly turns into plasma and emits light. This sample emitted light is transmitted to the annular concave mirror 34 and the annular convex mirror 3.
The combination of 6 produces an annular parallel beam 37, which is guided to the entrance slit 42 of the spectrometer 22 by the annular concave mirror 40 of the 5 spectrometer optical system 20. Inside the spectrometer 22, light is dispersed by a diffraction grating, prism, etc., and the spectral line intensity of the element to be measured is read by a photodetector 44, data processed by a conventional method, and converted into an analytical value.

本実施例により、レーザ発光部12から放出された、波
長1.06μm1出力2J%パルス幅15nsecのレ
ーザ光13を1口径30閣、焦点距離150簡の集光レ
ンズ32で収束し、試料16から放出された光を、外円
の半径が50m、内円の半径が35 amの円環状凹面
鏡34で集光し、外円の半径が40咽、内円の半径が3
5+mの円環状凸面鏡36で平行光線37として、  
Fee二元合金から々る試料16から敢瓜された光の、
271.4nmのFeスペクトル線強度、及び、193
.OnmのCスペクトル線強度を、試別16〜分光器光
学系20間の距離を変えて測定したところ、第6図に示
すよう力結果が得られた。尚、試料16と真空シールガ
ラス56の間はアルゴン喫囲気としてイル。
According to this embodiment, the laser beam 13 with a wavelength of 1.06 μm, 1 output, 2 J%, and a pulse width of 15 nsec, emitted from the laser emitting unit 12, is converged by the condenser lens 32 with an aperture of 30 mm and a focal length of 150 mm, and the laser beam 13 is emitted from the sample 16. The emitted light is collected by an annular concave mirror 34 with an outer circle radius of 50 m and an inner circle radius of 35 am.
As a parallel ray 37 with a 5+m annular convex mirror 36,
The light emitted from sample 16 from the Fee binary alloy,
Fe spectral line intensity of 271.4 nm and 193
.. When the Onm C spectral line intensity was measured by changing the distance between the sample 16 and the spectrometer optical system 20, the force results shown in FIG. 6 were obtained. The space between the sample 16 and the vacuum seal glass 56 is filled with argon.

第6図から明らかな如く、レーザ出力が約10%変動し
ていることを考慮すると、いずれのスペクトル線強度も
、分光器と材料間の距離に拘らず、はぼ一定の値とがっ
ていることがわかる。
As is clear from Figure 6, considering that the laser output fluctuates by about 10%, the intensity of all spectral lines is approximately constant, regardless of the distance between the spectrometer and the material. I understand.

以上説明した通り、本発明によれば、試料と分光器間の
距離に拘らず、精度の高い測定を行うことができる。従
って、工場内等の分光器の設置に対し種々の制約のある
場所にも適用することができ、汎用性を高めることがで
きるという優れた効果を有する。
As explained above, according to the present invention, highly accurate measurements can be performed regardless of the distance between the sample and the spectrometer. Therefore, it can be applied to places where there are various restrictions on the installation of a spectrometer, such as in a factory, and has the excellent effect of increasing versatility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のレーザ発光分光分析装置の一例におけ
るレーザ照射系と分光器系の配置ヲ示す正面図、第2図
は、同じく他の例のレーザ照射系と分光器系の配置を示
す断面図、第3図は、木兄(11) 明に係るレーザ発光分光分析装置の実施例の構成を示す
断面図、第4図は、第1変形例における分光器光学系の
配置を示す正面図、第5図は、同じく第2変形例におけ
る分光器光学系の配置を示す正面図、第6図は、前記実
施例により測定された。 Fe、Cのスペクトル線強度と分光器光学系間の距離の
関係の一例を示す線図である。 10・・・レーザ照射系、12・・・レーザ発光部。 13・・・レーザ光、16・・・試料、18・・・分光
器系。 20・・・分光器光学系、22・・・分光器、32・・
・集光レンズ、34・・・円環状凹面鏡、36・・・円
環状凸面鏡、37・・・試料放出光、40・・・円環状
凹面鏡、42・・・入口′スリット、44・・・光検出
器、46・・・鏡筒、46a・・・すり合せ部、48・
・・平面鏡、50・・・ビームスプリッタ、52・・・
凸レンズ。 (12) 第4図 第6図 □距萬怪(m)
Fig. 1 is a front view showing the arrangement of the laser irradiation system and spectrometer system in an example of a conventional laser emission spectrometer, and Fig. 2 shows the arrangement of the laser irradiation system and spectrometer system in another example. 3 is a sectional view showing the configuration of an embodiment of the laser emission spectrometer according to Kinoi (11), and FIG. 4 is a front view showing the arrangement of the spectrometer optical system in the first modification. FIG. 5 is a front view showing the arrangement of the spectrometer optical system in the second modified example, and FIG. 6 is a front view showing the arrangement of the spectrometer optical system in the second modification. FIG. 2 is a diagram showing an example of the relationship between the spectral line intensities of Fe and C and the distance between spectrometer optical systems. 10... Laser irradiation system, 12... Laser emission section. 13... Laser light, 16... Sample, 18... Spectrometer system. 20... Spectrometer optical system, 22... Spectrometer, 32...
- Condensing lens, 34... Annular concave mirror, 36... Annular convex mirror, 37... Sample emission light, 40... Annular concave mirror, 42... Entrance' slit, 44... Light Detector, 46... Lens barrel, 46a... Grinding part, 48...
...Plane mirror, 50...Beam splitter, 52...
convex lens. (12) Figure 4 Figure 6 □ Distant Mankai (m)

Claims (1)

【特許請求の範囲】[Claims] (1)  レーザ発光部からレーザ光を照射したときに
試料表面から放出される光を1分光器によシ分光分析す
るようにしたレーザ発光分光装置において、レーザ光を
試料表面に収束させるための集光レンズと、該集光レン
ズの外側に配設された。試料表面から放出される光をレ
ーザ光と同軸逆方向に伝播する円環状平行光線とするた
めの、円環状凹面鏡及び円環状凸面鏡と、少なくとも一
部が前記レーザ光の外側圧配置された、円環状平行光線
化された試料放出光を分光器に導くための分光器光学系
とを設け、集光レンズ、円環状凹面鏡及び円環状凸面鏡
と分光器光学系間におけるレーザ光及び試料放出光が、
互いに同軸、平行となるようにしたことを特徴とするレ
ーザ発光分光分析装置。
(1) In a laser emission spectrometer that spectrally analyzes the light emitted from the sample surface when a laser beam is irradiated from the laser emitting part using a single spectroscope, there is a method for focusing the laser beam on the sample surface. A condenser lens and a condenser lens disposed outside the condenser lens. a circular concave mirror and a circular convex mirror for converting the light emitted from the sample surface into circular parallel light rays propagating coaxially and in the opposite direction to the laser beam; A spectrometer optical system is provided for guiding sample emitted light converted into an annular parallel beam to a spectroscope, and the laser beam and sample emitted light between the condenser lens, annular concave mirror, and annular convex mirror and the spectrometer optical system are
A laser emission spectrometer characterized by being coaxial and parallel to each other.
JP10286982A 1982-06-15 1982-06-15 Spectrochemical analysis device using laser light Pending JPS58219439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10286982A JPS58219439A (en) 1982-06-15 1982-06-15 Spectrochemical analysis device using laser light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10286982A JPS58219439A (en) 1982-06-15 1982-06-15 Spectrochemical analysis device using laser light

Publications (1)

Publication Number Publication Date
JPS58219439A true JPS58219439A (en) 1983-12-20

Family

ID=14338904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10286982A Pending JPS58219439A (en) 1982-06-15 1982-06-15 Spectrochemical analysis device using laser light

Country Status (1)

Country Link
JP (1) JPS58219439A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144646A (en) * 1984-01-07 1985-07-31 Agency Of Ind Science & Technol Device for observing and analyzing cathode luminescence
CN111257233A (en) * 2020-03-24 2020-06-09 河南中原光电测控技术有限公司 Extinction device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144646A (en) * 1984-01-07 1985-07-31 Agency Of Ind Science & Technol Device for observing and analyzing cathode luminescence
CN111257233A (en) * 2020-03-24 2020-06-09 河南中原光电测控技术有限公司 Extinction device

Similar Documents

Publication Publication Date Title
US3556659A (en) Laser-excited raman spectrometer
US6795177B2 (en) Multipass sampling system for Raman spectroscopy
WO2018082136A1 (en) Scanning type laser-induced spectral plane range analysis and detection system
US5803606A (en) Surface photothermic testing device
EP3748339B1 (en) Device for gas analysis using raman spectroscopy
US4691110A (en) Laser spectral fluorometer
WO2019116461A1 (en) Far-infrared light source and far-infrared spectrometer
JPS59145930A (en) Small-sized time spectral photometer
JPS5837545A (en) Spectrofluoro-measuring device
JP3003708B2 (en) Surface analyzer
EP0059836A1 (en) Optical beam splitter
JPS58219439A (en) Spectrochemical analysis device using laser light
JPH01321340A (en) Laser double stage excitation emission analysis method and apparatus
JPS58219438A (en) Spectrochemical analysis device using laser light
JPS6312527B2 (en)
JPS58219437A (en) Spectrochemical analysis device using laser light
JPS58219436A (en) Spectrochemical analysis device using laser light
JP2021051074A (en) Spectroscopic analyzer
GB2138626A (en) Mass Spectrometers
JPH10267846A (en) Laser emission/fetching optical apparatus
JP2000352556A (en) Spectroscopic analysis apparatus
JPH0526728A (en) Spectroscope for raman spectroscopy
WO2017181223A1 (en) Atomic emission spectrometer
Srivastava Emission cross section for the first negative band system of oxygen produced by electron impact
JPH0688749A (en) Spectroscope