JPS58218113A - Light-emitting material - Google Patents

Light-emitting material

Info

Publication number
JPS58218113A
JPS58218113A JP57094009A JP9400982A JPS58218113A JP S58218113 A JPS58218113 A JP S58218113A JP 57094009 A JP57094009 A JP 57094009A JP 9400982 A JP9400982 A JP 9400982A JP S58218113 A JPS58218113 A JP S58218113A
Authority
JP
Japan
Prior art keywords
light
substrate
oxygen
emitting material
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57094009A
Other languages
Japanese (ja)
Inventor
Katsuhiko Yamazoe
山添 勝彦
Junji Saraya
更家 淳司
Hiroyuki Matsunami
弘之 松波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP57094009A priority Critical patent/JPS58218113A/en
Publication of JPS58218113A publication Critical patent/JPS58218113A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To make it possible to control a desired EOG (optional energy gap) and to change continuously the color of a light-emitting material by constituting a light-emitting material with amorphous silicon carbide that contains hydrogen and oxygen as the main body. CONSTITUTION:A light-emitting material consists of an amorphours silicon with composition of[(Si1-xCx)1-y-zHyOz]with 0<x<1.0<y<=0.5, 0<z<=0.07. After cleaning the surface of a substrate of a semiconductor of a single crystal silicon etc. a metal such as stainless steel, aluminium, etc., glass, ceramics, plastic, on which substrate a conductive film of a metal or metal oxide is provided, the substrate is placed in a glow discharge decomposition device. A mixture is made by mixing a suitable amount of hydrocarbon such as C2H2 that is gaseous at room temperature, and a compound containing silicon such as SiH4 and O2 that is gaseous at room temperature. Glow discharge decomposition is made in this mixture gas to disposite a-SiC that contains hydrogen and oxygen on the substrate.

Description

【発明の詳細な説明】 化ケイ素(以下,a−SiCと略す)からなる発光材料
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a luminescent material made of silicon oxide (hereinafter abbreviated as a-SiC).

従来、非晶質半導体を用いた発光材料としてはグロー放
電分解法により作成された水素を含む非晶質シリコン(
例えば、J.1.Pankove 、 A”ppl。
Conventionally, amorphous silicon containing hydrogen (produced by glow discharge decomposition method) has been used as a light-emitting material using an amorphous semiconductor.
For example, J. 1. Pankove, A”ppl.

Phys. Lett,  29.  620 (19
76) 、 J, 1, Pankove。
Phys. Lett, 29. 620 (19
76), J, 1, Pankove.

Appl.Phys− Lett, 31.’  45
0 (1977) )が提案されている。しか・しなが
ら、非晶質シリコンの場合には熱的クエンチングの為に
室温での発光強度は非常に弱い。又、発光が赤外域にあ
る為に見ることができず直接、認識し得ることのできる
可視領域発光材料の実現が望まれている。
Appl. Phys- Lett, 31. '45
0 (1977)) has been proposed. However, in the case of amorphous silicon, the emission intensity at room temperature is very weak due to thermal quenching. Furthermore, it is desired to realize a visible region light-emitting material that can emit light in the infrared range and therefore cannot be seen, but can be directly recognized.

最近、このような問題点を解決しようとして光学的エネ
ルギーギャップ(EOG)が非晶質シリコンより大きく
且つ、可視域にあることが予測されるa − SiQが
有望視されるようになり, D. Enggmann。
Recently, in an attempt to solve these problems, a-SiQ, which has an optical energy gap (EOG) larger than that of amorphous silicon and is expected to be in the visible range, has been viewed as promising. Enggmann.

Appl, ph’yS, Lett.32 (9) 
567 (1978) i R. S。
Appl, ph'yS, Lett. 32 (9)
567 (1978) iR. S.

Sussmann, Phi■.Mag, E. 44
. 137 (1981)によって02H4とSiH4
のグロー放電分解で作成される水素を含むa − Si
Cが可視発光を示すことが開示されている。又、a −
 SiOの存在や製法はD.A。
Sussmann, Phi■. Mag, E. 44
.. 02H4 and SiH4 by 137 (1981)
Hydrogen-containing a-Si created by glow discharge decomposition of
It is disclosed that C exhibits visible luminescence. Also, a −
The existence and manufacturing method of SiO is explained by D. A.

AndersonとW, E.SpearによりPbi
].Mag.、■。
Anderson and W.E. Pbi by Spear
]. Mag. ,■.

1 (1977)に開示されておりEOGが炭素濃度を
増加すればある濃度までは増加(′その後、EOGは減
少する)することは知られて(・る〔第1図参照。
1 (1977), it is known that when the carbon concentration increases, EOG increases up to a certain concentration (after that, EOG decreases) (see Figure 1).

なお、この図はSussmannらのデータを示したも
のであり、横軸はa  S 1n Oよ−1,における
n(ケイ素量)である。〕。
Note that this figure shows the data of Sussmann et al., and the horizontal axis is n (amount of silicon) in a S 1n O -1. ].

」述・した発光の開示ではEOGがAndersonら
の報告と同様の傾向をとり、最高でも約2.8 eV程
度であり橙乃至赤色より長波長の発光色しか示さなく、
組成を変えることによる発光色の幅広い変化は報告され
ておらず広範な工業的応用には制限がある。
In the disclosure of light emission mentioned above, the EOG shows a similar trend to that reported by Anderson et al., with a maximum of about 2.8 eV and only a light emission color with a wavelength longer than orange or red.
A wide range of changes in luminescent color by changing the composition has not been reported, which limits its wide-ranging industrial application.

又、炭素源にハイドロカーボンではなく炭素−水素−シ
リコン化合物であるテトラメチルシランを用い、これと
モノシランをグロー放電分解して得られるa−8iCが
白色発1光を示すことが開示されている( H,Kuk
imoto 、  Appl、 Phys、’ I、e
tt−’ 37. (6) 536 (1980))が
、この材料は炭素源にテトラメチルシランを使用してい
る為に炭素濃度に上限が定まり(a −Sio、qco
、sが最高−Kukimot。
Furthermore, it is disclosed that a-8iC, which is obtained by glow discharge decomposition of monosilane and tetramethylsilane, which is a carbon-hydrogen-silicon compound instead of hydrocarbon, as a carbon source, emits a single white light. (H, Kuk
imoto, Appl, Phys,' I,e
tt-' 37. (6) 536 (1980)), but because this material uses tetramethylsilane as a carbon source, there is an upper limit to the carbon concentration (a-Sio, qco
, s is the highest - Kukimot.

らの分析)発光材料として幅広い選択性に欠点がある。(analysis)) It has a drawback in its wide selectivity as a luminescent material.

又、原料であるテトラメチルシランは常温で液体である
ため気化過程を経て反応に供されるので組成管理及び大
量生産性等の見地から工業的な問題を有している。
Furthermore, since tetramethylsilane, which is a raw material, is liquid at room temperature, it undergoes a vaporization process before being subjected to the reaction, which poses industrial problems from the standpoint of composition control and mass productivity.

本発明は種々・の非晶質材料を検討し、ガス状のハイド
ロカーボンとガス状の含シリコン化合物を用(・て室温
での発光強度に優れ、特に可視域において発光色の幅広
い選択性を有した工業生産性に富んだ非晶質発光材料な
得んと鋭意努力した結果、水素と酸素を含有する新構造
のa −5iC1即ち〔(S1□−xCρ1−y−z 
I(、o7.〕で表わされる組成の非晶質半導体が発光
材料として優れたものであることを見(・出したことに
基いてなされた。
The present invention investigated various amorphous materials, and used gaseous hydrocarbons and gaseous silicon-containing compounds. As a result of our earnest efforts to obtain an amorphous luminescent material with high industrial productivity, we have developed a new structure of a-5iC1 containing hydrogen and oxygen, that is, [(S1□-xCρ1-y-z
This invention was based on the discovery that an amorphous semiconductor with a composition represented by I (, o7.) is an excellent light-emitting material.

本発明は、[(5il−XCx)1−y−zHyOz 
〕 但し19.土 0くxく1,0くy≦0.5.0<z≦0.07でオあ
わ□よ−・心、。イ、ケイえよ、ヶおユよヶ。4□−・
□・。□ヶオお。
The present invention provides [(5il-XCx)1-y-zHyOz
] However, 19. Earth 0ku x 1,0ku y≦0.5.0<z≦0.07 and it's oh □ - my heart. I-I-I-I-I-K-E-I-I-K-E-I-I-K-E-I-K-E-I-K-E-K-E-K-E-K-E-K-K-K-K-K-K-K-K-K-K-K-K-K-K-K-E-K-E-K-E-K-E-K-E-K-E-with-with-K-!! 4□-・
□・. □Gao.

更に、0.45≦x < 1なる組成範囲がより有用で
ある。更に酸素量としては、0.01≦2≦0.07の
範囲がより有用である。
Furthermore, a composition range of 0.45≦x<1 is more useful. Furthermore, as for the amount of oxygen, a range of 0.01≦2≦0.07 is more useful.

本発明の水素と酸素を含有する新規なa −’Sin!
は、Siを主構成元素とする材料(非晶質シリコン)に
較べSlとCを主構成元素とした非晶質材料であるが故
に、より広いEOGを実現することができると共に、S
iとCの組成比を変えることで連続的な種々の値の、E
oaを実現でき実用的に有用である。
Novel a-'Sin! containing hydrogen and oxygen of the present invention!
Because it is an amorphous material whose main constituent elements are Sl and C compared to a material whose main constituent element is Si (amorphous silicon), it is possible to realize a wider EOG, and
Continuously various values of E can be obtained by changing the composition ratio of i and C.
oa can be realized and is practically useful.

従って、Siよ−xCXのX、即ち炭素量を増やすこと
により可視発光を示させることも可能で、これまでの非
晶質シリコン(赤外域で発光)発光材料にない利点をも
生ずる。
Therefore, by increasing the amount of X in Si-xCX, that is, the amount of carbon, it is possible to make it exhibit visible light emission, which also brings about advantages not found in conventional amorphous silicon (emissions in the infrared region) light-emitting materials.

本発明の非晶質発光材料は構造成分元素として酸素を含
むことを最大の特徴とする。酸素を含むことで従来の酸
素を含まないa −SiC: Hより極めて大きなEO
Gを達成することができる。Eiooの変化も炭素の含
有量と共に本発明の組成範囲内で直線的に増加し、従来
知られているような炭素の含有量に対しピークを有す結
果とは大きく異なり新規な構造の非晶質炭化ケイ素であ
る(第2図参照)。
The most characteristic feature of the amorphous light emitting material of the present invention is that it contains oxygen as a structural element. A-SiC, which contains oxygen and does not contain conventional oxygen: Extremely larger EO than H
G can be achieved. The change in Eioo also increases linearly with the carbon content within the composition range of the present invention, which is significantly different from the conventionally known results that have a peak with respect to the carbon content. silicon carbide (see Figure 2).

また、酸素を含むことで酸素を含まな℃・系に較べ発光
強度の上昇が見られ実用的により有用である。これは酸
素がダングリングボンドを効果的に補償し無輻射遷移の
確率を低下せしめるためと推察される。
In addition, by including oxygen, the luminescence intensity is increased compared to the °C system that does not contain oxygen, which makes it more useful for practical purposes. This is presumably because oxygen effectively compensates for dangling bonds and reduces the probability of non-radiative transition.

一方、x=00場合には非晶質シリコン、x−1の場合
には非晶質炭素となり本発明の範囲外である。すなわち
、BOGが広範囲にわたり、制御可能な、SlとCを主
構成元素とし酸素及び水素を含む非晶質炭化ケイ素が本
発明の範囲である。
On the other hand, when x=00, it becomes amorphous silicon, and when x-1, it becomes amorphous carbon, which is outside the scope of the present invention. That is, the scope of the present invention is amorphous silicon carbide whose BOG is controllable over a wide range and whose main constituent elements are Sl and C and which contains oxygen and hydrogen.

また、Xが0,45≦x < 1の範囲では可視域に発
光が現われ最も実用に供し易い。更に発光色に関しては
組成Xを変えることで、赤、橙、黄、白色といったよう
な任意の選択が可能であると共に発光強度が高く実用面
での応用性が極めて大である。また、白色発光に関して
はハイドロカーボンと含シリコン化合物のグロー放電分
解では本発明により初めて達成させられたものである。
Furthermore, when X is in the range of 0.45≦x<1, light emission appears in the visible range, making it the easiest to put to practical use. Furthermore, by changing the composition X, the color of the emitted light can be arbitrarily selected such as red, orange, yellow, white, etc., and the emitted light intensity is high, so it has extremely great practical applicability. Furthermore, the present invention is the first to achieve white light emission in glow discharge decomposition of hydrocarbons and silicon-containing compounds.

発光の色調について言えば発光スペクトルの半値幅が広
い為、柔らか(目に鋏るという利点がある。
Regarding the color tone of the emitted light, the half-width of the emitted light spectrum is wide, so it has the advantage of being soft (sniffing the eye).

一方、Xが0.45未満では発光は赤外領域に現われ直
接に目で見ることはできないが、非晶質シリコンの場合
に較べ炭素が存在する為に室温での発光能に優れる。
On the other hand, when X is less than 0.45, light emission appears in the infrared region and cannot be seen directly with the naked eye, but compared to amorphous silicon, due to the presence of carbon, the light emitting ability at room temperature is superior.

酸素量yが001未満及び0.07を超える場合には本
発明で言う酸素を含むことによる効果が小さく・。
When the oxygen amount y is less than 0.001 or more than 0.07, the effect of including oxygen as referred to in the present invention is small.

一方、本発明の非晶質材料に含まれる水素は発光の無輻
射遷移の中心となるダングリングボンドを補うのに特に
効果的に作用していると推察される。
On the other hand, it is presumed that hydrogen contained in the amorphous material of the present invention acts particularly effectively to compensate for dangling bonds, which are the center of non-radiative transition of light emission.

水素がない場合にはダングリングボンドが多く残り発光
材として劣るが反面、余り多すぎても熱的安定性が低下
しデバイスに応用する際に好ましくない。      
     、・ 一般に4配位のダイアモンド、型の構造なもつSl系非
晶質にカーボンCを導入すするだけでは、カー顛 ボンが常圧付近の合成では3配位のグラファイト構造を
とるため4配位の5i−Cネットワークを有する非晶質
が得られることは期待されない。これに対し本発明では
水素及び酸素を同時に導入することで発光材料としてよ
り有用なEOGの高い非晶質[(s1□−xcX)、−
,7H,o7:]を実現し得た。
If there is no hydrogen, many dangling bonds remain and the material is inferior as a luminescent material, but on the other hand, if there is too much hydrogen, the thermal stability decreases, which is not preferable when applied to devices.
,・In general, simply introducing carbon C into an Sl-based amorphous material that has a 4-coordinate diamond-type structure will result in a 4-coordinate structure, since carbon takes a 3-coordinate graphite structure when synthesized near normal pressure. It is not expected to obtain an amorphous material with a 5i-C network of 5. In contrast, in the present invention, by simultaneously introducing hydrogen and oxygen, an amorphous material with a high EOG [(s1□-xcX), -
,7H,o7:].

このようKして得られた非晶質は従来より知られている
系に比・べ、C量を増やしていっても4配位のダイアモ
ンド型の構造がミクロにはより長距離秩序化(long
−range−ordering ) した新構造であ
り、EOGの高い材料になったと推察される。このこと
は又、非晶質のバンドテールの情報を与えるJapv 
= −rw (hシーEoo )式のB値がC量を増や
すと一担減少するが、更にC量を増したC量の多い領域
では再び増大するという結果からも推察される(第3図
参照)。
Compared to conventionally known systems, the amorphous material obtained by K in this way has a four-coordinated diamond-shaped structure that is more closely ordered ( long
-range-ordering), and it is presumed that this material has a high EOG. This also gives information on the amorphous band tail.
= -rw (hcEoo) The B value of the formula decreases by a certain amount when the amount of C is increased, but it can be inferred from the result that it increases again in the region where the amount of C is large when the amount of C is further increased (Fig. 3). reference).

本発明の発光材料は例えば以下のような方法で製造する
ことがで、、きる。
The luminescent material of the present invention can be produced, for example, by the following method.

基板としては室6.;、温〜300°Cの温度範囲に耐
え得るものであればツ1□i□乎<、例えば単結晶Si
等の半導体、ステンレス、デ1ルミニウム等の金属、ガ
ラス、セラミクス、プラスチックやその表面に金属又は
    ″金属酸化物等の導電性被膜を設けたものから
適宜選択し得る。
Chamber 6 is used as a substrate. If it can withstand a temperature range of 300°C to
The material may be appropriately selected from semiconductors such as stainless steel, metals such as aluminum, glass, ceramics, plastics, and materials whose surfaces are coated with conductive coatings such as metals or metal oxides.

これらの基板表面を清浄に洗浄したのち第4図に゛示す
ようなグロー放電分解装置内に設置し、室温で気体状の
ハイドロカーボン、例えばC,H,と室温で気体状の含
シリコン化合物、例えばSiH4及び02を適当量混合
し、この混合気体でグロー放電分解を行って基板上に水
素及び酸素を含むa−8iCを堆積できる。
After cleaning the surfaces of these substrates, they are placed in a glow discharge decomposition device as shown in Figure 4, and hydrocarbons that are gaseous at room temperature, such as C and H, and silicon-containing compounds that are gaseous at room temperature, For example, a-8iC containing hydrogen and oxygen can be deposited on a substrate by mixing appropriate amounts of SiH4 and 02 and performing glow discharge decomposition with this gas mixture.

グロー放電分解に供するガスは、HQや高純度不活性ガ
ス、例えばAr等で希釈して使用することもできる。
The gas used for glow discharge decomposition may be diluted with HQ or a high-purity inert gas such as Ar.

この場合、混合気体の圧力は0.05〜5 Torr程
度に保つが、0.2〜2 Torrがより適している。
In this case, the pressure of the mixed gas is maintained at about 0.05 to 5 Torr, but 0.2 to 2 Torr is more suitable.

基板温度は室温から300°Cで選択するのが良い。室
温から230°C程度が最も実用的である。
The substrate temperature is preferably selected from room temperature to 300°C. The most practical temperature is room temperature to about 230°C.

又、基板温度が低い時はど堆積膜の発光強度は高く、プ
ラスチックを基板にして可とう性、成形性に優れた発光
材とすることができる。
Furthermore, when the substrate temperature is low, the luminescence intensity of the deposited film is high, and a luminescent material with excellent flexibility and moldability can be obtained using plastic as a substrate.

特に価電子制御等、電気的物性を変化若しくは改良する
為に不純物を添加する場合には、■族又は■族元素の気
体状化合物例えば、BQH6又はPI(、。
In particular, when adding impurities to change or improve electrical properties such as controlling valence electrons, gaseous compounds of group Ⅰ or group Ⅰ elements, such as BQH6 or PI (.

AsH3の希釈ガスを前記混合気体中に混入してグロー
放電分解すると良い。
It is preferable to mix a diluent gas of AsH3 into the gas mixture for glow discharge decomposition.

グロー放電は、高周波放電でも直流バイアスによるもの
でも良℃・。放電形式としては容量結合型が好ましい。
Glow discharge is good at ℃, whether it is high frequency discharge or DC bias. As the discharge type, a capacitive coupling type is preferable.

又、導電性被膜としては、Pt+ Au+ Al+In
404 、 5nuQ、  ITO等を用いることがで
きるが無色透明である程好まし℃・。
Moreover, as a conductive film, Pt+Au+Al+In
404, 5nuQ, ITO, etc. can be used, but the more colorless and transparent the better.

本発明の発光材料は、紫外線、電7線等による刺激によ
り組成に応じ可視全般で発光を示す。又、高誘電体薄膜
(YQ08等)を本発明による一発光材の   1ii
tii 、K $ゆ83.え、□よお、カケ□  :域
で示させることもできる。
The luminescent material of the present invention emits light in all visible light depending on the composition when stimulated by ultraviolet rays, electric rays, etc. In addition, a high dielectric thin film (YQ08 etc.) is used as a luminescent material according to the present invention.
tii, K $83. Eh, □yo, kake□: It can also be indicated by an area.

本発明の発光材料は非晶質である為、従来の単結晶を用
いたものに較べ、以下の特長を有し、(1)任意のEO
G制御ができ発光色の連続的変化が可能 (2)製造方法が容易で且つ、室温での反応も可能で基
板材を広範囲に選べる (3)大面積化できる (4)低価格化できる オーディオ等のレベルメーター表示、家電機器等のデジ
タル表示、信号表示、画像表示材等としての応用展開が
可能である。
Since the luminescent material of the present invention is amorphous, it has the following features compared to those using conventional single crystals: (1) Any EO
G control allows for continuous changes in emitted light color (2) Easy manufacturing method, reaction at room temperature, and a wide range of substrate materials to choose from (3) Large surface area (4) Low cost audio It can be used as a level meter display, a digital display for home appliances, a signal display, an image display material, etc.

次に実施例をあげて本発明の詳細な説明するがこれに限
定されるものではない。
Next, the present invention will be explained in detail with reference to examples, but the present invention is not limited thereto.

実施例1 水素により10%に希釈された5iJ(4と純CQH4
及びO9を用いてC量Xが表1の値をとるように適宜混
合比を変化させ、第4図に示す装置中でグロー放電分解
し、同図の2で示す位置に設置した基板上に表1の試料
点で示す各々の水素及び酸素を含んだa −SiCを約
1μmの厚さに堆積させた。
Example 1 5iJ(4 and pure CQH4 diluted to 10% with hydrogen)
and O9 to change the mixing ratio as appropriate so that the C amount Each of the a-SiC containing hydrogen and oxygen shown at the sample points in Table 1 was deposited to a thickness of about 1 μm.

オージェ電イ分光分析により堆積した膜の組成分析を行
った結果を表1に示、す。測定に際してばAr+スパッ
タを行い膜表面に′:吸着されたガスを完全に除去して
行った。
Table 1 shows the results of compositional analysis of the deposited film by Auger electron spectroscopy. In the measurement, Ar+sputtering was performed to completely remove the gas adsorbed on the film surface.

表  1 膜を堆積させる基板はOorning 7059ガラス
及び単結晶S1を用い基板温度は150°Cに保った。
Table 1 The substrate on which the film was deposited was Oorning 7059 glass and single crystal S1, and the substrate temperature was maintained at 150°C.

水素量に関しては赤外線吸収スペクトルより求め表1に
示した。
The amount of hydrogen was determined from infrared absorption spectra and is shown in Table 1.

又、Corning 7059ガラス上に堆積させた膜
の透過及び反射分晃測定より、JahvVBhν 依存
性を用℃・て得られ’?、:Booの値を表1に同じく
示す。
Also, from transmission and reflection spectroscopy measurements of films deposited on Corning 7059 glass, the JahvVBhν dependence was obtained using °C. , :Boo values are also shown in Table 1.

反応い際、でJ′I混合カニ。圧力、よ。、8Torr
&し、高周波電力は13.56MHz、パワーはIOW
とした。
At the moment of reaction, J'I mixed crab. Pressure, yo. , 8 Torr
&, high frequency power is 13.56MHz, power is IOW
And so.

表1に見られる如く本発明の発光材料は、組成を制御す
ることにより幅広< EOGを制御することができる(
第2図参照)。
As seen in Table 1, the luminescent material of the present invention can control a wide range of EOG by controlling the composition (
(See Figure 2).

尚、本装置を月見・得られたa−8j:HのEOoを調
べたところ17〜1.83 eVてあった。
In addition, the EOo of a-8j:H obtained by observing the present device on a monthly basis was examined and found to be 17 to 1.83 eV.

実施例2 実施例1で得られた水素及び酸素を含むa−8jCに紫
外線を照射したところ、試料ノ161〜4に関しては室
温で室内光のもとで表2に示すような発光が明りように
確認された。
Example 2 When the a-8jC containing hydrogen and oxygen obtained in Example 1 was irradiated with ultraviolet rays, samples Nos. 161 to 4 emitted light as shown in Table 2 under indoor light at room temperature. was confirmed.

表  2 表2に示す如く本発明の発光材料は組成制御により可視
はぼ全域での発光色を示し得る。
Table 2 As shown in Table 2, the luminescent material of the present invention can exhibit luminescent colors across the entire visible spectrum by controlling the composition.

発光強度については発光ピークが短波長にある系はど強
いという結果が得られた。
Regarding the luminescence intensity, the system with the luminescence peak at a short wavelength was found to be the strongest.

尚、試料A5の試料に関しては発光が赤外域にある為に
肉眼で、見ることはできなかった。
Note that sample A5 could not be seen with the naked eye because the emission was in the infrared region.

実施例3 実施例1及び2中の表1、試料AI及び5の試料の発光
スペクトル分布を分光光度計で測定したところ第5図に
示す通りやあった。
Example 3 The emission spectrum distributions of the samples in Table 1, Samples AI and 5 in Examples 1 and 2 were measured using a spectrophotometer and were as shown in FIG.

試料扁1の場合には発光のピーク波長が約530nm 
であり半値幅が約150nmと広い為1.肉眼では白く
見える。又、試料A5の試料ではピーク波長が約723
 nmで発光が赤外域に認められた。
In the case of sample flat 1, the peak wavelength of light emission is approximately 530 nm.
1. Because the half width is wide at about 150 nm. It looks white to the naked eye. In addition, the peak wavelength of sample A5 is approximately 723
Luminescence was observed in the infrared region.

実施例4 実施例1の表1に示す試料及び実施例1と同様の手法で
混合ガス中のSiH4/H9とCQH4の流量比を変え
て作製した試料のB値を求めたところ、組成変化に対し
第3図に示すようになった。
Example 4 The B values of the samples shown in Table 1 of Example 1 and the samples prepared by changing the flow rate ratio of SiH4/H9 and CQH4 in the mixed gas using the same method as in Example 1 were determined. On the other hand, it became as shown in Figure 3.

一般的にはB値は炭素量(x)の増加と共に減少して℃
・(が、第3図よりx=0.65付近をピークとしその
後再び上昇していく事が判明した。
In general, the B value decreases as the carbon content (x) increases, and
・(However, it was found from Figure 3 that it peaked around x = 0.65 and then rose again.

実施例5 酸素の有無による発光強度変化の典型例として実施例1
の試料A Iおよび反応ガスに水素により10%に希釈
された8iH4と純C2H4のみを用いて合成した酸素
を含門ない非晶質しく5loo7co、、)。、5Q 
Ho、41 ”について発光スペクトルより求めた強度
を代表例として示す。
Example 5 Example 1 is a typical example of the change in luminescence intensity due to the presence or absence of oxygen.
Sample A I and an amorphous compound containing no oxygen synthesized using only 8iH4 diluted to 10% with hydrogen and pure C2H4 as the reaction gas (5loo7co). , 5Q
The intensity determined from the emission spectrum of Ho, 41'' is shown as a representative example.

試料点1の発光強度を1とした時にト記酸素を陰まな(
・試料の相対発光強度比は約05であった。
When the emission intensity of sample point 1 is set to 1, the oxygen concentration is
- The relative emission intensity ratio of the sample was approximately 0.05.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、一般的な非晶質SiCの組成とEOGの関係
を示す図、第2図は本発明で得られた非晶質SiCの組
成とEOGの関係を示す図、第3図は本発明の非晶質S
ICの組成とB値の関係を示す図、第4図は本発明の発
光材料の製造装置を説明する図、第5図は本発明の発光
材料の売先スペクトルの位置と形を示す図である。  
 ′・ 1・・反応容器、2・・・基板ホルダー兼電極、3・・
ガス噴出口兼電極、4・・ガス導入口、5・・・ガス排
気口、6・・・基板加熱ヒーター、7・・・熱電対、8
・・真空計、9・・・高周波発振器。 出願人 旭ダウ株式会刺 代理人  豊  1) 善  雄 、;1゜ 工(炭素量) 悄4図 幣5図 波 長 手  続  補  正  書 昭和57年7月1日 特許庁長官 若 相和 夫殿 1、事件の表示 特願昭57−940’09号 2、発明の名称 発光材料 3、補正をする者 事件との関係・特許出願人 東京都千代田区有楽町1丁目1番2号 (046)旭ダウ株式会社 代表者   弓   倉   礼   −4、代理人 東京都千代田区有楽町1丁目4番1号 三信ビル 204号室 電話501−2138□ 5、補正の対象 明細書の「発flEh7″、#8な説明Jの欄及び図面
6−1 明細書簡9頁3行目の「例えばC2H2と1を
「例えばC2H4と1と訂正する。 6−2 図面のうち、第3図を添付図面のように訂正す
る。すなわち、第3図のグラフのタテ軸の「B値(cm
−”; 6v−” )Jを[B値(cm−’ eV−’
>」と訂正する。 z ・“・) ”] 1 昌、、。 11
Figure 1 is a diagram showing the relationship between the composition of general amorphous SiC and EOG, Figure 2 is a diagram showing the relationship between the composition of amorphous SiC obtained by the present invention and EOG, and Figure 3 is a diagram showing the relationship between EOG and the composition of amorphous SiC obtained in the present invention. Amorphous S of the present invention
Figure 4 is a diagram showing the relationship between IC composition and B value, Figure 4 is a diagram explaining the manufacturing apparatus for the luminescent material of the present invention, and Figure 5 is a diagram showing the position and shape of the customer spectrum of the luminescent material of the present invention. be.
'・ 1... Reaction vessel, 2... Substrate holder/electrode, 3...
Gas outlet/electrode, 4...Gas inlet, 5...Gas exhaust port, 6...Substrate heating heater, 7...Thermocouple, 8
...Vacuum gauge, 9...High frequency oscillator. Applicant: Asahi Dow Co., Ltd. Agent Yutaka 1) Yoshio; 1゜Eng (Carbon content) 4 figures, 5 figures, length, continuation, amendments, July 1, 1980, Director General of the Patent Office, Waka Aiwao. 1. Indication of the case Patent Application No. 1982-940'09 2. Name of the invention Luminescent material 3. Person making the amendment Relationship to the case ・Patent applicant Asahi, 1-1-2 Yurakucho, Chiyoda-ku, Tokyo (046) Dow Corporation Representative Rei Yumikura -4, Agent Room 204, Sanshin Building, 1-4-1 Yurakucho, Chiyoda-ku, Tokyo Telephone: 501-2138□ 5. Explanation of "Issuing flEh7", #8 of the specification subject to amendment Column J and Drawings 6-1 Correct "For example, C2H2 and 1" on page 9, line 3 of the specification letter to "For example, C2H4 and 1." 6-2 Among the drawings, Figure 3 is corrected as shown in the attached drawing. In other words, the "B value (cm
-";6v-") J is [B value (cm-'eV-'
>” I corrected it. z ・“・) ”] 1 Chang,,. 11

Claims (1)

【特許請求の範囲】 (J)〔(S11−XCx)□−7−2H707〕但し
、O<x<1 、0<yS O,50<z<0.07 
    ’ で示される組成の非晶質炭化ケイ素よりなることを特徴
とする発光材料。 f21 ’ x IJ″−0545≦x<1であること
を特徴とする特許請求の範囲第(1)項記載の発光材料
。 (3)zが0.01≦2≦0.07であることを特徴と
する特許請求の範囲第(1)項記載の発光材料。
[Claims] (J) [(S11-XCx)□-7-2H707] However, O<x<1, 0<ySO, 50<z<0.07
A luminescent material comprising amorphous silicon carbide having a composition represented by '. The luminescent material according to claim (1), characterized in that f21' x IJ''-0545≦x<1. A luminescent material according to claim (1).
JP57094009A 1982-06-03 1982-06-03 Light-emitting material Pending JPS58218113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57094009A JPS58218113A (en) 1982-06-03 1982-06-03 Light-emitting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57094009A JPS58218113A (en) 1982-06-03 1982-06-03 Light-emitting material

Publications (1)

Publication Number Publication Date
JPS58218113A true JPS58218113A (en) 1983-12-19

Family

ID=14098446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57094009A Pending JPS58218113A (en) 1982-06-03 1982-06-03 Light-emitting material

Country Status (1)

Country Link
JP (1) JPS58218113A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164175A (en) * 1984-09-06 1986-04-02 Ulvac Corp Amorphous semiconductor light-emitting diode and plane display device utilizing said diode
JP2012207094A (en) * 2011-03-29 2012-10-25 Osaka Prefecture Univ Phosphor and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164175A (en) * 1984-09-06 1986-04-02 Ulvac Corp Amorphous semiconductor light-emitting diode and plane display device utilizing said diode
JP2012207094A (en) * 2011-03-29 2012-10-25 Osaka Prefecture Univ Phosphor and method for producing the same

Similar Documents

Publication Publication Date Title
Ha et al. Open air plasma chemical vapor deposition of highly dielectric amorphous TiO2 films
Sano et al. Chemical vapour deposition of thin films of BN onto fused silica and sapphire
KR960017936A (en) Method for producing fluorinated silicon oxide
KR910000509B1 (en) Process for photochemical vapor deposition of oxide layers at enhanced deposition rates
JP2004099367A (en) Metal boride powder and its manufacturing method
JPS58218113A (en) Light-emitting material
Yun et al. Low dielectric constant CF/SiOF composite film deposition in a helicon plasma reactor
JPS60117711A (en) Forming apparatus of thin film
Shimozuma et al. Room temperature deposition of silicon nitride films using very low frequency (50Hz) plasma CVD
JPS6164124A (en) Thin film manufacturing equipment
JPS61222915A (en) Vapor-phase synthesis of diamond
JPS58218114A (en) Amorphous light-emitting material
Young et al. Amorphous silicon, amorphous carbon and amorphous silicon carbide deposited by remote plasma chemical vapor deposition
JPH05140550A (en) Diamond luminescent layer and display device
JPS62180073A (en) Amorphous carbon film and its production
Kaufmann et al. Metalorganic chemical vapour deposition of oriented ZnO films
JPH0280577A (en) Formation of thin film
JPS5956477A (en) Thin-film el element and preparation of same
McSporran et al. Preliminary studies of atmospheric pressure plasma enhanced CVD (AP-PECVD) of thin oxide films
JPH1055971A (en) Method for piling semiconductor thin film
JPS60144940A (en) Method of producing silicon oxide
JPH0221673A (en) Light-emitting element
M'B et al. Comparative study of GexCx-1 films prepared by MOCVD from tetraethylgermanium and tetravinylgermanium
TWI296009B (en)
JPH03165074A (en) Manufacture of light-emitting device of diamond