JPH03165074A - Manufacture of light-emitting device of diamond - Google Patents
Manufacture of light-emitting device of diamondInfo
- Publication number
- JPH03165074A JPH03165074A JP1305469A JP30546989A JPH03165074A JP H03165074 A JPH03165074 A JP H03165074A JP 1305469 A JP1305469 A JP 1305469A JP 30546989 A JP30546989 A JP 30546989A JP H03165074 A JPH03165074 A JP H03165074A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- light
- substrate
- emitting device
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 58
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 13
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 13
- 229910001872 inorganic gas Inorganic materials 0.000 claims abstract description 13
- 125000004334 oxygen containing inorganic group Chemical group 0.000 claims abstract description 13
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 6
- 239000012808 vapor phase Substances 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 28
- 239000007789 gas Substances 0.000 claims description 26
- 239000002994 raw material Substances 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 11
- 238000001308 synthesis method Methods 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 abstract description 12
- 229910052751 metal Inorganic materials 0.000 abstract description 4
- 239000002184 metal Substances 0.000 abstract description 4
- 238000003786 synthesis reaction Methods 0.000 abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 239000010703 silicon Substances 0.000 abstract description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052782 aluminium Inorganic materials 0.000 abstract description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 2
- 239000000919 ceramic Substances 0.000 abstract description 2
- 239000011521 glass Substances 0.000 abstract description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 abstract description 2
- 150000004767 nitrides Chemical class 0.000 abstract description 2
- 229910052594 sapphire Inorganic materials 0.000 abstract description 2
- 239000010980 sapphire Substances 0.000 abstract description 2
- 229910052716 thallium Inorganic materials 0.000 abstract description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052719 titanium Inorganic materials 0.000 abstract description 2
- 239000010936 titanium Substances 0.000 abstract description 2
- 229910052720 vanadium Inorganic materials 0.000 abstract description 2
- 239000001257 hydrogen Substances 0.000 abstract 2
- 229910052739 hydrogen Inorganic materials 0.000 abstract 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract 2
- 239000011195 cermet Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 abstract 1
- 239000000203 mixture Substances 0.000 abstract 1
- 230000005855 radiation Effects 0.000 abstract 1
- 239000012780 transparent material Substances 0.000 abstract 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 abstract 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 13
- 239000010408 film Substances 0.000 description 11
- 239000010409 thin film Substances 0.000 description 8
- 239000013078 crystal Substances 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 229960001730 nitrous oxide Drugs 0.000 description 1
- -1 oxides Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Led Devices (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は1発光層にダイヤモンドを用いた発光デバイス
、すなわちダイヤモンド発光素子の製造方法に関し、特
に高輝度の青色発光を可能としたダイヤモンド発光素子
の製造方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a light-emitting device using diamond in one light-emitting layer, that is, a method for manufacturing a diamond light-emitting element, and in particular, a diamond light-emitting element capable of emitting high-intensity blue light. Relating to a manufacturing method.
[従来の技術]
近年、カラー発光をともなう発光デバイスとして、ダイ
ヤモンド発光素子が注目されている。[Prior Art] In recent years, diamond light-emitting elements have attracted attention as light-emitting devices that emit color light.
特に、従来の発光デバイスではなし得なかった、十分な
輝度を有し色相の良い青色発光を行なう発光素子として
ダイヤモンド発光素子が期待されている。In particular, diamond light-emitting devices are expected to be a light-emitting device that emits blue light with sufficient brightness and good hue, something that conventional light-emitting devices cannot do.
従来、ダイヤモンド発光素子に関しては、特開昭63−
246885号、特開平1−102893号あるいは1
989年秋期応用物理学会等でその研究成果が報告開示
されている。Conventionally, regarding diamond light emitting elements, Japanese Patent Application Laid-Open No. 1986-
No. 246885, JP-A No. 1-102893 or 1
The results of this research were reported and disclosed at the 1989 fall meeting of the Japan Society of Applied Physics.
このうち、特開昭63−246885号公報には、窒素
濃度の高い合金溶媒を用い、かつ該溶媒中にほう素を均
一に添加して、高圧温度差法によりダイヤモンド発光素
子を合成する技術が記載されている。Among these, JP-A No. 63-246885 discloses a technique for synthesizing a diamond light-emitting device by a high-pressure temperature difference method using an alloy solvent with a high nitrogen concentration and uniformly adding boron to the solvent. Are listed.
また、特開平1−102893号公報には、発光層をダ
イヤモンド薄膜て形成し、かつこの発光層を絶縁層で挾
んだ構成の発光デバイスが記載されている。Further, Japanese Patent Application Laid-open No. 1-102893 describes a light emitting device having a structure in which a light emitting layer is formed of a diamond thin film and this light emitting layer is sandwiched between insulating layers.
さらに、1989年秋期応用物理学会では、水素ガスに
5VoJL[の−酸化炭素を含有させた原料ガスを用い
てダイヤモンド発光素子を製造する技術が発表されてい
る。Furthermore, at the 1989 Fall Meeting of the Japan Society of Applied Physics, a technology for manufacturing diamond light-emitting devices using a raw material gas containing 5VoJL[-carbon oxide in hydrogen gas was announced.
[発明か解決しようとする課Ill
上述した従来の技術のうち、特開昭63−246885
号のものは、高圧温度差法のため、製造方法を実用化す
るのか困難であり、また、基板上にダイヤモンド薄膜を
生成させることができなかった。[Invention or problem to be solved] Among the above-mentioned conventional techniques, Japanese Patent Laid-Open No. 63-246885
Since the method used in the No. 1 issue uses a high-pressure temperature difference method, it was difficult to put the manufacturing method into practical use, and it was also impossible to produce a diamond thin film on the substrate.
また、特開平1−1(+289:1号のものは、実用化
の可能性は高いものの、成膜速度のスピードアップ化及
び発光輝度を高める観点からすると、さらに研究の余地
があった。Furthermore, although the method disclosed in Japanese Patent Application Laid-open No. 1-1-1 (+289:1) has a high possibility of being put to practical use, there is still room for further research from the viewpoint of speeding up the film formation rate and increasing the luminance.
一方、1989年秋期応用物理学会で発表されたものは
、ダイヤモンド発光素子の青色系発光強度が十分でなか
った。すなわち、ダイヤモンドの場合、発光輝度の高い
結晶面は(10(1)面であることが知られており、高
輝度の発光をもたらす素子とするには、発光面を(10
0)面とする必要がある。On the other hand, in the one presented at the 1989 Fall Meeting of the Japan Society of Applied Physics, the blue light emission intensity of the diamond light emitting device was not sufficient. In other words, in the case of diamond, it is known that the crystal plane with high luminance is the (10(1)) plane.
0) side.
しかし、数終■のダイヤモンド結晶粒子が集まつて膜を
構成するダイヤモンド薄膜において、結晶粒子を(10
0)面に配向するには、ダイヤモンド合成時における原
料ガス中のメタン等の炭化水素ガス濃度を高くしなけれ
ばならないが、単に炭化水素ガス濃度を高くしただけで
は、ダイヤモンド結晶粒子の結晶性が悪くなり、発光輝
度の点で不利になるという問題があった。However, in a diamond thin film in which several diamond crystal particles gather to form a film, crystal particles (10
0) plane, it is necessary to increase the concentration of hydrocarbon gas such as methane in the raw material gas during diamond synthesis, but simply increasing the hydrocarbon gas concentration will affect the crystallinity of diamond crystal particles. There was a problem in that the brightness of the light emitted by the light deteriorated, resulting in a disadvantage in terms of luminance.
本発明は上記の事情にかんがみてなされたもので、高輝
度の発光を可能とするダイヤモンド発光素子を得られる
ようにするとともに、均一のダイヤモンド薄膜を速く生
成させることのできるダイヤモンド発光素子の製造方法
の提供を目的とする。The present invention has been made in view of the above-mentioned circumstances, and is a method for manufacturing a diamond light-emitting element, which makes it possible to obtain a diamond light-emitting element capable of emitting high-intensity light, and also enables rapid formation of a uniform diamond thin film. The purpose is to provide.
[N題を解決するための手段]
上記目的を達成するため、本発明者らは、鋭意研究を重
ねた結果、−酸化炭素と水素ガスからなる原料ガスを用
いてダイヤモンド薄膜を生成する際に、微量の二酸化炭
素を添加すると、高輝度の青色発光を行なうダイヤモン
ド発光素子を、速い成膜速度で安定して得られることを
見出し、未発明を完成するに至った。[Means for Solving Problem N] In order to achieve the above object, the present inventors have conducted extensive research and found that - when producing a diamond thin film using a raw material gas consisting of carbon oxide and hydrogen gas; They discovered that by adding a small amount of carbon dioxide, a diamond light-emitting device that emits high-intensity blue light can be stably obtained at a fast film formation rate, thus completing an undiscovered invention.
すなわち、本発明のダイヤモンド発光素子の製造方法は
、原料ガスに一酸化炭素と水素ガス及び含酸素無機ガス
を用い、気相合成法によって、基体上にダイヤモンドを
生成して発光素子を製造するようにしてあり、好ましく
は、上記原料ガス中における含酸素無機ガスを二酸化炭
素とし、かつこの二酸化炭素を一酸化炭素に対してO−
2〜10Wa!L寡の含有率としである。That is, the method for manufacturing a diamond light-emitting device of the present invention uses carbon monoxide, hydrogen gas, and an oxygen-containing inorganic gas as raw material gases, and produces diamond on a substrate by a vapor phase synthesis method to manufacture a light-emitting device. Preferably, the oxygen-containing inorganic gas in the raw material gas is carbon dioxide, and the carbon dioxide has an O-
2~10Wa! The content of L is low.
〔作用]
上記発明の製造方法によれば、発光素子という観点から
の高品質なダイヤモンドが得られることにより、高輝度
青色発光素子を得ることができる。また、ダイヤモンド
の成膜速度を速くすることができる。[Function] According to the manufacturing method of the invention, a high-brightness blue light-emitting device can be obtained by obtaining high-quality diamond from the viewpoint of a light-emitting device. Further, the diamond film formation rate can be increased.
[実施例〕
以下、本発明ダイヤモンド発光素子の製造方法を具体的
に説明する。[Example] Hereinafter, a method for manufacturing a diamond light emitting device of the present invention will be specifically described.
本発明のダイヤモンド発光素子の製造方法としては、気
相法により結晶性ダイヤモンドを形成することのできる
方法であれば、特に制限はなく。The method for manufacturing the diamond light emitting device of the present invention is not particularly limited as long as it is a method that can form crystalline diamond by a vapor phase method.
例えば直流または交流アーク放電によりプラズマ分解す
る方法、高周波誘電放電によりプラズマ分解する方法、
マイクロ波放電によりプラズマ分解する方法(有磁場−
cvn法、 ECR法を含む、)、光エネルギーにより
分解する方法あるいはプラズマ分解をイオン室またはイ
オン銃で行なわせ、電界によりイオンを引き出すイオン
ビーム法、Mフィラメントによる加熱により熱分解する
熱分解法(EACVD法を含む、)、さらに燃焼炎法、
スパッタリング法などのいずれをも採用することができ
る。For example, a method of plasma decomposition using DC or AC arc discharge, a method of plasma decomposition using high frequency dielectric discharge,
Method of plasma decomposition using microwave discharge (magnetic field)
cvn method, ECR method), a method of decomposition using light energy or plasma decomposition in an ion chamber or ion gun, and an ion beam method in which ions are extracted by an electric field, a thermal decomposition method (including thermal decomposition by heating with an M filament) ), including the EACVD method, as well as the combustion flame method,
Any method such as sputtering can be used.
特に、−酸化炭素ガスと水素ガス及び含酸素無機ガスと
の混合ガスにマイクロ波を照射し、プラズマを形成させ
ることにより活性化された該混合ガスを、基体に接触さ
せてダイヤモンドを生成させるマイクロ波プラズマCV
D法、あるいは、この際、マイクロ波を該基体に対して
複数の方向から導入するマイクロ波プラズマCVD法、
また発散磁界において生じるマイクロ波吸収帯域に、広
範囲にわたって高密度安定化プラズマを発生せしめ、基
体上にダイヤモンドを気相成長させる有磁場cvn法な
どが好ましい。Particularly, - Microwaves are applied to a mixed gas of carbon oxide gas, hydrogen gas, and oxygen-containing inorganic gas to form plasma, and the activated mixed gas is brought into contact with a substrate to generate diamonds. wave plasma CV
D method, or a microwave plasma CVD method in which microwaves are introduced into the substrate from multiple directions,
Further, a magnetic field CVN method is preferable, in which high-density stabilized plasma is generated over a wide range in a microwave absorption band generated in a diverging magnetic field, and diamond is grown in a vapor phase on a substrate.
この場合基体としては、一般的には、ガラス。In this case, the substrate is generally glass.
サファイア等の透明基体あるいはシリコン、マンガン、
バナジウム、タリウム、アルミニウム、チタン、タング
ステン、モリブデン、ゲルマニウム及びクロムなどの金
属、これら金属の酸化物、窒化物及び炭化物、A120
3−Fe系、τiC−旧系、Tic−G。Transparent substrates such as sapphire, silicon, manganese,
Metals such as vanadium, thallium, aluminum, titanium, tungsten, molybdenum, germanium and chromium, oxides, nitrides and carbides of these metals, A120
3-Fe series, τiC-old series, Tic-G.
系及びB<C−Fe系等のサーメットならびに各種セラ
ミックス等を用いることができる。透明基体を用いる場
合には、可視領域での透明度がよく、かつ表面平滑性に
優れたものを用いることが好ましい。Cermets such as B<C-Fe and various ceramics can be used. When using a transparent substrate, it is preferable to use one that has good transparency in the visible region and excellent surface smoothness.
これら基体表面を、粉末状のダイヤモンド、炭化シリコ
ン、窒化はう素など100 ILm以下の砥粒の分散液
を用いて超音波処理を行ない傷付は処理を行なうと、基
体上に膜状のダイヤモンドが生成する。また、基体表面
を鏡面仕上しておくと、この基体上には粒状のダイヤモ
ンドが生成する。When the surface of these substrates is treated with ultrasonic waves using a dispersion of abrasive grains of 100 ILm or less, such as powdered diamond, silicon carbide, or boron nitride, to remove scratches, a film of diamond is formed on the substrate. is generated. Further, when the surface of the substrate is mirror-finished, granular diamonds are generated on the substrate.
そして、ダイヤモンド合成時における基体の表面温度は
、前記原料ガスの励起手段によって異なるので、−概に
決定することはできないが、通常、800〜1200℃
、好ましくは800〜1100℃である。The surface temperature of the substrate during diamond synthesis varies depending on the excitation means for the raw material gas, so it cannot be determined generally, but it is usually 800 to 1200°C.
, preferably 800 to 1100°C.
前記の温度が、 eoo℃より低いと、ダイヤモンド層
の生成速度が遅くなったり、グラファイト等の非ダイヤ
モンド成分の含有や結晶性の低下など生成物の純度、均
質性が失われたりする。一方。If the temperature is lower than eoo°C, the formation rate of the diamond layer will be slow, and the purity and homogeneity of the product will be lost due to the inclusion of non-diamond components such as graphite and a decrease in crystallinity. on the other hand.
1200℃より高くしても、それに見合った効果は得ら
れず、ダイヤモンドが生成されなかったり、エネルギー
効率の点でも不利になる。Even if the temperature is higher than 1200° C., no commensurate effect will be obtained, diamonds will not be produced, and energy efficiency will be disadvantageous.
次に、−酸化炭素と水素ガスの比率、基体の温度等は、
結晶性に優れかつ高輝度発光を得られる条件であれば、
特に制限されるものではな0例えば、二酸化炭素等の含
酸素無機ガスを添加しなくても、ダイヤモンド決勝が十
分形成される条件下において含酸素無機ガスを添加して
もよい。Next, - the ratio of carbon oxide and hydrogen gas, the temperature of the substrate, etc.
As long as the conditions are such that excellent crystallinity and high luminance emission can be obtained,
There is no particular limitation. For example, even if an oxygen-containing inorganic gas such as carbon dioxide is not added, an oxygen-containing inorganic gas may be added under conditions where diamond finals are sufficiently formed.
しかし、ダイヤモンドの成長速度を速くするためには、
−酸化炭素と水素ガスからなる原料ガスにおいて1通常
、グラファイトが析出する基体温度、濃度条件中(圧カ
一定)に微量の二酸化炭素を添加するとよい、したがっ
て、第1図に示すデータに基づき一酸化炭素ガスと水素
ガスの比率に応じ、
基体温度≧11000−((:0X)Xl、3 ]
(”C)の式により基体温度を選択することができる。However, in order to increase the growth rate of diamonds,
- In the raw material gas consisting of carbon oxide and hydrogen gas, it is usually advisable to add a small amount of carbon dioxide under the substrate temperature and concentration conditions (constant pressure) under which graphite precipitates. Depending on the ratio of carbon oxide gas and hydrogen gas, the substrate temperature ≧11000-((:0X)Xl, 3]
The substrate temperature can be selected using the equation ("C).
原料ガスとしては、−酸化炭素ガスと含酸素無機ガスを
含有する水素ガスを用いる。この場合、−酸化炭素と水
素ガスの比率は、2:88〜s8:2VoJI!、好マ
シくは5:95〜80:20VoJI gとする。−酸
化炭素ガスの比率がこれ以上高くなるとグラファイト成
分が析出するようになり、低くなると成膜速度が低下し
実用的でなくなる。As the raw material gas, hydrogen gas containing -carbon oxide gas and oxygen-containing inorganic gas is used. In this case, the ratio of -carbon oxide to hydrogen gas is 2:88 to s8:2VoJI! , preferably 5:95 to 80:20 VoJIg. - If the ratio of carbon oxide gas becomes higher than this, graphite components will precipitate, and if it becomes lower, the film formation rate will decrease, making it impractical.
また、−酸化炭素ガスと水素ガスに添加する含酸素無機
ガスとしては、二酸化炭素、酸素。Further, as the oxygen-containing inorganic gas added to the carbon oxide gas and hydrogen gas, carbon dioxide and oxygen are used.
水、過酸化水素、二酸化窒素、酸化窒素、酸化二窒素等
を用いる。これらのうち、ダイヤモンド合成時の条件制
御の容易さからすると二酸化炭素を用いることが好まし
い。Water, hydrogen peroxide, nitrogen dioxide, nitrogen oxide, dinitrogen oxide, etc. are used. Among these, it is preferable to use carbon dioxide in view of ease of controlling conditions during diamond synthesis.
この含酸素無機ガスの添加量は、用いるガスの種類によ
って異なるが、二酸化炭素ガスを用いる場合には一酸化
炭素ガスに対して0.2〜10VolZ、好ましくは0
.5〜5 Volgとする。二酸化炭素ガスの比率をこ
れ以上高くするとエツチング反応が優先するようになり
、低くすると添加効果がなくなり、目的とする高輝度な
発光が得られない。The amount of this oxygen-containing inorganic gas added varies depending on the type of gas used, but when carbon dioxide gas is used, it is 0.2 to 10 VolZ, preferably 0.
.. 5 to 5 Volg. If the ratio of carbon dioxide gas is increased more than this, the etching reaction will take priority, and if it is lowered, the effect of the addition will be lost and the desired high-brightness light emission will not be obtained.
反応時間は、前記原料ガスの濃度、基体の種類、基体の
表面の温度1反応圧力、必要とするダイヤモンド薄膜の
厚さなどにより相違するので、これらに応じて適宜決定
する。The reaction time varies depending on the concentration of the raw material gas, the type of substrate, the temperature and reaction pressure of the surface of the substrate, the required thickness of the diamond thin film, etc., and is appropriately determined according to these factors.
ダイヤモンドの膜厚は0.1〜10074脂、好ましく
は0.2〜304mとする。膜厚がこれ以上薄い場合は
、全体を覆った膜とならず、逆にこれ以上厚い場合は剥
離が生じやすくなる。The thickness of the diamond film is 0.1 to 10074 m, preferably 0.2 to 304 m. If the film thickness is thinner than this, the film will not cover the entire surface, and if it is thicker than this, peeling will easily occur.
なお1本発明におけるダイヤモンド発光素子は、膜状の
みでなく、粒子状であってもよい。Note that the diamond light-emitting element in the present invention may be not only in the form of a film but also in the form of particles.
ダイヤモンド薄膜からなる発光面は、通常、絶縁体であ
るが、発光素子の種類あるいはダイオード等にする場合
には1発光体をn型またはp型にドーピングする必要の
生じることもある。この場合ドーピングに用いる不純物
としては、例えば、3、AI、Ga、In及びT1等の
周期表第mb族元素の単体並びにその化合物や、N、P
、Sb、 Br等の周期表第vb族元業の単体並びにそ
の化合物を挙げることができる。ダイヤモンド薄膜は、
例えば、はう素を添加するとp型半導体としての性質を
生じ。The light-emitting surface made of a diamond thin film is usually an insulator, but when it is used as a type of light-emitting element or a diode, it may be necessary to dope one light-emitting element to n-type or p-type. In this case, the impurities used for doping include, for example, simple substances of group mb elements of the periodic table such as 3, AI, Ga, In, and T1, as well as compounds thereof, N, P
, Sb, Br, etc., as well as compounds thereof, can be mentioned. Diamond thin film is
For example, when boronate is added, it develops properties as a p-type semiconductor.
リンを添加するとn型半導体としての性質を生じる。Addition of phosphorus produces properties as an n-type semiconductor.
前記原料ガスに部ける前記第mb族元素の単体並びにそ
の化合物及び、第vb族元素の単体並びにその化合物の
少なくとも一種(以下、これをドーパント元素と称する
ことがある。)の含有割合は、前記ドーパント元素と前
記−酸化炭素との割合[(ドーパント元素)/(−酸化
炭素)モル比]で1通常、 tO−a〜10−1.好ま
しくは10−7〜10−2である。The content ratio of the simple substance of the Group Mb element and its compound, and the simple substance of the Group VB element and at least one of its compounds (hereinafter sometimes referred to as a dopant element) in the raw material gas is as described above. The ratio of the dopant element to the -carbon oxide [(dopant element)/(-carbon oxide) molar ratio] is usually 1, tO-a to 10-1. Preferably it is 10-7 to 10-2.
なお、ドーパントの種類によっては、青色以外の発光と
なる場合がある0例えば、ポロンをドーピングすると5
10s+w付近にピークが出現し、緑色発光となる。Note that depending on the type of dopant, light emission other than blue may occur.For example, when doping with poron, 5
A peak appears around 10s+w, resulting in green light emission.
このようにしてダイヤモンド発光素子を製造すると、高
輝度青色発光が可能となる。When a diamond light-emitting element is manufactured in this manner, it becomes possible to emit high-intensity blue light.
(実施例と比較例J
1〜6,1
基体温度及び−酸化炭素に対する二酸化炭素の比率を表
1に示すようにしたほかは1次の条件によってダイヤモ
ンド発光素子を製造した。(Examples and Comparative Examples J 1 to 6, 1 Diamond light emitting devices were manufactured under the following conditions except that the substrate temperature and the ratio of carbon dioxide to carbon oxide were as shown in Table 1.
く条件〉
原料ガス: CO120SCCN
IIz809CCN
基体 :シリコン基板
反応圧カニ40丁orr
反応時間: 3時間
基体温度が一定になるように調整)
LLf2Lヱ(1989年秋期応用物理学会発表分)原
料ガスとして、CO5SCC)1. [295SCCN
を用いた以外は上記と同じ条件でダイヤモンドを得た。Conditions> Raw material gas: CO120SCCN IIz809CCN Substrate: Silicon substrate Reaction pressure: 40 orr Reaction time: 3 hours Adjusted to keep the substrate temperature constant) LLf2Lヱ (Presentation at the Japan Society of Applied Physics Fall 1989) As the raw material gas, CO5SCC )1. [295SCCN
Diamonds were obtained under the same conditions as above except that .
く結果〉
この結果、SEX (走査形電子顕微鏡)で自形面の観
測を行なったところ、実施例1〜6のものには自形面の
はっきりした結晶が見られた。Results> As a result, when the euhedral surface was observed using a SEX (scanning electron microscope), crystals with clearly euhedral surfaces were observed in Examples 1 to 6.
また、!9E)Iと分光器でカンードルミネッセンスペ
クトルの測定を行なったところ照射電子線の加速電圧1
0にマ、電子線プローブの電流密度が20#LA/11
11217)条件で、波長300〜800nm f)分
光を得た。そして、420mmの比較例2に対する強度
比は表1に示す通りであった。Also,! 9E) When the candoluminescence spectrum was measured using I and a spectrometer, the accelerating voltage of the irradiated electron beam was 1.
0, the current density of the electron beam probe is 20#LA/11
11217) conditions, a wavelength of 300 to 800 nm f) spectroscopy was obtained. The strength ratios for Comparative Example 2 of 420 mm were as shown in Table 1.
[発明の効果]
以上のように1本発明のダイヤモンド発光素子の製造方
法によれば、高輝度の青色発光を行なうダイヤモンド発
光素子を製造することができる。[Effects of the Invention] As described above, according to the method for manufacturing a diamond light emitting device of the present invention, a diamond light emitting device that emits high-intensity blue light can be manufactured.
また、ダイヤモンドの成膜を高速度で行なうことができ
る。Further, diamond film formation can be performed at high speed.
第1図はグラファイト生成条件図を示す。 FIG. 1 shows a diagram of graphite production conditions.
Claims (2)
ガスを用い、気相合成法によって、基体上にダイヤモン
ドを生成して発光素子を製造することを特徴としたダイ
ヤモンド発光素子の製造方法。(1) A method for manufacturing a diamond light-emitting device, characterized in that the light-emitting device is manufactured by producing diamond on a substrate by a vapor phase synthesis method using carbon monoxide, hydrogen gas, and an oxygen-containing inorganic gas as raw material gases. .
炭素とするとともに、この二酸化炭素を一酸化炭素に対
して0.2〜10Vol%の含有率としたことを特徴と
する請求項1記載のダイヤモンド発光素子の製造方法。(2) The oxygen-containing inorganic gas in the raw material gas is carbon dioxide, and the content of this carbon dioxide is 0.2 to 10 Vol% relative to carbon monoxide. A method for manufacturing a diamond light emitting device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1305469A JPH03165074A (en) | 1989-11-24 | 1989-11-24 | Manufacture of light-emitting device of diamond |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1305469A JPH03165074A (en) | 1989-11-24 | 1989-11-24 | Manufacture of light-emitting device of diamond |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03165074A true JPH03165074A (en) | 1991-07-17 |
Family
ID=17945527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1305469A Pending JPH03165074A (en) | 1989-11-24 | 1989-11-24 | Manufacture of light-emitting device of diamond |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03165074A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001004965A1 (en) * | 1999-07-09 | 2001-01-18 | Tokyo Gas Co., Ltd. | Diamond ultraviolet light-emitting device |
WO2001004966A1 (en) * | 1999-07-07 | 2001-01-18 | Tokyo Gas Co., Ltd. | Diamond ultraviolet luminescent element |
-
1989
- 1989-11-24 JP JP1305469A patent/JPH03165074A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001004966A1 (en) * | 1999-07-07 | 2001-01-18 | Tokyo Gas Co., Ltd. | Diamond ultraviolet luminescent element |
US6872981B1 (en) | 1999-07-07 | 2005-03-29 | Tokyo Gas Co., Ltd. | Diamond ultraviolet luminescent element |
WO2001004965A1 (en) * | 1999-07-09 | 2001-01-18 | Tokyo Gas Co., Ltd. | Diamond ultraviolet light-emitting device |
US7009219B1 (en) | 1999-07-09 | 2006-03-07 | Tokyo Gas Co., Ltd. | Diamond ultraviolet light-emitting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | Synthesis of nanocrystalline diamond thin films from an Ar–CH 4 microwave plasma | |
US5275967A (en) | Electric field light-emitting device | |
US5698328A (en) | Diamond thin film electron emitter | |
US20100126406A1 (en) | Production of Single Crystal CVD Diamond at Rapid Growth Rate | |
US4152182A (en) | Process for producing electronic grade aluminum nitride films utilizing the reduction of aluminum oxide | |
US5531184A (en) | Method for producing synthetic diamond thin film, the thin film and device using it | |
JP2004511064A (en) | Film type cathode for cold cathode emission and method of manufacturing the same | |
US5750188A (en) | Method for forming a thin film of a non-stoichiometric metal oxide | |
US5380516A (en) | Process for synthesizing diamond in a vapor phase | |
JP3918073B2 (en) | Method for synthesizing 3C-SiC nanowhiskers and 3C-SiC nanowhiskers | |
US10403495B2 (en) | Sn doped ZnS nanowires for white light source material | |
JPH03281594A (en) | Luminescent material and display device | |
JPH03165074A (en) | Manufacture of light-emitting device of diamond | |
JP2001274455A (en) | Diamond semiconductor and diamond semiconductor light emitting element | |
JPH0358487A (en) | Manufacture of diamond light emitting element | |
Schreck | Growth of single crystal diamond wafers for future device applications | |
JPH03254161A (en) | Diamond light emission element and manufacture thereof | |
JP4525897B2 (en) | Diamond single crystal substrate | |
JPH03110828A (en) | Manufacture of diamond illuminant element | |
JP2762910B2 (en) | Luminescent material | |
JPH0379770A (en) | Production of boron nitride | |
JPS63265890A (en) | Production of thin diamond film or thin diamond-like film | |
JP4480192B2 (en) | Method for synthesizing high purity diamond | |
JP2761758B2 (en) | How to make diamond | |
JP2761755B2 (en) | How to make diamond |