JPH03110828A - Manufacture of diamond illuminant element - Google Patents

Manufacture of diamond illuminant element

Info

Publication number
JPH03110828A
JPH03110828A JP1248022A JP24802289A JPH03110828A JP H03110828 A JPH03110828 A JP H03110828A JP 1248022 A JP1248022 A JP 1248022A JP 24802289 A JP24802289 A JP 24802289A JP H03110828 A JPH03110828 A JP H03110828A
Authority
JP
Japan
Prior art keywords
diamond
material gas
gas
emitting device
illuminant element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1248022A
Other languages
Japanese (ja)
Inventor
Satoshi Katsumata
聡 勝又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP1248022A priority Critical patent/JPH03110828A/en
Publication of JPH03110828A publication Critical patent/JPH03110828A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To manufacture a diamond illuminant element in high brightness blue base illuminance by a method wherein a material gas comprising hydrogen gas containing at least specific amount of carbon oxide is fed at specific flow rate to the sectional area of a reflector arranged with a substrate material so as to form a diamond film. CONSTITUTION:In order to form a diamond film by bringing a material gas comprising hydrogen gas containing 1-20vol% of carbon oxide in excited state into contact with a substrate material, the material gas is to be fed at the flow rate of 5-20sccm/cm<2> to the sectional area of a reflector arranged with the substrate material while it is recommended to excite the material gas by microwave plasma. Besides, the content of carbon oxide in the material gas is to be 1-20vol% preferably 2-15vol% or 2-10vol% if possible. When the content of carbon source gas exceeds the maximum ratio, the performances as the illuminant element are deteriorated by the increase in the non-diamond components contained in the diamond film. Through these procedures, the title diamond illuminant element in high brightness blue base illuminance capable of making it practicable can be manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、発光層にダイヤモンド膜を用いた発光デバイ
ス、すなわちダイヤモンド発光素子の製造方法に関し、
特に、高輝度の青色系発光を回部としたダイヤモンド発
光素子の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a light emitting device using a diamond film as a light emitting layer, that is, a diamond light emitting element.
In particular, the present invention relates to a method of manufacturing a diamond light-emitting device that emits high-intensity blue light.

[従来の技術と解決課題] 近年、カラー発光をともなう発光デバイスとして、ダイ
ヤモンド発光素子か注目されている。
[Prior Art and Problems to be Solved] In recent years, diamond light-emitting elements have been attracting attention as light-emitting devices that emit color light.

特に、従来の発光デバイスではなし得なかった、十分な
輝度を有するとともに1色相の良い青色系発光を行なう
発光素子としてダイヤモンド発光素子か期待され、種々
研究かなされている。
In particular, diamond light-emitting devices are expected to be a light-emitting device that has sufficient brightness and emits blue light with a good color, which has not been possible with conventional light-emitting devices, and various studies are being carried out.

しかしながら、現在開発されているダイヤモンド発光素
子は、いずれも青色系発光を十分なし得す、実用化の段
階には至っていない。
However, none of the diamond light emitting elements currently being developed have reached the stage of practical use where they can sufficiently emit blue light.

また、ガリウム窒素、炭化ケイ素、硫化亜鉛等を用いた
カラー発光素子も研究されているか、これらは外部量子
効率が低く、従来のダイヤモンド発光素子と同様に十分
な輝度を得ることかできず、実用的ではなかった。
Color light emitting devices using materials such as gallium nitrogen, silicon carbide, and zinc sulfide are also being researched, but these have low external quantum efficiencies and cannot achieve sufficient brightness like conventional diamond light emitting devices, making them difficult to put into practical use. It wasn't on point.

なお、水素ガスに、メタンや一酸化炭素を含有させた原
料ガスを用いてダイヤモンド発光素子を得る研究か行な
われ、学会で発表されているが、このダイヤモンド発光
素子の場合も青色系の発光強度が十分てなく、実用的て
はなかった。
Research has been conducted to obtain a diamond light-emitting device using hydrogen gas containing methane or carbon monoxide as a raw material gas, and the results have been presented at academic conferences. There weren't enough of them and it wasn't practical.

本発明は上記の事情にかんがみてなされたもので、実用
化できる程度の高輝度青色系発光を可能としたタイヤセ
ント発光素子の製造方法の提供を目的としている。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a method for manufacturing a tire-cent light-emitting element that is capable of emitting high-intensity blue light to the extent that it can be put to practical use.

[課題の解決手段] 上記目的を達成するため、本発明者は、鋭意研究を重ね
た結果、水素ガスに、少なくとも一酸化炭素を一定量含
有させた原料ガスを、基材を配lした反応器の断面積に
対し所定流量供給して基材にダイヤモンド膜を生成させ
ることにより、高輝度青色系発光をなすダイヤモンド発
光素子を得られることを見出し1本発明を完成するに至
った。
[Means for Solving the Problems] In order to achieve the above object, the present inventor has conducted extensive research and has developed a reaction method in which a raw material gas containing hydrogen gas and at least a certain amount of carbon monoxide is arranged on a base material. The inventors discovered that a diamond light-emitting element that emits high-intensity blue light can be obtained by supplying a predetermined flow rate to the cross-sectional area of the vessel to form a diamond film on the base material, thereby completing the present invention.

すなわち、本発明のダイヤモンド発光素子の製造方法は
、水素ガスに一酸化炭素を1〜20Vo文2含有してな
る原料ガスを、励起状態として基材に接触させダイヤモ
ンド膜を生成するに際し、上記原料ガスを、上記基材を
設こした反応器の断面積に対し5〜20scc■/cm
”の流量で供給するようにしてあり、好ましくは、上記
原料ガスの励起を、マイクロ波プラズマによって行なう
ようにしである。
That is, in the method for manufacturing a diamond light emitting device of the present invention, a raw material gas containing 1 to 20 Vo2 of carbon monoxide in hydrogen gas is brought into contact with a substrate in an excited state to form a diamond film. Gas is supplied at a rate of 5 to 20 sc/cm to the cross-sectional area of the reactor equipped with the above-mentioned base material.
Preferably, the source gas is excited by microwave plasma.

以下、末完1月ダイヤモンド発光素子の製造方法を具体
的に説明する。
Hereinafter, a method for manufacturing a diamond light emitting device will be specifically described.

本発明のタイヤセント発光素子の製造方法としては、気
相法により結晶性ダイヤモンドを形成することのできる
方法てあれば、特に制限はなく、例えば、高周波誘電放
電によりプラズマ分解する方法、マイクロ波放電により
プラズマ分解する方法(有磁場、ECRを含む)、熱フ
ィラメントによる加熱により熱分解する熱分解法(EA
CVD法を含む。)などのいずれをも採用することかで
きる。
There are no particular limitations on the method for manufacturing the Tirecent light-emitting device of the present invention as long as it is possible to form crystalline diamond by a vapor phase method, such as plasma decomposition using high-frequency dielectric discharge, microwave discharge, etc. (magnetic field, including ECR), thermal decomposition method (EA) by heating with a hot filament (EA
Including CVD method. ) etc. can be adopted.

特に、−酸化炭素ガスと水素ガスとの混合ガスにマイク
ロ波を照射し、プラズマを形成させることにより活性化
された該混合ガスを、ノ5材に接触させてダイヤモンド
を生成させるマイクロ波プラズマCVD法、あるいは、
この際、マイクロ波を該基材に対して複数の方向から導
入するマイクロ波プラズマCVD法。また、発散磁界に
おいて生しるマイクロ波吸収帯域に、広範囲にわたって
高密度安定化プラズマを発生せしめ、大村上にダイヤモ
ンドを気相成長させる有磁場法、あるいはサイクロトロ
ン共鳴プラズマ(ECR)法などが好ましい。
Particularly, - Microwave plasma CVD in which a mixed gas of carbon oxide gas and hydrogen gas is irradiated with microwaves to form plasma, and the activated mixed gas is brought into contact with No. 5 material to generate diamonds. law, or
At this time, a microwave plasma CVD method is used in which microwaves are introduced into the base material from multiple directions. Further, it is preferable to use a magnetic field method or a cyclotron resonance plasma (ECR) method, in which high-density stabilized plasma is generated over a wide range in a microwave absorption band generated in a divergent magnetic field, and diamond is grown in a vapor phase on Omurakami.

この場合基材としては、−船釣には、ガラス。In this case, the base material is - glass for boat fishing.

サファイア等の透明基材あるいはシリコン、マンガン、
バナジウム、タリウム、アルミニウム、チタン、タング
ステン、モリブデン、ゲルマニウム及びクロムなどの金
属、これら金属の酸化物、窒化物及び炭化物、 A1.
O,−Fe系、TiC−Ni系、TiC−C。
Transparent base materials such as sapphire, silicon, manganese,
Metals such as vanadium, thallium, aluminum, titanium, tungsten, molybdenum, germanium and chromium, oxides, nitrides and carbides of these metals, A1.
O, -Fe system, TiC-Ni system, TiC-C.

系及びB、C−Fe系等のサーメットならびに各種セラ
ミックス等を用いることかできる。また、透明基材を用
いる場合には、可視領域での透明度がよく、かつ表面平
滑性に優れたものを用いることが好ましい。
It is possible to use cermets such as B-type, B-Fe-type, C-Fe-type, and various ceramics. Furthermore, when using a transparent base material, it is preferable to use one that has good transparency in the visible region and excellent surface smoothness.

そして、ダイヤモンド合成時における基材の表面温度は
、前記原料ガスの励起手段によって異なるので、−概に
決定することはできないが通常、室温〜1200℃、好
ましくは600〜1100℃とした。
The surface temperature of the substrate during diamond synthesis varies depending on the excitation means for the raw material gas, so it cannot be determined generally, but it is usually room temperature to 1200°C, preferably 600 to 1100°C.

前記の温度か、室温より低いと、タイヤモント層の生成
速度か遅くなったり、グラファイト等の非ダイヤモンド
成分の含有や結晶性の低下など生成物の純度、均質性が
失われたりする。一方、1200℃より高くしても、そ
れに見合った効果は奏されず、ダイヤモンドか生成され
なかったり、エネルギー効率の点でも不利になる。
If the temperature is above or lower than room temperature, the formation rate of the tire mont layer may be slowed, and the purity and homogeneity of the product may be lost due to the inclusion of non-diamond components such as graphite or a decrease in crystallinity. On the other hand, even if the temperature is higher than 1200° C., the corresponding effect will not be achieved, diamonds will not be produced, and energy efficiency will be disadvantageous.

原料ガスとしては、−酸化炭素を炭素源ガスとして含有
する水素ガスを用いる。この場合、原料ガス中における
一酸化炭素の含有率は、 1〜20VoJl駕、好まし
くは2〜15Vo文2、より好ましくは2〜1OVo又
2とした。炭素源ガスの含有率をこれ以上高くすると、
ダイヤモンド膜中の非ダイヤモンド成分の増加により発
光素子としての性能か低下する。
As the raw material gas, hydrogen gas containing -carbon oxide as a carbon source gas is used. In this case, the content of carbon monoxide in the raw material gas is 1 to 20 VoJl, preferably 2 to 15 VoJl, more preferably 2 to 1 O VoJl. If the content of carbon source gas is increased further,
The performance as a light emitting device deteriorates due to an increase in non-diamond components in the diamond film.

また、原料ガスとしては、−酸化炭素を含有した水素ガ
スに、さらに二酸化炭素、酸素、氷等の他のガスを添加
することもできる。例えば、二酸化炭素を添加すること
により、−酸化炭素の含有率か20Vo文2以上になっ
ても、結晶性に優れた高純度のダイヤモンドを得ること
かできる。
Furthermore, as the raw material gas, other gases such as carbon dioxide, oxygen, and ice may be added to the hydrogen gas containing -carbon oxide. For example, by adding carbon dioxide, it is possible to obtain highly pure diamond with excellent crystallinity even if the -carbon oxide content reaches 20Vo2 or more.

に記原料ガスの供給量は、水素ガスに一酸化炭素のみを
含有した原料ガスの場合は、基材を設置した反応器の断
面積1cm2当り 5〜20secm、好ましくは7〜
+5scc層とした。
In the case of a raw material gas containing only carbon monoxide in hydrogen gas, the supply amount of the raw material gas is 5 to 20 seconds, preferably 7 to 20 seconds per 1 cm2 of the cross-sectional area of the reactor in which the base material is installed.
+5scc layer.

上記原料ガスを用いてダイヤモンド合成を行なう際の反
応圧力は1通常l0−6〜l0ffTorr 、好まし
くは10−”−760Torrとした0反応圧力が10
−6丁orrより低過ぎると生成速度か遅くなり、また
、10’Torrより高くしても、それに相当した効果
は得られない。
The reaction pressure when performing diamond synthesis using the above raw material gas is usually 10-6 to 10ff Torr, preferably 10-''-760 Torr, and the reaction pressure is 10
If it is too low than -6 Torr, the generation rate will be slow, and even if it is higher than 10' Torr, no corresponding effect will be obtained.

反応時間は、前記原料ガスの濃度、基材の種類、基材の
表面の温度1反応圧力、必要としたダイヤモンド膜の厚
さなどにより相違するので、これらに応じて適宜決定す
る。
The reaction time varies depending on the concentration of the raw material gas, the type of the substrate, the temperature and reaction pressure of the surface of the substrate, the required thickness of the diamond film, etc., and is appropriately determined according to these factors.

ダイヤモンド膜の膜厚は0.1−1oo P■、好まし
くは0.2〜30舊■とした。膜厚が0.1pmより薄
い場合は全体を覆った膜とならず、逆に100終−より
厚い場合は剥離か生しやすくなる。
The thickness of the diamond film was 0.1-10 mm, preferably 0.2-30 mm. If the film thickness is less than 0.1 pm, the film will not cover the entire surface, whereas if it is thicker than 100 pm, peeling will occur easily.

このようにして製造したダイヤモンド発光素子によると
、高輝度青色系発光か回旋となる。
According to the diamond light-emitting device manufactured in this manner, high-intensity blue light emission or rotation occurs.

[実施例と比較例コ 次の条件によって、ダイヤモンド発光素子を製造した。[Example and comparative example A diamond light emitting device was manufactured under the following conditions.

原料ガX : CO”tlz  Co含有率5Vou%
基 材 コシリコン(100):IOx 101m表面
温度90o’c 反応器 :[1面積15cm2の石英管反応圧力+ 4
0Torr 反応時間: 4時間 (マイクロ波出力 400〜4SOW )原料ガスの流
量を変化させて、タイヤセント膜(膜厚:1.7pLm
)を形成させた。
Raw material X: CO”tlz Co content 5Vou%
Substrate Cosilicon (100): IOx 101 m Surface temperature 90 o'c Reactor: [1 area 15 cm2 quartz tube reaction pressure + 4
0 Torr Reaction time: 4 hours (microwave output 400-4SOW) By changing the flow rate of the raw material gas, a tire cent film (film thickness: 1.7 pLm) was formed.
) was formed.

得られた膜の表面を、SEM (走査型電−F顕微鏡)
を用いて観測したところ、実施例及び比較例ともにダイ
ヤセントの自形か確認てきた。
The surface of the obtained film was examined using a SEM (scanning electron-F microscope).
When observed using , it was confirmed that both the Example and the Comparative Example were euhedral to a diamond.

また、SEMと分光器でカソードルミネッセンスベクト
ルの測定を行なった。
In addition, cathodoluminescence vectors were measured using a SEM and a spectrometer.

照射電子線の加速電圧10kV、電子線プローブの電流
密度10 pLA/*m2(7)条件で、波長35(1
〜6(1(lnaの分光を得た。そして、425n■付
近にピークを有する発光スペクトルを得た。このときの
実施例2のピークに対する強度比を表1に示した。
The acceleration voltage of the irradiated electron beam was 10 kV, the current density of the electron beam probe was 10 pLA/*m2 (7), and the wavelength was 35 (1
A spectrum of ~6(lna) was obtained. Then, an emission spectrum having a peak around 425 nm was obtained. Table 1 shows the intensity ratio with respect to the peak of Example 2.

また、実施例2の分光特性を第1図に示す。Further, the spectral characteristics of Example 2 are shown in FIG.

なお、比較例2においては、−酸化炭素ガスを30Vo
文落とした。
In addition, in Comparative Example 2, -carbon oxide gas was heated at 30Vo.
I dropped the sentence.

[以下余白] 実施例2と市阪のL E D (Green: GaP
)との発光強度を比較したところ同等であった。
[Left below] Example 2 and Ichisaka's LED (Green: GaP
) and the luminescence intensity was comparable.

なお、実施例2は、電子線励起、LEDは電圧励起と異
なるが、ともに1.5■Wとして行なった。
In Example 2, electron beam excitation and LED voltage excitation were different, but both were carried out at 1.5 ■W.

[発明の効果] 以上のように、本発明のダイヤモンド発光素子の製造方
法によれば、簡単な方法て高輝度の青色系発光を行なう
ダイヤモンド発光素子を製造することができる。
[Effects of the Invention] As described above, according to the method for manufacturing a diamond light emitting device of the present invention, a diamond light emitting device that emits blue light with high brightness can be manufactured using a simple method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は分光特性図である。 FIG. 1 is a spectral characteristic diagram.

Claims (2)

【特許請求の範囲】[Claims] (1)水素ガスに一酸化炭素を1〜20Vol%含有し
てなる原料ガスを、励起状態として基材に接触させダイ
ヤモンド膜を生成するに際し、上記原料ガスを、上記基
材を設置した反応器の断面積に対し5〜20sccm/
cm^2の流量で供給することを特徴としたダイヤモン
ド発光素子の製造方法。
(1) When a raw material gas containing 1 to 20 vol% of carbon monoxide in hydrogen gas is brought into contact with a base material in an excited state to produce a diamond film, the raw material gas is transferred to a reactor equipped with the base material. 5 to 20 sccm/for the cross-sectional area of
A method for manufacturing a diamond light emitting device, characterized in that the diamond light emitting device is supplied at a flow rate of cm^2.
(2)上記原料ガスの励起を、マイクロ波プラズマによ
って行なうことを特徴とした請求項1記載のダイヤモン
ド発光素子の製造方法。
(2) The method for manufacturing a diamond light emitting device according to claim 1, wherein the source gas is excited by microwave plasma.
JP1248022A 1989-09-26 1989-09-26 Manufacture of diamond illuminant element Pending JPH03110828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1248022A JPH03110828A (en) 1989-09-26 1989-09-26 Manufacture of diamond illuminant element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1248022A JPH03110828A (en) 1989-09-26 1989-09-26 Manufacture of diamond illuminant element

Publications (1)

Publication Number Publication Date
JPH03110828A true JPH03110828A (en) 1991-05-10

Family

ID=17172040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1248022A Pending JPH03110828A (en) 1989-09-26 1989-09-26 Manufacture of diamond illuminant element

Country Status (1)

Country Link
JP (1) JPH03110828A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521024B1 (en) 1999-03-18 2003-02-18 Nok Corporation Seal plate and pressure adjusting mechanism for the seal plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521024B1 (en) 1999-03-18 2003-02-18 Nok Corporation Seal plate and pressure adjusting mechanism for the seal plate

Similar Documents

Publication Publication Date Title
US6514113B1 (en) White light source using carbon nanotubes and fabrication method thereof
Zhou et al. Synthesis of nanocrystalline diamond thin films from an Ar–CH 4 microwave plasma
US8637118B2 (en) Method of production of graphene
US5210430A (en) Electric field light-emitting device
JPWO2008093389A1 (en) Microwave plasma CVD equipment
JPH02233591A (en) Method for forming single crystal diamond layer
JPH04214094A (en) Manufacture of synthetic diamond thin film, the above thin film and apparatus using same
JP3783057B2 (en) Sp3-bonded boron nitride thin film having a self-formation surface shape utilizing field electron emission characteristics, its production method and use
JPS62202897A (en) Production of diamond
US6773508B2 (en) Single crystal silicon carbide thin film fabrication method and fabrication apparatus of the same
JPH03110828A (en) Manufacture of diamond illuminant element
JPH11185964A (en) Organic luminous element and its manufacture
JPH03281594A (en) Luminescent material and display device
JP3043744B1 (en) Method for growing single crystal SiC
KR20010039636A (en) Apparatus of white light source using carbon nanotubes and fabrication Method thereof
JPH03165074A (en) Manufacture of light-emitting device of diamond
US7759662B2 (en) Field electron emission element, a method of manufacturing the same and a field electron emission method using such an element as well as an emission/display device employing such a field electron emission element and a method of manufacturing the same
JP2001274455A (en) Diamond semiconductor and diamond semiconductor light emitting element
KR101133815B1 (en) Boron nitride thin film emitter and production method therefor, and electron emission method using boron nitride thin film emitter
JPH03254161A (en) Diamond light emission element and manufacture thereof
JPH0358487A (en) Manufacture of diamond light emitting element
JPH03110876A (en) Of diamond light-emitting element and manufacture thereof
Nakamatsu et al. Synthesis of epitaxial silicon carbide films by laser CVD
JPH03259575A (en) Diamond light-emitting element and el light-emitting element
JP2006172797A (en) Light-emission/display device using self-forming electron emission bn thin film and its manufacturing method